Properties

Label 1890.2.bi.a.899.7
Level $1890$
Weight $2$
Character 1890.899
Analytic conductor $15.092$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1890,2,Mod(719,1890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1890, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1890.719"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1890 = 2 \cdot 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1890.bi (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.0917259820\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 899.7
Character \(\chi\) \(=\) 1890.899
Dual form 1890.2.bi.a.719.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(-1.24107 + 1.86004i) q^{5} +(2.20215 + 1.46647i) q^{7} -1.00000 q^{8} +(1.24107 - 1.86004i) q^{10} +(-0.646046 + 0.372995i) q^{11} +(1.67087 + 2.89402i) q^{13} +(-2.20215 - 1.46647i) q^{14} +1.00000 q^{16} +(4.20138 + 2.42567i) q^{17} +(6.50055 - 3.75309i) q^{19} +(-1.24107 + 1.86004i) q^{20} +(0.646046 - 0.372995i) q^{22} +(0.933507 - 1.61688i) q^{23} +(-1.91949 - 4.61688i) q^{25} +(-1.67087 - 2.89402i) q^{26} +(2.20215 + 1.46647i) q^{28} +(0.644047 + 0.371841i) q^{29} -5.00146i q^{31} -1.00000 q^{32} +(-4.20138 - 2.42567i) q^{34} +(-5.46071 + 2.27609i) q^{35} +(-5.78366 + 3.33920i) q^{37} +(-6.50055 + 3.75309i) q^{38} +(1.24107 - 1.86004i) q^{40} +(-0.849794 - 1.47189i) q^{41} +(7.64047 + 4.41123i) q^{43} +(-0.646046 + 0.372995i) q^{44} +(-0.933507 + 1.61688i) q^{46} +11.6099i q^{47} +(2.69893 + 6.45877i) q^{49} +(1.91949 + 4.61688i) q^{50} +(1.67087 + 2.89402i) q^{52} +(2.94339 - 5.09811i) q^{53} +(0.108003 - 1.66458i) q^{55} +(-2.20215 - 1.46647i) q^{56} +(-0.644047 - 0.371841i) q^{58} +4.66316 q^{59} +1.71256i q^{61} +5.00146i q^{62} +1.00000 q^{64} +(-7.45666 - 0.483811i) q^{65} -4.53308i q^{67} +(4.20138 + 2.42567i) q^{68} +(5.46071 - 2.27609i) q^{70} -4.17217i q^{71} +(-5.10736 + 8.84620i) q^{73} +(5.78366 - 3.33920i) q^{74} +(6.50055 - 3.75309i) q^{76} +(-1.96968 - 0.126017i) q^{77} -6.21613 q^{79} +(-1.24107 + 1.86004i) q^{80} +(0.849794 + 1.47189i) q^{82} +(2.26849 + 1.30971i) q^{83} +(-9.72604 + 4.80431i) q^{85} +(-7.64047 - 4.41123i) q^{86} +(0.646046 - 0.372995i) q^{88} +(-7.58595 - 13.1393i) q^{89} +(-0.564503 + 8.82335i) q^{91} +(0.933507 - 1.61688i) q^{92} -11.6099i q^{94} +(-1.08673 + 16.7491i) q^{95} +(2.32004 - 4.01843i) q^{97} +(-2.69893 - 6.45877i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{2} + 48 q^{4} + 3 q^{7} - 48 q^{8} - 6 q^{11} - 3 q^{14} + 48 q^{16} + 6 q^{22} - 3 q^{23} - 18 q^{25} + 3 q^{28} + 3 q^{29} - 48 q^{32} + 12 q^{35} + 3 q^{41} - 6 q^{44} + 3 q^{46} + 3 q^{49}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1890\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(1081\) \(1541\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.24107 + 1.86004i −0.555023 + 0.831835i
\(6\) 0 0
\(7\) 2.20215 + 1.46647i 0.832335 + 0.554274i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.24107 1.86004i 0.392461 0.588196i
\(11\) −0.646046 + 0.372995i −0.194790 + 0.112462i −0.594223 0.804300i \(-0.702540\pi\)
0.399433 + 0.916762i \(0.369207\pi\)
\(12\) 0 0
\(13\) 1.67087 + 2.89402i 0.463415 + 0.802658i 0.999128 0.0417418i \(-0.0132907\pi\)
−0.535714 + 0.844400i \(0.679957\pi\)
\(14\) −2.20215 1.46647i −0.588549 0.391931i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.20138 + 2.42567i 1.01898 + 0.588311i 0.913810 0.406143i \(-0.133127\pi\)
