Properties

Label 1890.2.r.b.89.1
Level $1890$
Weight $2$
Character 1890.89
Analytic conductor $15.092$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1890,2,Mod(89,1890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1890, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1890.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1890 = 2 \cdot 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1890.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.0917259820\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 89.1
Character \(\chi\) \(=\) 1890.89
Dual form 1890.2.r.b.1529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-2.23138 - 0.144779i) q^{5} +(2.37108 + 1.17388i) q^{7} -1.00000 q^{8} +(-0.990306 - 2.00482i) q^{10} -0.745990i q^{11} +(-1.67087 - 2.89402i) q^{13} +(0.168925 + 2.64035i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(4.20138 - 2.42567i) q^{17} +(6.50055 + 3.75309i) q^{19} +(1.24107 - 1.86004i) q^{20} +(0.646046 - 0.372995i) q^{22} -1.86701 q^{23} +(4.95808 + 0.646111i) q^{25} +(1.67087 - 2.89402i) q^{26} +(-2.20215 + 1.46647i) q^{28} +(0.644047 + 0.371841i) q^{29} +(-4.33139 - 2.50073i) q^{31} +(0.500000 - 0.866025i) q^{32} +(4.20138 + 2.42567i) q^{34} +(-5.12081 - 2.96266i) q^{35} +(5.78366 + 3.33920i) q^{37} +7.50618i q^{38} +(2.23138 + 0.144779i) q^{40} +(0.849794 + 1.47189i) q^{41} +(7.64047 + 4.41123i) q^{43} +(0.646046 + 0.372995i) q^{44} +(-0.933507 - 1.61688i) q^{46} +(-10.0544 + 5.80494i) q^{47} +(4.24400 + 5.56673i) q^{49} +(1.91949 + 4.61688i) q^{50} +3.34173 q^{52} +(2.94339 + 5.09811i) q^{53} +(-0.108003 + 1.66458i) q^{55} +(-2.37108 - 1.17388i) q^{56} +0.743681i q^{58} +(2.33158 - 4.03841i) q^{59} +(-1.48312 + 0.856279i) q^{61} -5.00146i q^{62} +1.00000 q^{64} +(3.30934 + 6.69956i) q^{65} +(3.92576 + 2.26654i) q^{67} +4.85133i q^{68} +(0.00533076 - 5.91608i) q^{70} -4.17217i q^{71} +(5.10736 + 8.84620i) q^{73} +6.67839i q^{74} +(-6.50055 + 3.75309i) q^{76} +(0.875705 - 1.76880i) q^{77} +(3.10806 + 5.38333i) q^{79} +(0.990306 + 2.00482i) q^{80} +(-0.849794 + 1.47189i) q^{82} +(-2.26849 - 1.30971i) q^{83} +(-9.72604 + 4.80431i) q^{85} +8.82245i q^{86} +0.745990i q^{88} +(7.58595 - 13.1393i) q^{89} +(-0.564503 - 8.82335i) q^{91} +(0.933507 - 1.61688i) q^{92} +(-10.0544 - 5.80494i) q^{94} +(-13.9618 - 9.31570i) q^{95} +(-2.32004 + 4.01843i) q^{97} +(-2.69893 + 6.45877i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{2} - 24 q^{4} - 48 q^{8} - 3 q^{14} - 24 q^{16} + 6 q^{22} + 6 q^{23} - 3 q^{28} + 3 q^{29} + 24 q^{32} - 18 q^{35} - 3 q^{41} + 6 q^{44} + 3 q^{46} - 6 q^{49} + 18 q^{50} + 42 q^{55} - 9 q^{61}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1890\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(1081\) \(1541\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −2.23138 0.144779i −0.997902 0.0647470i
\(6\) 0 0
\(7\) 2.37108 + 1.17388i 0.896182 + 0.443686i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −0.990306 2.00482i −0.313162 0.633979i
\(11\) 0.745990i 0.224924i −0.993656 0.112462i \(-0.964126\pi\)
0.993656 0.112462i \(-0.0358737\pi\)
\(12\) 0 0
\(13\) −1.67087 2.89402i −0.463415 0.802658i 0.535714 0.844400i \(-0.320043\pi\)
−0.999128 + 0.0417418i \(0.986709\pi\)
\(14\) 0.168925 + 2.64035i 0.0451472 + 0.705664i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 4.20138 2.42567i 1.01898 0.588311i 0.105175 0.994454i \(-0.466460\pi\)
0.913810 + 0.406143i \(0.133127\pi\)
\(18\) 0 0
\(19\) 6.50055 + 3.75309i 1.49133 + 0.861018i 0.999951 0.00992860i \(-0.00316042\pi\)
0.491377 + 0.870947i \(0.336494\pi\)
\(20\) 1.24107 1.86004i 0.277512 0.415917i
\(21\) 0 0
\(22\) 0.646046 0.372995i 0.137738 0.0795228i
\(23\) −1.86701 −0.389299 −0.194650 0.980873i \(-0.562357\pi\)
−0.194650 + 0.980873i \(0.562357\pi\)
\(24\) 0 0
\(25\) 4.95808 + 0.646111i 0.991616 + 0.129222i
\(26\) 1.67087 2.89402i 0.327684 0.567565i
\(27\) 0 0
\(28\) −2.20215 + 1.46647i −0.416167 + 0.277137i
\(29\) 0.644047 + 0.371841i 0.119597 + 0.0690491i 0.558605 0.829434i \(-0.311337\pi\)
−0.439008 + 0.898483i \(0.644670\pi\)
\(30\) 0 0
\(31\) −4.33139 2.50073i −0.777941 0.449145i 0.0577588 0.998331i \(-0.481605\pi\)
−0.835700 + 0.549186i \(0.814938\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 4.20138 + 2.42567i 0.720531 + 0.415999i
\(35\) −5.12081 2.96266i −0.865575 0.500780i
\(36\) 0 0
\(37\) 5.78366 + 3.33920i 0.950827 + 0.548960i 0.893338 0.449386i \(-0.148357\pi\)
0.0574896 + 0.998346i \(0.481690\pi\)
\(38\) 7.50618i 1.21766i
\(39\) 0 0
\(40\) 2.23138 + 0.144779i 0.352812 + 0.0228915i
\(41\) 0.849794 + 1.47189i 0.132716 + 0.229870i 0.924722 0.380642i \(-0.124297\pi\)
−0.792007 + 0.610512i \(0.790964\pi\)
\(42\) 0 0
\(43\) 7.64047 + 4.41123i 1.16516 + 0.672706i 0.952535 0.304428i \(-0.0984654\pi\)
0.212625 + 0.977134i \(0.431799\pi\)
\(44\) 0.646046 + 0.372995i 0.0973951 + 0.0562311i
\(45\) 0 0
\(46\) −0.933507 1.61688i −0.137638 0.238396i
\(47\) −10.0544 + 5.80494i −1.46659 + 0.846737i −0.999302 0.0373667i \(-0.988103\pi\)
−0.467290 + 0.884104i \(0.654770\pi\)
\(48\) 0 0
\(49\) 4.24400 + 5.56673i 0.606285 + 0.795247i
\(50\) 1.91949 + 4.61688i 0.271457 + 0.652925i
\(51\) 0 0
\(52\) 3.34173 0.463415
\(53\) 2.94339 + 5.09811i 0.404306 + 0.700279i 0.994240 0.107172i \(-0.0341797\pi\)
−0.589934 + 0.807451i \(0.700846\pi\)
\(54\) 0 0
\(55\) −0.108003 + 1.66458i −0.0145632 + 0.224452i
\(56\) −2.37108 1.17388i −0.316848 0.156867i
\(57\) 0 0
\(58\) 0.743681i 0.0976501i
\(59\) 2.33158 4.03841i 0.303546 0.525757i −0.673391 0.739287i \(-0.735163\pi\)
0.976936 + 0.213530i \(0.0684962\pi\)
\(60\) 0 0
\(61\) −1.48312 + 0.856279i −0.189894 + 0.109635i −0.591933 0.805987i \(-0.701635\pi\)
0.402039 + 0.915623i \(0.368302\pi\)
\(62\) 5.00146i 0.635187i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 3.30934 + 6.69956i 0.410473 + 0.830978i
\(66\) 0 0
\(67\) 3.92576 + 2.26654i 0.479608 + 0.276902i 0.720253 0.693711i \(-0.244026\pi\)
−0.240645 + 0.970613i \(0.577359\pi\)
\(68\) 4.85133i 0.588311i
\(69\) 0 0
\(70\) 0.00533076 5.91608i 0.000637148 0.707106i
