Properties

Label 19.3.d
Level $19$
Weight $3$
Character orbit 19.d
Rep. character $\chi_{19}(8,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $6$
Newform subspaces $1$
Sturm bound $5$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 19.d (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(5\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(19, [\chi])\).

Total New Old
Modular forms 10 10 0
Cusp forms 6 6 0
Eisenstein series 4 4 0

Trace form

\( 6 q - 3 q^{2} - 9 q^{3} + 5 q^{4} - 2 q^{5} + q^{6} + 14 q^{9} + O(q^{10}) \) \( 6 q - 3 q^{2} - 9 q^{3} + 5 q^{4} - 2 q^{5} + q^{6} + 14 q^{9} - 60 q^{10} + 26 q^{11} + 30 q^{13} + 54 q^{14} - 18 q^{15} + q^{16} - 42 q^{17} + 25 q^{19} + 108 q^{20} - 102 q^{21} - 39 q^{22} + 8 q^{23} - 83 q^{24} - 17 q^{25} - 148 q^{26} + 32 q^{28} - 12 q^{29} + 304 q^{30} + 51 q^{32} + 123 q^{33} - 6 q^{34} - 38 q^{35} - 54 q^{36} - 14 q^{38} - 44 q^{39} - 96 q^{40} + 63 q^{41} - 92 q^{42} - 34 q^{43} - 69 q^{44} - 28 q^{45} + 58 q^{47} - 147 q^{48} + 18 q^{49} + 132 q^{51} + 162 q^{52} - 12 q^{53} + 29 q^{54} - 28 q^{55} - 16 q^{57} + 172 q^{58} - 147 q^{59} - 222 q^{60} + 58 q^{61} - 116 q^{62} + 86 q^{63} + 166 q^{64} + 11 q^{66} + 201 q^{67} - 84 q^{68} - 198 q^{70} - 102 q^{71} + 210 q^{72} + 7 q^{73} + 174 q^{74} - 173 q^{76} - 376 q^{77} + 450 q^{78} + 134 q^{80} + 253 q^{81} - 145 q^{82} + 146 q^{83} - 90 q^{85} - 270 q^{86} - 568 q^{87} - 72 q^{89} - 438 q^{90} - 216 q^{91} + 72 q^{92} - 160 q^{93} + 558 q^{95} + 126 q^{96} + 21 q^{97} + 411 q^{98} - 56 q^{99} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(19, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
19.3.d.a 19.d 19.d $6$ $0.518$ 6.0.6967728.1 None \(-3\) \(-9\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1-\beta _{5})q^{2}+(\beta _{1}+2\beta _{2}+\beta _{3}+\beta _{5})q^{3}+\cdots\)