0.105175 + 0.994454i \(0.466460\pi\)
\(18\) 0 0
\(19\) 6.50055 3.75309i 1.49133 0.861018i 0.491377 0.870947i \(-0.336494\pi\)
0.999951 + 0.00992860i \(0.00316042\pi\)
\(20\) −1.24107 + 1.86004i −0.277512 + 0.415917i
\(21\) 0 0
\(22\) 0.646046 0.372995i 0.137738 0.0795228i
\(23\) 0.933507 1.61688i 0.194650 0.337143i −0.752136 0.659008i \(-0.770976\pi\)
0.946786 + 0.321865i \(0.104310\pi\)
\(24\) 0 0
\(25\) −1.91949 4.61688i −0.383898 0.923375i
\(26\) −1.67087 2.89402i −0.327684 0.567565i
\(27\) 0 0
\(28\) 2.20215 + 1.46647i 0.416167 + 0.277137i
\(29\) 0.644047 + 0.371841i 0.119597 + 0.0690491i 0.558605 0.829434i \(-0.311337\pi\)
−0.439008 + 0.898483i \(0.644670\pi\)
\(30\) 0 0
\(31\) 5.00146i 0.898289i −0.893459 0.449145i \(-0.851729\pi\)
0.893459 0.449145i \(-0.148271\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −4.20138 2.42567i −0.720531 0.415999i
\(35\) −5.46071 + 2.27609i −0.923029 + 0.384730i
\(36\) 0 0
\(37\) −5.78366 + 3.33920i −0.950827 + 0.548960i −0.893338 0.449386i \(-0.851643\pi\)
−0.0574896 + 0.998346i \(0.518310\pi\)
\(38\) −6.50055 + 3.75309i −1.05453 + 0.608832i
\(39\) 0 0
\(40\) 1.24107 1.86004i 0.196230 0.294098i
\(41\) −0.849794 1.47189i −0.132716 0.229870i 0.792007 0.610512i \(-0.209036\pi\)
−0.924722 + 0.380642i \(0.875703\pi\)
\(42\) 0 0
\(43\) 7.64047 + 4.41123i 1.16516 + 0.672706i 0.952535 0.304428i \(-0.0984654\pi\)
0.212625 + 0.977134i \(0.431799\pi\)
\(44\) −0.646046 + 0.372995i −0.0973951 + 0.0562311i
\(45\) 0 0
\(46\) −0.933507 + 1.61688i −0.137638 + 0.238396i
\(47\) 11.6099i 1.69347i 0.532011 + 0.846737i \(0.321436\pi\)
−0.532011 + 0.846737i \(0.678564\pi\)
\(48\) 0 0
\(49\) 2.69893 + 6.45877i 0.385562 + 0.922682i
\(50\) 1.91949 + 4.61688i 0.271457 + 0.652925i
\(51\) 0 0
\(52\) 1.67087 + 2.89402i 0.231707 + 0.401329i
\(53\) 2.94339 5.09811i 0.404306 0.700279i −0.589934 0.807451i \(-0.700846\pi\)
0.994240 + 0.107172i \(0.0341797\pi\)
\(54\) 0 0
\(55\) 0.108003 1.66458i 0.0145632 0.224452i
\(56\) −2.20215 1.46647i −0.294275 0.195965i
\(57\) 0 0
\(58\) −0.644047 0.371841i −0.0845675 0.0488251i
\(59\) 4.66316 0.607091 0.303546 0.952817i \(-0.401829\pi\)
0.303546 + 0.952817i \(0.401829\pi\)
\(60\) 0 0
\(61\) 1.71256i 0.219270i 0.993972 + 0.109635i \(0.0349683\pi\)
−0.993972 + 0.109635i \(0.965032\pi\)
\(62\) 5.00146i 0.635187i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −7.45666 0.483811i −0.924885 0.0600094i
\(66\) 0 0
\(67\) 4.53308i 0.553804i −0.960898 0.276902i \(-0.910692\pi\)
0.960898 0.276902i \(-0.0893077\pi\)
\(68\) 4.20138 + 2.42567i 0.509492 + 0.294155i
\(69\) 0 0
\(70\) 5.46071 2.27609i 0.652680 0.272045i
\(71\) 4.17217i 0.495145i −0.968869 0.247573i \(-0.920367\pi\)
0.968869 0.247573i \(-0.0796329\pi\)
\(72\) 0 0
\(73\) −5.10736 + 8.84620i −0.597771 + 1.03537i 0.395378 + 0.918518i \(0.370613\pi\)
−0.993149 + 0.116851i \(0.962720\pi\)
\(74\) 5.78366 3.33920i 0.672337 0.388174i
\(75\) 0 0
\(76\) 6.50055 3.75309i 0.745664 0.430509i
\(77\) −1.96968 0.126017i −0.224466 0.0143609i
\(78\) 0 0
\(79\) −6.21613 −0.699369 −0.349685 0.936867i \(-0.613711\pi\)
−0.349685 + 0.936867i \(0.613711\pi\)
\(80\) −1.24107 + 1.86004i −0.138756 + 0.207959i
\(81\) 0 0
\(82\) 0.849794 + 1.47189i 0.0938441 + 0.162543i
\(83\) 2.26849 + 1.30971i 0.248999 + 0.143760i 0.619306 0.785150i \(-0.287414\pi\)