\(71\) 4.17217i 0.495145i −0.968869 0.247573i \(-0.920367\pi\)
0.968869 0.247573i \(-0.0796329\pi\)
\(72\) 0 0
\(73\) 5.10736 + 8.84620i 0.597771 + 1.03537i 0.993149 + 0.116851i \(0.0372802\pi\)
−0.395378 + 0.918518i \(0.629387\pi\)
\(74\) 6.67839i 0.776347i
\(75\) 0 0
\(76\) −6.50055 + 3.75309i −0.745664 + 0.430509i
\(77\) 0.875705 1.76880i 0.0997958 0.201573i
\(78\) 0 0
\(79\) 3.10806 + 5.38333i 0.349685 + 0.605672i 0.986193 0.165598i \(-0.0529554\pi\)
−0.636509 + 0.771269i \(0.719622\pi\)
\(80\) 0.990306 + 2.00482i 0.110720 + 0.224145i
\(81\) 0 0
\(82\) −0.849794 + 1.47189i −0.0938441 + 0.162543i
\(83\) −2.26849 1.30971i −0.248999 0.143760i 0.370307 0.928910i \(-0.379253\pi\)
−0.619306 + 0.785150i \(0.712586\pi\)
\(84\) 0 0
\(85\) −9.72604 + 4.80431i −1.05494 + 0.521100i
\(86\) 8.82245i 0.951349i
\(87\) 0 0
\(88\) 0.745990i 0.0795228i
\(89\) 7.58595 13.1393i 0.804109 1.39276i −0.112782 0.993620i \(-0.535976\pi\)
0.916891 0.399138i \(-0.130691\pi\)
\(90\) 0 0
\(91\) −0.564503 8.82335i −0.0591760 0.924938i
\(92\) 0.933507 1.61688i 0.0973249 0.168572i
\(93\) 0 0
\(94\) −10.0544 5.80494i −1.03704 0.598734i
\(95\) −13.9618 9.31570i −1.43245 0.955771i
\(96\) 0 0
\(97\) −2.32004 + 4.01843i −0.235565 + 0.408010i −0.959437 0.281924i \(-0.909027\pi\)
0.723872 + 0.689934i \(0.242361\pi\)
\(98\) −2.69893 + 6.45877i −0.272633 + 0.652435i
\(99\) 0 0
\(100\) −3.03859 + 3.97077i −0.303859 + 0.397077i
\(101\) 10.9742 1.09197 0.545986 0.837794i \(-0.316155\pi\)
0.545986 + 0.837794i \(0.316155\pi\)
\(102\) 0 0
\(103\) −6.67426 −0.657635 −0.328817 0.944394i \(-0.606650\pi\)
−0.328817 + 0.944394i \(0.606650\pi\)
\(104\) 1.67087 + 2.89402i 0.163842 + 0.283782i
\(105\) 0 0
\(106\) −2.94339 + 5.09811i −0.285888 + 0.495172i
\(107\) −6.82770 + 11.8259i −0.660058 + 1.14325i 0.320541 + 0.947234i \(0.396135\pi\)
−0.980600 + 0.196020i \(0.937198\pi\)
\(108\) 0 0
\(109\) −5.13894 8.90090i −0.492221 0.852551i 0.507739 0.861511i \(-0.330481\pi\)
−0.999960 + 0.00895944i \(0.997148\pi\)
\(110\) −1.49557 + 0.738758i −0.142597 + 0.0704378i
\(111\) 0 0
\(112\) −0.168925 2.64035i −0.0159619 0.249490i
\(113\) 10.0641 + 17.4316i 0.946754 + 1.63983i 0.752201 + 0.658934i \(0.228992\pi\)
0.194553 + 0.980892i \(0.437674\pi\)
\(114\) 0 0
\(115\) 4.16601 + 0.270304i 0.388483 + 0.0252060i
\(116\) −0.644047 + 0.371841i −0.0597983 + 0.0345245i
\(117\) 0 0
\(118\) 4.66316 0.429278
\(119\) 12.8092 0.819513i 1.17422 0.0751246i
\(120\) 0 0
\(121\) 10.4435 0.949409
\(122\) −1.48312 0.856279i −0.134275 0.0775238i
\(123\) 0 0
\(124\) 4.33139 2.50073i 0.388971 0.224572i
\(125\) −10.9698 2.15954i −0.981168 0.193155i
\(126\) 0 0
\(127\) 2.11883i 0.188015i −0.995571 0.0940077i \(-0.970032\pi\)
0.995571 0.0940077i \(-0.0299678\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −4.14732 + 6.21575i −0.363744 + 0.545157i
\(131\) 15.7575 1.37674 0.688370 0.725360i \(-0.258327\pi\)
0.688370 + 0.725360i \(0.258327\pi\)
\(132\) 0 0
\(133\) 11.0076 + 16.5297i 0.954480 + 1.43331i
\(134\) 4.53308i 0.391599i
\(135\) 0 0
\(136\) −4.20138 + 2.42567i −0.360265 + 0.207999i
\(137\) −11.0072 −0.940405 −0.470202 0.882559i \(-0.655819\pi\)
−0.470202 + 0.882559i \(0.655819\pi\)
\(138\) 0 0
\(139\) 14.5065 8.37531i 1.23042 0.710385i 0.263304 0.964713i \(-0.415188\pi\)
0.967118 + 0.254328i \(0.0818543\pi\)
\(140\) 5.12614 2.95342i 0.433238 0.249610i
\(141\) 0 0
\(142\) 3.61321 2.08609i 0.303213 0.175060i
\(143\) −2.15891 + 1.24645i −0.180537 + 0.104233i
\(144\) 0 0
\(145\) −1.38328 0.922960i −0.114875 0.0766477i
\(146\) −5.10736 + 8.84620i −0.422688 + 0.732117i
\(147\) 0 0
\(148\) −5.78366 + 3.33920i −0.475414 + 0.274480i
\(149\) 21.5525i 1.76565i 0.469705 + 0.882823i \(0.344360\pi\)
−0.469705 + 0.882823i \(0.655640\pi\)
\(150\) 0 0
\(151\) −15.3783 −1.25146 −0.625732 0.780038i \(-0.715200\pi\)
−0.625732 + 0.780038i \(0.715200\pi\)
\(152\) −6.50055 3.75309i −0.527264 0.304416i
\(153\) 0 0
\(154\) 1.96968 0.126017i 0.158721 0.0101547i
\(155\) 9.30292 + 6.20717i 0.747228 + 0.498572i
\(156\) 0 0
\(157\) 3.52158 6.09956i 0.281053 0.486798i −0.690591 0.723245i \(-0.742650\pi\)
0.971644 + 0.236447i \(0.0759830\pi\)
\(158\) −3.10806 + 5.38333i −0.247264 + 0.428274i
\(159\) 0 0
\(160\) −1.24107 + 1.86004i −0.0981152 + 0.147049i
\(161\) −4.42683 2.19166i −0.348883 0.172727i
\(162\) 0 0
\(163\) −6.38815 3.68820i −0.500359 0.288882i 0.228503 0.973543i \(-0.426617\pi\)
−0.728862 + 0.684661i \(0.759950\pi\)
\(164\) −1.69959 −0.132716
\(165\) 0 0
\(166\) 2.61943i 0.203307i
\(167\) 14.6090 8.43452i 1.13048 0.652683i 0.186424 0.982469i \(-0.440310\pi\)
0.944055 + 0.329787i \(0.106977\pi\)
\(168\) 0 0
\(169\) 0.916415 1.58728i 0.0704935 0.122098i
\(170\) −9.02367 6.02085i −0.692084 0.461778i
\(171\) 0 0
\(172\) −7.64047 + 4.41123i −0.582580 + 0.336353i
\(173\) 8.87235 5.12245i 0.674552 0.389453i −0.123247 0.992376i \(-0.539331\pi\)
0.797799 + 0.602923i \(0.205997\pi\)
\(174\) 0 0
\(175\) 10.9975 + 7.35218i 0.831334 + 0.555773i
\(176\) −0.646046 + 0.372995i −0.0486976 + 0.0281156i
\(177\) 0 0
\(178\) 15.1719 1.13718
\(179\) −16.4577 + 9.50188i −1.23011 + 0.710204i −0.967053 0.254577i \(-0.918064\pi\)
−0.263056 + 0.964780i \(0.584731\pi\)
\(180\) 0 0
\(181\) 5.53416i 0.411351i −0.978620 0.205676i \(-0.934061\pi\)
0.978620 0.205676i \(-0.0659391\pi\)
\(182\) 7.35899 4.90055i 0.545485 0.363253i
\(183\) 0 0
\(184\) 1.86701 0.137638
\(185\) −12.4221 8.28835i −0.913289 0.609372i
\(186\) 0 0
\(187\) −1.80952 3.13419i −0.132325 0.229194i
\(188\) 11.6099i 0.846737i
\(189\) 0 0
\(190\) 1.08673 16.7491i 0.0788400 1.21511i
\(191\) 17.3414 10.0121i 1.25478 0.724447i 0.282725 0.959201i \(-0.408762\pi\)
0.972055 + 0.234754i \(0.0754283\pi\)
\(192\) 0 0
\(193\) −16.4666 9.50697i −1.18529 0.684327i −0.228056 0.973648i \(-0.573237\pi\)
−0.957232 + 0.289321i \(0.906570\pi\)
\(194\) −4.64008 −0.333139
\(195\) 0 0
\(196\) −6.94293 + 0.892045i −0.495923 + 0.0637175i
\(197\) 6.94184 0.494586 0.247293 0.968941i \(-0.420459\pi\)
0.247293 + 0.968941i \(0.420459\pi\)
\(198\) 0 0
\(199\) −3.90645 + 2.25539i −0.276921 + 0.159880i −0.632029 0.774945i \(-0.717777\pi\)
0.355108 + 0.934825i \(0.384444\pi\)
\(200\) −4.95808 0.646111i −0.350589 0.0456869i
\(201\) 0 0
\(202\) 5.48710 + 9.50393i 0.386071 + 0.668694i
\(203\) 1.09059 + 1.63770i 0.0765442 + 0.114944i
\(204\) 0 0
\(205\) −1.68311 3.40736i −0.117554 0.237981i
\(206\) −3.33713 5.78008i −0.232509 0.402717i
\(207\) 0 0
\(208\) −1.67087 + 2.89402i −0.115854 + 0.200664i
\(209\) 2.79977 4.84934i 0.193664 0.335436i
\(210\) 0 0
\(211\) 3.92397 + 6.79652i 0.270137 + 0.467892i 0.968897 0.247465i \(-0.0795976\pi\)
−0.698759 + 0.715357i \(0.746264\pi\)
\(212\) −5.88679 −0.404306
\(213\) 0 0
\(214\) −13.6554 −0.933464
\(215\) −16.4101 10.9493i −1.11916 0.746735i
\(216\) 0 0
\(217\) −7.33450 11.0140i −0.497898 0.747677i
\(218\) 5.13894 8.90090i 0.348053 0.602845i
\(219\) 0 0
\(220\) −1.38757 0.925826i −0.0935500 0.0624192i
\(221\) −14.0399 8.10593i −0.944425 0.545264i
\(222\) 0 0
\(223\) −10.7610 + 18.6387i −0.720612 + 1.24814i 0.240143 + 0.970738i \(0.422806\pi\)
−0.960755 + 0.277399i \(0.910528\pi\)
\(224\) 2.20215 1.46647i 0.147137 0.0979827i
\(225\) 0 0
\(226\) −10.0641 + 17.4316i −0.669456 + 1.15953i
\(227\) 8.02790i 0.532831i −0.963858 0.266415i \(-0.914161\pi\)
0.963858 0.266415i \(-0.0858393\pi\)
\(228\) 0 0
\(229\) 19.2674i 1.27322i −0.771185 0.636612i \(-0.780335\pi\)
0.771185 0.636612i \(-0.219665\pi\)
\(230\) 1.84892 + 3.74302i 0.121914 + 0.246808i
\(231\) 0 0
\(232\) −0.644047 0.371841i −0.0422837 0.0244125i
\(233\) −0.572350 + 0.991339i −0.0374959 + 0.0649448i −0.884164 0.467176i \(-0.845271\pi\)
0.846668 + 0.532121i \(0.178605\pi\)
\(234\) 0 0
\(235\) 23.2757 11.4973i 1.51834 0.750003i
\(236\) 2.33158 + 4.03841i 0.151773 + 0.262878i
\(237\) 0 0
\(238\) 7.11434 + 10.6834i 0.461154 + 0.692500i
\(239\) −10.1997 + 5.88880i −0.659764 + 0.380915i −0.792187 0.610279i \(-0.791058\pi\)
0.132423 + 0.991193i \(0.457724\pi\)
\(240\) 0 0
\(241\) 22.9924i 1.48107i −0.672017 0.740536i \(-0.734572\pi\)
0.672017 0.740536i \(-0.265428\pi\)
\(242\) 5.22175 + 9.04434i 0.335667 + 0.581392i
\(243\) 0 0
\(244\) 1.71256i 0.109635i
\(245\) −8.66401 13.0359i −0.553523 0.832834i
\(246\) 0 0
\(247\) 25.0837i 1.59603i
\(248\) 4.33139 + 2.50073i 0.275044 + 0.158797i
\(249\) 0 0
\(250\) −3.61468 10.5799i −0.228612 0.669131i
\(251\) 1.44964 0.0915002 0.0457501 0.998953i \(-0.485432\pi\)
0.0457501 + 0.998953i \(0.485432\pi\)
\(252\) 0 0
\(253\) 1.39277i 0.0875630i
\(254\) 1.83496 1.05941i 0.115135 0.0664735i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 7.01785i 0.437762i 0.975752 + 0.218881i \(0.0702406\pi\)
−0.975752 + 0.218881i \(0.929759\pi\)
\(258\) 0 0
\(259\) 9.79366 + 14.7068i 0.608549 + 0.913838i
\(260\) −7.45666 0.483811i −0.462442 0.0300047i
\(261\) 0 0
\(262\) 7.87875 + 13.6464i 0.486751 + 0.843077i
\(263\) 2.64989 0.163399 0.0816996 0.996657i \(-0.473965\pi\)
0.0816996 + 0.996657i \(0.473965\pi\)
\(264\) 0 0
\(265\) −5.82972 11.8019i −0.358117 0.724987i
\(266\) −8.81138 + 17.7977i −0.540260 + 1.09125i
\(267\) 0 0
\(268\) −3.92576 + 2.26654i −0.239804 + 0.138451i
\(269\) −11.9338 20.6700i −0.727618 1.26027i −0.957887 0.287145i \(-0.907294\pi\)
0.230269 0.973127i \(-0.426039\pi\)
\(270\) 0 0
\(271\) −16.9678 9.79635i −1.03072 0.595086i −0.113528 0.993535i \(-0.536215\pi\)
−0.917190 + 0.398449i \(0.869549\pi\)
\(272\) −4.20138 2.42567i −0.254746 0.147078i
\(273\) 0 0
\(274\) −5.50358 9.53248i −0.332483 0.575878i
\(275\) 0.481992 3.69868i 0.0290652 0.223039i
\(276\) 0 0
\(277\) 19.9426i 1.19823i −0.800662 0.599116i \(-0.795519\pi\)
0.800662 0.599116i \(-0.204481\pi\)
\(278\) 14.5065 + 8.37531i 0.870040 + 0.502318i
\(279\) 0 0
\(280\) 5.12081 + 2.96266i 0.306027 + 0.177053i
\(281\) 2.03902 + 1.17723i 0.121638 + 0.0702277i 0.559584 0.828773i \(-0.310961\pi\)
−0.437947 + 0.899001i \(0.644294\pi\)
\(282\) 0 0
\(283\) 4.41483 7.64671i 0.262434 0.454550i −0.704454 0.709750i \(-0.748808\pi\)
0.966888 + 0.255200i \(0.0821413\pi\)
\(284\) 3.61321 + 2.08609i 0.214404 + 0.123786i
\(285\) 0 0
\(286\) −2.15891 1.24645i −0.127659 0.0737041i
\(287\) 0.287103 + 4.48751i 0.0169472 + 0.264889i
\(288\) 0 0
\(289\) 3.26772 5.65986i 0.192219 0.332933i
\(290\) 0.107669 1.65943i 0.00632255 0.0974452i
\(291\) 0 0
\(292\) −10.2147 −0.597771
\(293\) −8.74058 + 5.04638i −0.510630 + 0.294812i −0.733093 0.680129i \(-0.761924\pi\)
0.222463 + 0.974941i \(0.428590\pi\)
\(294\) 0 0
\(295\) −5.78731 + 8.67366i −0.336950 + 0.505000i
\(296\) −5.78366 3.33920i −0.336168 0.194087i
\(297\) 0 0
\(298\) −18.6650 + 10.7762i −1.08123 + 0.624250i
\(299\) 3.11953 + 5.40319i 0.180407 + 0.312474i
\(300\) 0 0
\(301\) 12.9379 + 19.4284i 0.745726 + 1.11983i
\(302\) −7.68913 13.3180i −0.442460 0.766363i
\(303\) 0 0
\(304\) 7.50618i 0.430509i
\(305\) 3.43336 1.69596i 0.196594 0.0971101i
\(306\) 0 0
\(307\) 10.7285 0.612306 0.306153 0.951982i \(-0.400958\pi\)
0.306153 + 0.951982i \(0.400958\pi\)
\(308\) 1.09397 + 1.64278i 0.0623348 + 0.0936062i
\(309\) 0 0
\(310\) −0.724105 + 11.1601i −0.0411264 + 0.633854i
\(311\) 2.49511 4.32165i 0.141485 0.245059i −0.786571 0.617500i \(-0.788146\pi\)
0.928056 + 0.372441i \(0.121479\pi\)
\(312\) 0 0
\(313\) −10.0534 17.4130i −0.568253 0.984243i −0.996739 0.0806942i \(-0.974286\pi\)
0.428486 0.903548i \(-0.359047\pi\)
\(314\) 7.04317 0.397469
\(315\) 0 0
\(316\) −6.21613 −0.349685
\(317\) 13.0051 + 22.5255i 0.730440 + 1.26516i 0.956695 + 0.291091i \(0.0940181\pi\)
−0.226256 + 0.974068i \(0.572649\pi\)
\(318\) 0 0
\(319\) 0.277389 0.480452i 0.0155308 0.0269002i
\(320\) −2.23138 0.144779i −0.124738 0.00809337i
\(321\) 0 0
\(322\) −0.315386 4.92958i −0.0175758 0.274715i
\(323\) 36.4150 2.02619
\(324\) 0 0
\(325\) −6.41442 15.4284i −0.355808 0.855812i
\(326\) 7.37640i 0.408541i
\(327\) 0 0
\(328\) −0.849794 1.47189i −0.0469220 0.0812713i
\(329\) −30.6542 + 1.96120i −1.69002 + 0.108125i
\(330\) 0 0
\(331\) −6.69898 11.6030i −0.368209 0.637757i 0.621076 0.783750i \(-0.286696\pi\)
−0.989286 + 0.145993i \(0.953362\pi\)
\(332\) 2.26849 1.30971i 0.124500 0.0718798i
\(333\) 0 0
\(334\) 14.6090 + 8.43452i 0.799370 + 0.461516i
\(335\) −8.43171 5.62587i −0.460673 0.307374i
\(336\) 0 0
\(337\) −7.18391 + 4.14763i −0.391333 + 0.225936i −0.682737 0.730664i \(-0.739211\pi\)
0.291405 + 0.956600i \(0.405877\pi\)
\(338\) 1.83283 0.0996929
\(339\) 0 0
\(340\) 0.702369 10.8252i 0.0380913 0.587076i
\(341\) −1.86552 + 3.23118i −0.101024 + 0.174978i
\(342\) 0 0
\(343\) 3.52815 + 18.1811i 0.190502 + 0.981687i
\(344\) −7.64047 4.41123i −0.411946 0.237837i
\(345\) 0 0
\(346\) 8.87235 + 5.12245i 0.476980 + 0.275385i
\(347\) 8.22042 14.2382i 0.441295 0.764346i −0.556490 0.830854i \(-0.687852\pi\)
0.997786 + 0.0665078i \(0.0211857\pi\)
\(348\) 0 0
\(349\) 26.2420 + 15.1508i 1.40470 + 0.811004i 0.994870 0.101158i \(-0.0322547\pi\)
0.409830 + 0.912162i \(0.365588\pi\)
\(350\) −0.868416 + 13.2002i −0.0464188 + 0.705582i
\(351\) 0 0
\(352\) −0.646046 0.372995i −0.0344344 0.0198807i
\(353\) 12.4615i 0.663257i −0.943410 0.331629i \(-0.892402\pi\)
0.943410 0.331629i \(-0.107598\pi\)
\(354\) 0 0
\(355\) −0.604041 + 9.30968i −0.0320592 + 0.494107i
\(356\) 7.58595 + 13.1393i 0.402055 + 0.696379i
\(357\) 0 0
\(358\) −16.4577 9.50188i −0.869818 0.502190i
\(359\) 1.01914 + 0.588399i 0.0537880 + 0.0310545i 0.526653 0.850080i \(-0.323447\pi\)
−0.472865 + 0.881135i \(0.656780\pi\)
\(360\) 0 0
\(361\) 18.6714 + 32.3398i 0.982705 + 1.70210i
\(362\) 4.79273 2.76708i 0.251900 0.145435i
\(363\) 0 0
\(364\) 7.92350 + 3.92280i 0.415304 + 0.205611i
\(365\) −10.1157 20.4786i −0.529480 1.07190i
\(366\) 0 0
\(367\) −35.4401 −1.84996 −0.924978 0.380020i \(-0.875917\pi\)
−0.924978 + 0.380020i \(0.875917\pi\)
\(368\) 0.933507 + 1.61688i 0.0486624 + 0.0842858i
\(369\) 0 0
\(370\) 0.966888 14.9020i 0.0502661 0.774718i
\(371\) 0.994427 + 15.5432i 0.0516281 + 0.806963i
\(372\) 0 0
\(373\) 25.3686i 1.31353i 0.754093 + 0.656767i \(0.228077\pi\)
−0.754093 + 0.656767i \(0.771923\pi\)
\(374\) 1.80952 3.13419i 0.0935682 0.162065i
\(375\) 0 0
\(376\) 10.0544 5.80494i 0.518519 0.299367i
\(377\) 2.48518i 0.127993i
\(378\) 0 0
\(379\) 24.3494 1.25075 0.625373 0.780326i \(-0.284947\pi\)
0.625373 + 0.780326i \(0.284947\pi\)
\(380\) 15.0485 7.43342i 0.771973 0.381326i
\(381\) 0 0
\(382\) 17.3414 + 10.0121i 0.887263 + 0.512262i
\(383\) 13.1254i 0.670674i 0.942098 + 0.335337i \(0.108850\pi\)
−0.942098 + 0.335337i \(0.891150\pi\)
\(384\) 0 0
\(385\) −2.21011 + 3.82007i −0.112638 + 0.194689i
\(386\) 19.0139i 0.967784i
\(387\) 0 0
\(388\) −2.32004 4.01843i −0.117782 0.204005i
\(389\) 19.3282i 0.979980i −0.871728 0.489990i \(-0.837000\pi\)
0.871728 0.489990i \(-0.163000\pi\)
\(390\) 0 0
\(391\) −7.84404 + 4.52876i −0.396690 + 0.229029i
\(392\) −4.24400 5.56673i −0.214354 0.281162i
\(393\) 0 0
\(394\) 3.47092 + 6.01181i 0.174862 + 0.302871i
\(395\) −6.15587 12.4622i −0.309735 0.627042i
\(396\) 0 0
\(397\) 18.0143 31.2016i 0.904111 1.56597i 0.0820040 0.996632i \(-0.473868\pi\)
0.822107 0.569334i \(-0.192799\pi\)
\(398\) −3.90645 2.25539i −0.195812 0.113052i
\(399\) 0 0
\(400\) −1.91949 4.61688i −0.0959745 0.230844i
\(401\) 3.15068i 0.157338i −0.996901 0.0786688i \(-0.974933\pi\)
0.996901 0.0786688i \(-0.0250669\pi\)
\(402\) 0 0
\(403\) 16.7135i 0.832561i
\(404\) −5.48710 + 9.50393i −0.272993 + 0.472838i
\(405\) 0 0
\(406\) −0.872995 + 1.76332i −0.0433260 + 0.0875123i
\(407\) 2.49101 4.31455i 0.123475 0.213864i
\(408\) 0 0
\(409\) −13.8104 7.97346i −0.682882 0.394262i 0.118058 0.993007i \(-0.462333\pi\)
−0.800940 + 0.598744i \(0.795667\pi\)
\(410\) 2.10931 3.16130i 0.104171 0.156125i
\(411\) 0 0
\(412\) 3.33713 5.78008i 0.164409 0.284764i
\(413\) 10.2690 6.83838i 0.505303 0.336495i
\(414\) 0 0
\(415\) 4.87224 + 3.25089i 0.239169 + 0.159580i
\(416\) −3.34173 −0.163842
\(417\) 0 0
\(418\) 5.59954 0.273882
\(419\) 17.4629 + 30.2467i 0.853120 + 1.47765i 0.878378 + 0.477966i \(0.158626\pi\)
−0.0252584 + 0.999681i \(0.508041\pi\)
\(420\) 0 0
\(421\) 18.6679 32.3338i 0.909818 1.57585i 0.0955030 0.995429i \(-0.469554\pi\)
0.814315 0.580423i \(-0.197113\pi\)
\(422\) −3.92397 + 6.79652i −0.191016 + 0.330849i
\(423\) 0 0
\(424\) −2.94339 5.09811i −0.142944 0.247586i
\(425\) 22.3980 9.31209i 1.08646 0.451703i
\(426\) 0 0
\(427\) −4.52176 + 0.289294i −0.218823 + 0.0139999i
\(428\) −6.82770 11.8259i −0.330029 0.571627i
\(429\) 0 0
\(430\) 1.27730 19.6862i 0.0615970 0.949353i
\(431\) −7.75117 + 4.47514i −0.373361 + 0.215560i −0.674926 0.737886i \(-0.735824\pi\)
0.301565 + 0.953446i \(0.402491\pi\)
\(432\) 0 0
\(433\) −12.0060 −0.576972 −0.288486 0.957484i \(-0.593152\pi\)
−0.288486 + 0.957484i \(0.593152\pi\)
\(434\) 5.87113 11.8588i 0.281823 0.569243i
\(435\) 0 0
\(436\) 10.2779 0.492221
\(437\) −12.1366 7.00708i −0.580573 0.335194i
\(438\) 0 0
\(439\) −28.3831 + 16.3870i −1.35465 + 0.782108i −0.988897 0.148604i \(-0.952522\pi\)
−0.365753 + 0.930712i \(0.619189\pi\)
\(440\) 0.108003 1.66458i 0.00514886 0.0793559i
\(441\) 0 0
\(442\) 16.2119i 0.771119i
\(443\) −3.05270 5.28743i −0.145038 0.251213i 0.784349 0.620320i \(-0.212997\pi\)
−0.929387 + 0.369106i \(0.879664\pi\)
\(444\) 0 0
\(445\) −18.8294 + 28.2203i −0.892599 + 1.33777i
\(446\) −21.5221 −1.01910
\(447\) 0 0
\(448\) 2.37108 + 1.17388i 0.112023 + 0.0554608i
\(449\) 4.39667i 0.207492i −0.994604 0.103746i \(-0.966917\pi\)
0.994604 0.103746i \(-0.0330828\pi\)
\(450\) 0 0
\(451\) 1.09801 0.633938i 0.0517034 0.0298510i
\(452\) −20.1283 −0.946754
\(453\) 0 0
\(454\) 6.95237 4.01395i 0.326291 0.188384i
\(455\) −0.0178140 + 19.7699i −0.000835132 + 0.926829i
\(456\) 0 0
\(457\) −28.7983 + 16.6267i −1.34713 + 0.777765i −0.987842 0.155462i \(-0.950313\pi\)
−0.359287 + 0.933227i \(0.616980\pi\)
\(458\) 16.6860 9.63368i 0.779687 0.450152i
\(459\) 0 0
\(460\) −2.31710 + 3.47272i −0.108035 + 0.161916i
\(461\) 6.22235 10.7774i 0.289804 0.501955i −0.683959 0.729520i \(-0.739743\pi\)
0.973763 + 0.227566i \(0.0730766\pi\)
\(462\) 0 0
\(463\) −2.79388 + 1.61305i −0.129843 + 0.0749647i −0.563514 0.826106i \(-0.690551\pi\)
0.433672 + 0.901071i \(0.357218\pi\)
\(464\) 0.743681i 0.0345245i
\(465\) 0 0
\(466\) −1.14470 −0.0530272
\(467\) −36.0480 20.8123i −1.66810 0.963080i −0.968660 0.248392i \(-0.920098\pi\)
−0.699443 0.714688i \(-0.746569\pi\)
\(468\) 0 0
\(469\) 6.64763 + 9.98253i 0.306959 + 0.460950i
\(470\) 21.5948 + 14.4087i 0.996095 + 0.664622i
\(471\) 0 0
\(472\) −2.33158 + 4.03841i −0.107320 + 0.185883i
\(473\) 3.29073 5.69971i 0.151308 0.262073i
\(474\) 0 0
\(475\) 29.8053 + 22.8082i 1.36756 + 1.04651i
\(476\) −5.69490 + 11.5029i −0.261025 + 0.527234i
\(477\) 0 0
\(478\) −10.1997 5.88880i −0.466523 0.269347i
\(479\) 23.0103 1.05137 0.525683 0.850681i \(-0.323810\pi\)
0.525683 + 0.850681i \(0.323810\pi\)
\(480\) 0 0
\(481\) 22.3174i 1.01759i
\(482\) 19.9120 11.4962i 0.906967 0.523638i
\(483\) 0 0
\(484\) −5.22175 + 9.04434i −0.237352 + 0.411106i
\(485\) 5.75867 8.63074i 0.261488 0.391902i
\(486\) 0 0
\(487\) 9.17108 5.29492i 0.415581 0.239936i −0.277604 0.960696i \(-0.589540\pi\)
0.693185 + 0.720760i \(0.256207\pi\)
\(488\) 1.48312 0.856279i 0.0671376 0.0387619i
\(489\) 0 0
\(490\) 6.95742 14.0212i 0.314304 0.633414i
\(491\) −2.99490 + 1.72911i −0.135158 + 0.0780336i −0.566054 0.824368i \(-0.691531\pi\)
0.430896 + 0.902401i \(0.358197\pi\)
\(492\) 0 0
\(493\) 3.60785 0.162489
\(494\) 21.7231 12.5418i 0.977368 0.564283i
\(495\) 0 0
\(496\) 5.00146i 0.224572i
\(497\) 4.89764 9.89253i 0.219689 0.443741i
\(498\) 0 0
\(499\) −14.4692 −0.647730 −0.323865 0.946103i \(-0.604982\pi\)
−0.323865 + 0.946103i \(0.604982\pi\)
\(500\) 7.35511 8.42035i 0.328931 0.376570i
\(501\) 0 0
\(502\) 0.724818 + 1.25542i 0.0323502 + 0.0560322i
\(503\) 33.2244i 1.48140i 0.671833 + 0.740702i \(0.265507\pi\)
−0.671833 + 0.740702i \(0.734493\pi\)
\(504\) 0 0
\(505\) −24.4876 1.58883i −1.08968 0.0707019i
\(506\) −1.20618 + 0.696387i −0.0536211 + 0.0309582i
\(507\) 0 0
\(508\) 1.83496 + 1.05941i 0.0814131 + 0.0470039i
\(509\) 41.8292 1.85405 0.927023 0.375005i \(-0.122359\pi\)
0.927023 + 0.375005i \(0.122359\pi\)
\(510\) 0 0
\(511\) 1.72552 + 26.9705i 0.0763327 + 1.19310i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −6.07764 + 3.50893i −0.268073 + 0.154772i
\(515\) 14.8928 + 0.966290i 0.656255 + 0.0425798i
\(516\) 0 0
\(517\) 4.33043 + 7.50052i 0.190452 + 0.329872i
\(518\) −7.83965 + 15.8350i −0.344454 + 0.695749i
\(519\) 0 0
\(520\) −3.30934 6.69956i −0.145124 0.293795i
\(521\) −11.1096 19.2425i −0.486722 0.843027i 0.513161 0.858292i \(-0.328474\pi\)
−0.999883 + 0.0152648i \(0.995141\pi\)
\(522\) 0 0
\(523\) −15.3867 + 26.6505i −0.672813 + 1.16535i 0.304291 + 0.952579i \(0.401581\pi\)
−0.977103 + 0.212766i \(0.931753\pi\)
\(524\) −7.87875 + 13.6464i −0.344185 + 0.596146i
\(525\) 0 0
\(526\) 1.32494 + 2.29487i 0.0577703 + 0.100061i
\(527\) −24.2638 −1.05695
\(528\) 0 0
\(529\) −19.5143 −0.848446
\(530\) 7.30592 10.9497i 0.317349 0.475623i
\(531\) 0 0
\(532\) −19.8190 + 1.26798i −0.859262 + 0.0549741i
\(533\) 2.83978 4.91865i 0.123005 0.213050i
\(534\) 0 0
\(535\) 16.9473 25.3996i 0.732696 1.09812i
\(536\) −3.92576 2.26654i −0.169567 0.0978996i
\(537\) 0 0
\(538\) 11.9338 20.6700i 0.514504 0.891147i
\(539\) 4.15272 3.16598i 0.178871 0.136368i
\(540\) 0 0
\(541\) 2.61686 4.53253i 0.112508 0.194869i −0.804273 0.594260i \(-0.797445\pi\)
0.916781 + 0.399391i \(0.130778\pi\)
\(542\) 19.5927i 0.841578i
\(543\) 0 0
\(544\) 4.85133i 0.207999i
\(545\) 10.1782 + 20.6053i 0.435988 + 0.882632i
\(546\) 0 0
\(547\) −3.57961 2.06669i −0.153053 0.0883652i 0.421518 0.906820i \(-0.361498\pi\)
−0.574571 + 0.818455i \(0.694831\pi\)
\(548\) 5.50358 9.53248i 0.235101 0.407207i
\(549\) 0 0
\(550\) 3.44414 1.43192i 0.146859 0.0610573i
\(551\) 2.79110 + 4.83433i 0.118905 + 0.205950i
\(552\) 0 0
\(553\) 1.05006 + 16.4128i 0.0446532 + 0.697942i
\(554\) 17.2708 9.97128i 0.733765 0.423639i
\(555\) 0 0
\(556\) 16.7506i 0.710385i
\(557\) 6.66281 + 11.5403i 0.282312 + 0.488979i 0.971954 0.235172i \(-0.0755652\pi\)
−0.689642 + 0.724151i \(0.742232\pi\)
\(558\) 0 0
\(559\) 29.4823i 1.24697i
\(560\) −0.00533076 + 5.91608i −0.000225266 + 0.250000i
\(561\) 0 0
\(562\) 2.35446i 0.0993170i
\(563\) −8.13242 4.69526i −0.342741 0.197881i 0.318743 0.947841i \(-0.396739\pi\)
−0.661483 + 0.749960i \(0.730073\pi\)
\(564\) 0 0
\(565\) −19.9331 40.3535i −0.838594 1.69768i
\(566\) 8.82966 0.371138
\(567\) 0 0
\(568\) 4.17217i 0.175060i
\(569\) −30.0367 + 17.3417i −1.25921 + 0.727002i −0.972920 0.231142i \(-0.925754\pi\)
−0.286285 + 0.958144i \(0.592420\pi\)
\(570\) 0 0
\(571\) −5.74730 + 9.95461i −0.240517 + 0.416588i −0.960862 0.277029i \(-0.910650\pi\)
0.720345 + 0.693616i \(0.243984\pi\)
\(572\) 2.49290i 0.104233i
\(573\) 0 0
\(574\) −3.74275 + 2.49240i −0.156219 + 0.104031i
\(575\) −9.25680 1.20630i −0.386035 0.0503061i
\(576\) 0 0
\(577\) −8.61149 14.9155i −0.358501 0.620942i 0.629209 0.777236i \(-0.283379\pi\)
−0.987711 + 0.156293i \(0.950045\pi\)
\(578\) 6.53545 0.271839
\(579\) 0 0
\(580\) 1.49095 0.736472i 0.0619081 0.0305803i
\(581\) −3.84131 5.76837i −0.159364 0.239312i
\(582\) 0 0
\(583\) 3.80314 2.19574i 0.157510 0.0909384i
\(584\) −5.10736 8.84620i −0.211344 0.366059i
\(585\) 0 0
\(586\) −8.74058 5.04638i −0.361070 0.208464i
\(587\) −18.3983 10.6223i −0.759380 0.438428i 0.0696932 0.997568i \(-0.477798\pi\)
−0.829073 + 0.559140i \(0.811131\pi\)
\(588\) 0 0
\(589\) −18.7710 32.5122i −0.773444 1.33964i
\(590\) −10.4053 0.675125i −0.428378 0.0277945i
\(591\) 0 0
\(592\) 6.67839i 0.274480i
\(593\) −5.35047 3.08910i −0.219718 0.126854i 0.386102 0.922456i \(-0.373821\pi\)
−0.605819 + 0.795602i \(0.707155\pi\)
\(594\) 0 0
\(595\) −28.7009 0.0258613i −1.17662 0.00106021i
\(596\) −18.6650 10.7762i −0.764547 0.441412i
\(597\) 0 0
\(598\) −3.11953 + 5.40319i −0.127567 + 0.220953i
\(599\) −17.5461 10.1302i −0.716914 0.413911i 0.0967017 0.995313i \(-0.469171\pi\)
−0.813616 + 0.581403i \(0.802504\pi\)
\(600\) 0 0
\(601\) 1.81095 + 1.04555i 0.0738700 + 0.0426489i 0.536480 0.843913i \(-0.319754\pi\)
−0.462610 + 0.886562i \(0.653087\pi\)
\(602\) −10.3565 + 20.9187i −0.422100 + 0.852583i
\(603\) 0 0
\(604\) 7.68913 13.3180i 0.312866 0.541900i
\(605\) −23.3034 1.51200i −0.947417 0.0614713i
\(606\) 0 0
\(607\) 13.4794 0.547111 0.273555 0.961856i \(-0.411800\pi\)
0.273555 + 0.961856i \(0.411800\pi\)
\(608\) 6.50055 3.75309i 0.263632 0.152208i
\(609\) 0 0
\(610\) 3.18542 + 2.12540i 0.128974 + 0.0860551i
\(611\) 33.5993 + 19.3985i 1.35928 + 0.784781i
\(612\) 0 0
\(613\) −9.41875 + 5.43792i −0.380420 + 0.219636i −0.678001 0.735061i \(-0.737153\pi\)
0.297581 + 0.954697i \(0.403820\pi\)
\(614\) 5.36423 + 9.29112i 0.216483 + 0.374959i
\(615\) 0 0
\(616\) −0.875705 + 1.76880i −0.0352832 + 0.0712669i
\(617\) 0.714583 + 1.23769i 0.0287680 + 0.0498277i 0.880051 0.474879i \(-0.157508\pi\)
−0.851283 + 0.524707i \(0.824175\pi\)
\(618\) 0 0
\(619\) 22.2859i 0.895747i 0.894097 + 0.447873i \(0.147818\pi\)
−0.894097 + 0.447873i \(0.852182\pi\)
\(620\) −10.0270 + 4.95298i −0.402695 + 0.198916i
\(621\) 0 0
\(622\) 4.99022 0.200089
\(623\) 33.4108 22.2491i 1.33858 0.891393i
\(624\) 0 0
\(625\) 24.1651 + 6.40694i 0.966603 + 0.256278i
\(626\) 10.0534 17.4130i 0.401815 0.695965i
\(627\) 0 0
\(628\) 3.52158 + 6.09956i 0.140526 + 0.243399i
\(629\) 32.3991 1.29184
\(630\) 0 0
\(631\) 13.9478 0.555255 0.277627 0.960689i \(-0.410452\pi\)
0.277627 + 0.960689i \(0.410452\pi\)
\(632\) −3.10806 5.38333i −0.123632 0.214137i
\(633\) 0 0
\(634\) −13.0051 + 22.5255i −0.516499 + 0.894602i
\(635\) −0.306761 + 4.72790i −0.0121734 + 0.187621i
\(636\) 0 0
\(637\) 9.01910 21.5835i 0.357350 0.855169i
\(638\) 0.554779 0.0219639
\(639\) 0 0
\(640\) −0.990306 2.00482i −0.0391453 0.0792474i
\(641\) 8.71120i 0.344072i −0.985091 0.172036i \(-0.944965\pi\)
0.985091 0.172036i \(-0.0550345\pi\)
\(642\) 0 0
\(643\) −21.6235 37.4529i −0.852746 1.47700i −0.878720 0.477337i \(-0.841602\pi\)
0.0259739 0.999663i \(-0.491731\pi\)
\(644\) 4.11145 2.73792i 0.162014 0.107889i
\(645\) 0 0
\(646\) 18.2075 + 31.5363i 0.716365 + 1.24078i
\(647\) 31.0729 17.9400i 1.22160 0.705293i 0.256344 0.966586i \(-0.417482\pi\)
0.965260 + 0.261293i \(0.0841487\pi\)
\(648\) 0 0
\(649\) −3.01262 1.73933i −0.118256 0.0682748i
\(650\) 10.1541 13.2692i 0.398278 0.520462i
\(651\) 0 0
\(652\) 6.38815 3.68820i 0.250179 0.144441i
\(653\) −3.88543 −0.152049 −0.0760243 0.997106i \(-0.524223\pi\)
−0.0760243 + 0.997106i \(0.524223\pi\)
\(654\) 0 0
\(655\) −35.1609 2.28135i −1.37385 0.0891397i
\(656\) 0.849794 1.47189i 0.0331789 0.0574675i
\(657\) 0 0
\(658\) −17.0255 25.5667i −0.663725 0.996693i
\(659\) 12.1007 + 6.98632i 0.471375 + 0.272149i 0.716815 0.697263i \(-0.245599\pi\)
−0.245440 + 0.969412i \(0.578932\pi\)
\(660\) 0 0
\(661\) −38.7265 22.3587i −1.50628 0.869654i −0.999973 0.00730324i \(-0.997675\pi\)
−0.506311 0.862351i \(-0.668991\pi\)
\(662\) 6.69898 11.6030i 0.260363 0.450962i
\(663\) 0 0
\(664\) 2.26849 + 1.30971i 0.0880345 + 0.0508267i
\(665\) −22.1689 38.4777i −0.859674 1.49210i
\(666\) 0 0
\(667\) −1.20244 0.694232i −0.0465589 0.0268808i
\(668\) 16.8690i 0.652683i
\(669\) 0 0
\(670\) 0.656293 10.1150i 0.0253548 0.390777i
\(671\) 0.638775 + 1.10639i 0.0246596 + 0.0427118i
\(672\) 0 0
\(673\) 32.2357 + 18.6113i 1.24259 + 0.717412i 0.969622 0.244610i \(-0.0786598\pi\)
0.272973 + 0.962022i \(0.411993\pi\)
\(674\) −7.18391 4.14763i −0.276714 0.159761i
\(675\) 0 0
\(676\) 0.916415 + 1.58728i 0.0352467 + 0.0610492i
\(677\) −10.8972 + 6.29151i −0.418814 + 0.241803i −0.694570 0.719425i \(-0.744405\pi\)
0.275756 + 0.961228i \(0.411072\pi\)
\(678\) 0 0
\(679\) −10.2182 + 6.80454i −0.392137 + 0.261134i
\(680\) 9.72604 4.80431i 0.372977 0.184237i
\(681\) 0 0
\(682\) −3.73104 −0.142869
\(683\) 8.98544 + 15.5632i 0.343818 + 0.595511i 0.985138 0.171763i \(-0.0549462\pi\)
−0.641320 + 0.767274i \(0.721613\pi\)
\(684\) 0 0
\(685\) 24.5611 + 1.59360i 0.938432 + 0.0608884i
\(686\) −13.9812 + 12.1460i −0.533805 + 0.463737i
\(687\) 0 0
\(688\) 8.82245i 0.336353i
\(689\) 9.83603 17.0365i 0.374723 0.649039i
\(690\) 0 0
\(691\) 38.3130 22.1200i 1.45750 0.841485i 0.458608 0.888639i \(-0.348348\pi\)
0.998888 + 0.0471537i \(0.0150151\pi\)
\(692\) 10.2449i 0.389453i
\(693\) 0 0
\(694\) 16.4408 0.624086
\(695\) −33.5819 + 16.5882i −1.27384 + 0.629228i
\(696\) 0 0
\(697\) 7.14061 + 4.12264i 0.270470 + 0.156156i
\(698\) 30.3016i 1.14693i
\(699\) 0 0
\(700\) −11.8659 + 5.84804i −0.448490 + 0.221035i
\(701\) 29.6654i 1.12045i −0.828342 0.560223i \(-0.810716\pi\)
0.828342 0.560223i \(-0.189284\pi\)
\(702\) 0 0
\(703\) 25.0646 + 43.4132i 0.945330 + 1.63736i
\(704\) 0.745990i 0.0281156i
\(705\) 0 0
\(706\) 10.7919 6.23074i 0.406160 0.234497i
\(707\) 26.0206 + 12.8824i 0.978607 + 0.484493i
\(708\) 0 0
\(709\) −18.3682 31.8146i −0.689831 1.19482i −0.971892 0.235425i \(-0.924352\pi\)
0.282062 0.959396i \(-0.408982\pi\)
\(710\) −8.36444 + 4.13173i −0.313912 + 0.155061i
\(711\) 0 0
\(712\) −7.58595 + 13.1393i −0.284296 + 0.492414i
\(713\) 8.08678 + 4.66890i 0.302852 + 0.174852i
\(714\) 0 0
\(715\) 4.99781 2.46873i 0.186907 0.0923253i
\(716\) 19.0038i 0.710204i
\(717\) 0 0
\(718\) 1.17680i 0.0439177i
\(719\) −15.0842 + 26.1266i −0.562546 + 0.974358i 0.434727 + 0.900562i \(0.356845\pi\)
−0.997273 + 0.0737961i \(0.976489\pi\)
\(720\) 0 0
\(721\) −15.8252 7.83480i −0.589360 0.291783i
\(722\) −18.6714 + 32.3398i −0.694878 + 1.20356i
\(723\) 0 0
\(724\) 4.79273 + 2.76708i 0.178120 + 0.102838i
\(725\) 2.95298 + 2.25974i 0.109671 + 0.0839247i
\(726\) 0 0
\(727\) 2.77440 4.80540i 0.102897 0.178222i −0.809980 0.586457i \(-0.800522\pi\)
0.912877 + 0.408235i \(0.133856\pi\)
\(728\) 0.564503 + 8.82335i 0.0209219 + 0.327015i
\(729\) 0 0
\(730\) 12.6772 18.9998i 0.469203 0.703213i
\(731\) 42.8007 1.58304
\(732\) 0 0
\(733\) 20.2714 0.748740 0.374370 0.927279i \(-0.377859\pi\)
0.374370 + 0.927279i \(0.377859\pi\)
\(734\) −17.7200 30.6920i −0.654059 1.13286i
\(735\) 0 0
\(736\) −0.933507 + 1.61688i −0.0344095 + 0.0595991i
\(737\) 1.69082 2.92858i 0.0622820 0.107876i
\(738\) 0 0
\(739\) 24.5774 + 42.5693i 0.904095 + 1.56594i 0.822128 + 0.569303i \(0.192787\pi\)
0.0819667 + 0.996635i \(0.473880\pi\)
\(740\) 13.3890 6.61365i 0.492188 0.243123i
\(741\) 0 0
\(742\) −12.9636 + 8.63280i −0.475908 + 0.316920i
\(743\) 13.5537 + 23.4757i 0.497237 + 0.861240i 0.999995 0.00318755i \(-0.00101463\pi\)
−0.502758 + 0.864427i \(0.667681\pi\)
\(744\) 0 0
\(745\) 3.12033 48.0916i 0.114320 1.76194i
\(746\) −21.9698 + 12.6843i −0.804372 + 0.464405i
\(747\) 0 0
\(748\) 3.61905 0.132325
\(749\) −30.0712 + 20.0252i −1.09878 + 0.731706i
\(750\) 0 0
\(751\) 41.2806 1.50635 0.753174 0.657821i \(-0.228522\pi\)
0.753174 + 0.657821i \(0.228522\pi\)
\(752\) 10.0544 + 5.80494i 0.366648 + 0.211684i
\(753\) 0 0
\(754\) 2.15223 1.24259i 0.0783797 0.0452525i
\(755\) 34.3147 + 2.22644i 1.24884 + 0.0810285i
\(756\) 0 0
\(757\) 37.6630i 1.36888i 0.729067 + 0.684442i \(0.239954\pi\)
−0.729067 + 0.684442i \(0.760046\pi\)
\(758\) 12.1747 + 21.0872i 0.442206 + 0.765923i
\(759\) 0 0
\(760\) 13.9618 + 9.31570i 0.506448 + 0.337916i
\(761\) −20.1064 −0.728855 −0.364427 0.931232i \(-0.618735\pi\)
−0.364427 + 0.931232i \(0.618735\pi\)
\(762\) 0 0
\(763\) −1.73619 27.1372i −0.0628544 0.982433i
\(764\) 20.0241i 0.724447i
\(765\) 0 0
\(766\) −11.3669 + 6.56268i −0.410702 + 0.237119i
\(767\) −15.5830 −0.562670
\(768\) 0 0
\(769\) −24.3791 + 14.0753i −0.879134 + 0.507568i −0.870373 0.492393i \(-0.836122\pi\)
−0.00876117 + 0.999962i \(0.502789\pi\)
\(770\) −4.41333 0.00397670i −0.159046 0.000143310i
\(771\) 0 0
\(772\) 16.4666 9.50697i 0.592644 0.342163i
\(773\) −37.3009 + 21.5357i −1.34162 + 0.774585i −0.987045 0.160442i \(-0.948708\pi\)
−0.354576 + 0.935027i \(0.615375\pi\)
\(774\) 0 0
\(775\) −19.8596 15.1974i −0.713380 0.545906i
\(776\) 2.32004 4.01843i 0.0832846 0.144253i
\(777\) 0 0
\(778\) 16.7387 9.66411i 0.600113 0.346475i
\(779\) 12.7574i 0.457082i
\(780\) 0 0
\(781\) −3.11240 −0.111370
\(782\) −7.84404 4.52876i −0.280502 0.161948i
\(783\) 0 0
\(784\) 2.69893 6.45877i 0.0963904 0.230671i
\(785\) −8.74106 + 13.1006i −0.311982 + 0.467579i
\(786\) 0 0
\(787\) −17.6587 + 30.5858i −0.629466 + 1.09027i 0.358193 + 0.933648i \(0.383393\pi\)
−0.987659 + 0.156620i \(0.949940\pi\)
\(788\) −3.47092 + 6.01181i −0.123646 + 0.214162i
\(789\) 0 0
\(790\) 7.71465 11.5622i 0.274475 0.411366i
\(791\) 3.40017 + 53.1457i 0.120896 + 1.88964i
\(792\) 0 0
\(793\) 4.95618 + 2.86145i 0.175999 + 0.101613i
\(794\) 36.0286 1.27861
\(795\) 0 0
\(796\) 4.51077i 0.159880i
\(797\) −14.2561 + 8.23077i −0.504978 + 0.291549i −0.730767 0.682627i \(-0.760837\pi\)
0.225789 + 0.974176i \(0.427504\pi\)
\(798\) 0 0
\(799\) −28.1617 + 48.7775i −0.996289 + 1.72562i
\(800\) 3.03859 3.97077i 0.107430 0.140388i
\(801\) 0 0
\(802\) 2.72857 1.57534i 0.0963492 0.0556272i
\(803\) 6.59918 3.81004i 0.232880 0.134453i
\(804\) 0 0
\(805\) 9.56062 + 5.53132i 0.336968 + 0.194953i
\(806\) −14.4744 + 8.35677i −0.509838 + 0.294355i
\(807\) 0 0
\(808\) −10.9742 −0.386071
\(809\) −21.2722 + 12.2815i −0.747890 + 0.431795i −0.824931 0.565233i \(-0.808786\pi\)
0.0770407 + 0.997028i \(0.475453\pi\)
\(810\) 0 0
\(811\) 7.28238i 0.255719i −0.991792 0.127860i \(-0.959189\pi\)
0.991792 0.127860i \(-0.0408107\pi\)
\(812\) −1.96358 + 0.125627i −0.0689082 + 0.00440863i
\(813\) 0 0
\(814\) 4.98201 0.174619
\(815\) 13.7204 + 9.15463i 0.480605 + 0.320673i
\(816\) 0 0
\(817\) 33.1115 + 57.3508i 1.15842 + 2.00645i
\(818\) 15.9469i 0.557571i
\(819\) 0 0
\(820\) 3.79242 + 0.246064i 0.132437 + 0.00859293i
\(821\) −5.79033 + 3.34305i −0.202084 + 0.116673i −0.597627 0.801774i \(-0.703890\pi\)
0.395543 + 0.918447i \(0.370556\pi\)
\(822\) 0 0
\(823\) −9.87790 5.70301i −0.344322 0.198794i 0.317860 0.948138i \(-0.397036\pi\)
−0.662182 + 0.749343i \(0.730369\pi\)
\(824\) 6.67426 0.232509
\(825\) 0 0
\(826\) 11.0567 + 5.47400i 0.384712 + 0.190465i
\(827\) −9.16990 −0.318868 −0.159434 0.987209i \(-0.550967\pi\)
−0.159434 + 0.987209i \(0.550967\pi\)
\(828\) 0 0
\(829\) 13.6953 7.90700i 0.475659 0.274622i −0.242947 0.970040i \(-0.578114\pi\)
0.718605 + 0.695418i \(0.244781\pi\)
\(830\) −0.379237 + 5.84493i −0.0131635 + 0.202880i
\(831\) 0 0
\(832\) −1.67087 2.89402i −0.0579268 0.100332i
\(833\) 31.3337 + 13.0934i 1.08565 + 0.453660i
\(834\) 0 0
\(835\) −33.8193 + 16.7055i −1.17037 + 0.578118i
\(836\) 2.79977 + 4.84934i 0.0968320 + 0.167718i
\(837\) 0 0
\(838\) −17.4629 + 30.2467i −0.603247 + 1.04485i
\(839\) −14.0897 + 24.4040i −0.486429 + 0.842520i −0.999878 0.0156002i \(-0.995034\pi\)
0.513449 + 0.858120i \(0.328367\pi\)
\(840\) 0 0
\(841\) −14.2235 24.6358i −0.490464 0.849509i
\(842\) 37.3358 1.28668
\(843\) 0 0
\(844\) −7.84794 −0.270137
\(845\) −2.27467 + 3.40914i −0.0782511 + 0.117278i
\(846\) 0 0
\(847\) 24.7623 + 12.2594i 0.850844 + 0.421240i
\(848\) 2.94339 5.09811i 0.101077 0.175070i
\(849\) 0 0
\(850\) 19.2635 + 14.7412i 0.660733 + 0.505619i
\(851\) −10.7982 6.23433i −0.370157 0.213710i
\(852\) 0 0
\(853\) −4.37925 + 7.58508i −0.149943 + 0.259708i −0.931206 0.364493i \(-0.881242\pi\)
0.781263 + 0.624201i \(0.214576\pi\)
\(854\) −2.51141 3.77131i −0.0859388 0.129051i
\(855\) 0 0
\(856\) 6.82770 11.8259i 0.233366 0.404202i
\(857\) 31.9068i 1.08992i 0.838464 + 0.544958i \(0.183454\pi\)
−0.838464 + 0.544958i \(0.816546\pi\)
\(858\) 0 0
\(859\) 45.7568i 1.56120i 0.625030 + 0.780601i \(0.285087\pi\)
−0.625030 + 0.780601i \(0.714913\pi\)
\(860\) 17.6874 8.73693i 0.603136 0.297927i
\(861\) 0 0
\(862\) −7.75117 4.47514i −0.264006 0.152424i
\(863\) 21.5708 37.3618i 0.734280 1.27181i −0.220759 0.975328i \(-0.570853\pi\)
0.955039 0.296481i \(-0.0958132\pi\)
\(864\) 0 0
\(865\) −20.5392 + 10.1456i −0.698352 + 0.344960i
\(866\) −6.00301 10.3975i −0.203991 0.353322i
\(867\) 0 0
\(868\) 13.2056 0.844874i 0.448228 0.0286769i
\(869\) 4.01591 2.31859i 0.136230 0.0786526i
\(870\) 0 0
\(871\) 15.1483i 0.513282i
\(872\) 5.13894 + 8.90090i 0.174026 + 0.301422i
\(873\) 0 0
\(874\) 14.0142i 0.474036i
\(875\) −23.4752 17.9977i −0.793605 0.608433i
\(876\) 0 0
\(877\) 18.3979i 0.621255i −0.950532 0.310627i \(-0.899461\pi\)
0.950532 0.310627i \(-0.100539\pi\)
\(878\) −28.3831 16.3870i −0.957882 0.553034i
\(879\) 0 0
\(880\) 1.49557 0.738758i 0.0504158 0.0249035i
\(881\) −8.81308 −0.296920 −0.148460 0.988918i \(-0.547432\pi\)
−0.148460 + 0.988918i \(0.547432\pi\)
\(882\) 0 0
\(883\) 2.02023i 0.0679863i 0.999422 + 0.0339931i \(0.0108224\pi\)
−0.999422 + 0.0339931i \(0.989178\pi\)
\(884\) 14.0399 8.10593i 0.472212 0.272632i
\(885\) 0 0
\(886\) 3.05270 5.28743i 0.102557 0.177635i
\(887\) 33.2724i 1.11718i −0.829445 0.558589i \(-0.811343\pi\)
0.829445 0.558589i \(-0.188657\pi\)
\(888\) 0 0
\(889\) 2.48725 5.02390i 0.0834198 0.168496i
\(890\) −33.8542 2.19657i −1.13480 0.0736291i
\(891\) 0 0
\(892\) −10.7610 18.6387i −0.360306 0.624068i
\(893\) −87.1459 −2.91623
\(894\) 0 0
\(895\) 38.0991 18.8195i 1.27351 0.629068i
\(896\) 0.168925 + 2.64035i 0.00564340 + 0.0882080i
\(897\) 0 0
\(898\) 3.80762 2.19833i 0.127062 0.0733593i
\(899\) −1.85975 3.22118i −0.0620261 0.107432i
\(900\) 0 0
\(901\) 24.7326 + 14.2794i 0.823963 + 0.475715i
\(902\) 1.09801 + 0.633938i 0.0365598 + 0.0211078i
\(903\) 0 0
\(904\) −10.0641 17.4316i −0.334728 0.579766i
\(905\) −0.801228 + 12.3488i −0.0266337 + 0.410488i
\(906\) 0 0
\(907\) 11.1534i 0.370344i 0.982706 + 0.185172i \(0.0592842\pi\)
−0.982706 + 0.185172i \(0.940716\pi\)
\(908\) 6.95237 + 4.01395i 0.230722 + 0.133208i
\(909\) 0 0
\(910\) −17.1302 + 9.86954i −0.567860 + 0.327172i
\(911\) −33.9893 19.6237i −1.12612 0.650163i −0.183160 0.983083i \(-0.558633\pi\)
−0.942955 + 0.332920i \(0.891966\pi\)
\(912\) 0 0
\(913\) −0.977033 + 1.69227i −0.0323351 + 0.0560060i
\(914\) −28.7983 16.6267i −0.952564 0.549963i
\(915\) 0 0
\(916\) 16.6860 + 9.63368i 0.551322 + 0.318306i
\(917\) 37.3622 + 18.4975i 1.23381 + 0.610840i
\(918\) 0 0
\(919\) −13.5598 + 23.4863i −0.447298 + 0.774743i −0.998209 0.0598209i \(-0.980947\pi\)
0.550911 + 0.834564i \(0.314280\pi\)
\(920\) −4.16601 0.270304i −0.137349 0.00891165i
\(921\) 0 0
\(922\) 12.4447 0.409844
\(923\) −12.0744 + 6.97114i −0.397432 + 0.229458i
\(924\) 0 0
\(925\) 26.5183 + 20.2929i 0.871918 + 0.667226i
\(926\) −2.79388 1.61305i −0.0918126 0.0530080i
\(927\) 0 0
\(928\) 0.644047 0.371841i 0.0211419 0.0122063i
\(929\) −22.0537 38.1982i −0.723559 1.25324i −0.959564 0.281490i \(-0.909171\pi\)
0.236005 0.971752i \(-0.424162\pi\)
\(930\) 0 0
\(931\) 6.69585 + 52.1149i 0.219448 + 1.70800i
\(932\) −0.572350 0.991339i −0.0187479 0.0324724i
\(933\) 0 0
\(934\) 41.6247i 1.36200i
\(935\) 3.58396 + 7.25553i 0.117208 + 0.237281i
\(936\) 0 0
\(937\) −31.2098 −1.01958 −0.509789 0.860299i \(-0.670277\pi\)
−0.509789 + 0.860299i \(0.670277\pi\)
\(938\) −5.32131 + 10.7483i −0.173747 + 0.350944i
\(939\) 0 0
\(940\) −1.68086 + 25.9060i −0.0548237 + 0.844961i
\(941\) −3.25513 + 5.63804i −0.106114 + 0.183795i −0.914193 0.405280i \(-0.867174\pi\)
0.808079 + 0.589074i \(0.200508\pi\)
\(942\) 0 0
\(943\) −1.58658 2.74803i −0.0516661 0.0894883i
\(944\) −4.66316 −0.151773
\(945\) 0 0
\(946\) 6.58146 0.213982
\(947\) 16.7485 + 29.0092i 0.544252 + 0.942672i 0.998654 + 0.0518752i \(0.0165198\pi\)
−0.454402 + 0.890797i \(0.650147\pi\)
\(948\) 0 0
\(949\) 17.0674 29.5616i 0.554032 0.959611i
\(950\) −4.84983 + 37.2163i −0.157349 + 1.20745i
\(951\) 0 0
\(952\) −12.8092 + 0.819513i −0.415150 + 0.0265606i
\(953\) −9.08698 −0.294356 −0.147178 0.989110i \(-0.547019\pi\)
−0.147178 + 0.989110i \(0.547019\pi\)
\(954\) 0 0
\(955\) −40.1447 + 19.8300i −1.29905 + 0.641684i
\(956\) 11.7776i 0.380915i
\(957\) 0 0
\(958\) 11.5051 + 19.9275i 0.371714 + 0.643827i
\(959\) −26.0988 12.9211i −0.842774 0.417245i
\(960\) 0 0
\(961\) −2.99268 5.18347i −0.0965380 0.167209i
\(962\) 19.3274 11.1587i 0.623141 0.359771i
\(963\) 0 0
\(964\) 19.9120 + 11.4962i 0.641323 + 0.370268i
\(965\) 35.3667 + 23.5976i 1.13849 + 0.759634i
\(966\) 0 0
\(967\) 0.584986 0.337742i 0.0188119 0.0108610i −0.490565 0.871405i \(-0.663209\pi\)
0.509376 + 0.860544i \(0.329876\pi\)
\(968\) −10.4435 −0.335667
\(969\) 0 0
\(970\) 10.3538 + 0.671785i 0.332440 + 0.0215697i
\(971\) −3.90049 + 6.75585i −0.125173 + 0.216805i −0.921800 0.387665i \(-0.873282\pi\)
0.796628 + 0.604470i \(0.206615\pi\)
\(972\) 0 0
\(973\) 44.2276 2.82960i 1.41787 0.0907129i
\(974\) 9.17108 + 5.29492i 0.293860 + 0.169660i
\(975\) 0 0
\(976\) 1.48312 + 0.856279i 0.0474734 + 0.0274088i
\(977\) 22.7250 39.3609i 0.727037 1.25927i −0.231093 0.972932i \(-0.574230\pi\)
0.958130 0.286334i \(-0.0924366\pi\)
\(978\) 0 0
\(979\) −9.80175 5.65904i −0.313265 0.180864i
\(980\) 15.6214 0.985300i 0.499008 0.0314743i
\(981\) 0 0
\(982\) −2.99490 1.72911i −0.0955713 0.0551781i
\(983\) 59.2020i 1.88825i 0.329587 + 0.944125i \(0.393091\pi\)
−0.329587 + 0.944125i \(0.606909\pi\)
\(984\) 0 0
\(985\) −15.4899 1.00503i −0.493548 0.0320229i
\(986\) 1.80392 + 3.12449i 0.0574486 + 0.0995039i
\(987\) 0 0
\(988\) 21.7231 + 12.5418i 0.691103 + 0.399009i
\(989\) −14.2649 8.23582i −0.453596 0.261884i
\(990\) 0 0
\(991\) −3.52175 6.09985i −0.111872 0.193768i 0.804653 0.593745i \(-0.202351\pi\)
−0.916525 + 0.399977i \(0.869018\pi\)
\(992\) −4.33139 + 2.50073i −0.137522 + 0.0793983i
\(993\) 0 0
\(994\) 11.0160 0.704785i 0.349406 0.0223544i
\(995\) 9.04328 4.46705i 0.286691 0.141615i
\(996\) 0 0
\(997\) 43.8171 1.38770 0.693851 0.720119i \(-0.255913\pi\)
0.693851 + 0.720119i \(0.255913\pi\)
\(998\) −7.23460 12.5307i −0.229007 0.396652i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1890.2.r.b.89.1 48
3.2 odd 2 630.2.r.a.299.4 yes 48
5.4 even 2 1890.2.r.a.89.1 48
7.3 odd 6 1890.2.bi.a.899.7 48
9.4 even 3 630.2.bi.a.509.20 yes 48
9.5 odd 6 1890.2.bi.b.719.9 48
15.14 odd 2 630.2.r.b.299.21 yes 48
21.17 even 6 630.2.bi.b.479.5 yes 48
35.24 odd 6 1890.2.bi.b.899.9 48
45.4 even 6 630.2.bi.b.509.5 yes 48
45.14 odd 6 1890.2.bi.a.719.7 48
63.31 odd 6 630.2.r.b.59.21 yes 48
63.59 even 6 1890.2.r.a.1529.1 48
105.59 even 6 630.2.bi.a.479.20 yes 48
315.59 even 6 inner 1890.2.r.b.1529.1 48
315.94 odd 6 630.2.r.a.59.4 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.r.a.59.4 48 315.94 odd 6
630.2.r.a.299.4 yes 48 3.2 odd 2
630.2.r.b.59.21 yes 48 63.31 odd 6
630.2.r.b.299.21 yes 48 15.14 odd 2
630.2.bi.a.479.20 yes 48 105.59 even 6
630.2.bi.a.509.20 yes 48 9.4 even 3
630.2.bi.b.479.5 yes 48 21.17 even 6
630.2.bi.b.509.5 yes 48 45.4 even 6
1890.2.r.a.89.1 48 5.4 even 2
1890.2.r.a.1529.1 48 63.59 even 6
1890.2.r.b.89.1 48 1.1 even 1 trivial
1890.2.r.b.1529.1 48 315.59 even 6 inner
1890.2.bi.a.719.7 48 45.14 odd 6
1890.2.bi.a.899.7 48 7.3 odd 6
1890.2.bi.b.719.9 48 9.5 odd 6
1890.2.bi.b.899.9 48 35.24 odd 6