−0.370307 + 0.928910i \(0.620747\pi\)
\(84\) 0 0
\(85\) −9.72604 + 4.80431i −1.05494 + 0.521100i
\(86\) −7.64047 4.41123i −0.823893 0.475675i
\(87\) 0 0
\(88\) 0.646046 0.372995i 0.0688688 0.0397614i
\(89\) −7.58595 13.1393i −0.804109 1.39276i −0.916891 0.399138i \(-0.869309\pi\)
0.112782 0.993620i \(-0.464024\pi\)
\(90\) 0 0
\(91\) −0.564503 + 8.82335i −0.0591760 + 0.924938i
\(92\) 0.933507 1.61688i 0.0973249 0.168572i
\(93\) 0 0
\(94\) 11.6099i 1.19747i
\(95\) −1.08673 + 16.7491i −0.111497 + 1.71842i
\(96\) 0 0
\(97\) 2.32004 4.01843i 0.235565 0.408010i −0.723872 0.689934i \(-0.757639\pi\)
0.959437 + 0.281924i \(0.0909728\pi\)
\(98\) −2.69893 6.45877i −0.272633 0.652435i
\(99\) 0 0
\(100\) −1.91949 4.61688i −0.191949 0.461688i
\(101\) 5.48710 + 9.50393i 0.545986 + 0.945676i 0.998544 + 0.0539412i \(0.0171783\pi\)
−0.452558 + 0.891735i \(0.649488\pi\)
\(102\) 0 0
\(103\) −3.33713 + 5.78008i −0.328817 + 0.569528i −0.982277 0.187433i \(-0.939983\pi\)
0.653460 + 0.756961i \(0.273317\pi\)
\(104\) −1.67087 2.89402i −0.163842 0.283782i
\(105\) 0 0
\(106\) −2.94339 + 5.09811i −0.285888 + 0.495172i
\(107\) −6.82770 11.8259i −0.660058 1.14325i −0.980600 0.196020i \(-0.937198\pi\)
0.320541 0.947234i \(-0.396135\pi\)
\(108\) 0 0
\(109\) −5.13894 + 8.90090i −0.492221 + 0.852551i −0.999960 0.00895944i \(-0.997148\pi\)
0.507739 + 0.861511i \(0.330481\pi\)
\(110\) −0.108003 + 1.66458i −0.0102977 + 0.158712i
\(111\) 0 0
\(112\) 2.20215 + 1.46647i 0.208084 + 0.138568i
\(113\) 10.0641 + 17.4316i 0.946754 + 1.63983i 0.752201 + 0.658934i \(0.228992\pi\)
0.194553 + 0.980892i \(0.437674\pi\)
\(114\) 0 0
\(115\) 1.84892 + 3.74302i 0.172412 + 0.349039i
\(116\) 0.644047 + 0.371841i 0.0597983 + 0.0345245i
\(117\) 0 0
\(118\) −4.66316 −0.429278
\(119\) 5.69490 + 11.5029i 0.522051 + 1.05447i
\(120\) 0 0
\(121\) −5.22175 + 9.04434i −0.474704 + 0.822212i
\(122\) 1.71256i 0.155048i
\(123\) 0 0
\(124\) 5.00146i 0.449145i
\(125\) 10.9698 + 2.15954i 0.981168 + 0.193155i
\(126\) 0 0
\(127\) 2.11883i 0.188015i −0.995571 0.0940077i \(-0.970032\pi\)
0.995571 0.0940077i \(-0.0299678\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 7.45666 + 0.483811i 0.653992 + 0.0424330i
\(131\) 7.87875 13.6464i 0.688370 1.19229i −0.283995 0.958826i \(-0.591660\pi\)
0.972365 0.233465i \(-0.0750066\pi\)
\(132\) 0 0
\(133\) 19.8190 + 1.26798i 1.71852 + 0.109948i
\(134\) 4.53308i 0.391599i
\(135\) 0 0
\(136\) −4.20138 2.42567i −0.360265 0.207999i
\(137\) 5.50358 + 9.53248i 0.470202 + 0.814415i 0.999419 0.0340720i \(-0.0108475\pi\)
−0.529217 + 0.848487i \(0.677514\pi\)
\(138\) 0 0
\(139\) −14.5065 + 8.37531i −1.23042 + 0.710385i −0.967118 0.254328i \(-0.918146\pi\)
−0.263304 + 0.964713i \(0.584812\pi\)
\(140\) −5.46071 + 2.27609i −0.461515 + 0.192365i
\(141\) 0 0
\(142\) 4.17217i 0.350121i
\(143\) −2.15891 1.24645i −0.180537 0.104233i
\(144\) 0 0
\(145\) −1.49095 + 0.736472i −0.123816 + 0.0611607i
\(146\) 5.10736 8.84620i 0.422688 0.732117i
\(147\) 0 0
\(148\) −5.78366 + 3.33920i −0.475414 + 0.274480i
\(149\) −18.6650 10.7762i −1.52909 0.882823i −0.999400 0.0346347i \(-0.988973\pi\)
−0.529695 0.848188i \(-0.677693\pi\)
\(150\) 0 0
\(151\) 7.68913 + 13.3180i 0.625732 + 1.08380i 0.988399 + 0.151881i \(0.0485332\pi\)
−0.362666 + 0.931919i \(0.618133\pi\)
\(152\) −6.50055 + 3.75309i −0.527264 + 0.304416i
\(153\) 0 0
\(154\) 1.96968 + 0.126017i 0.158721 + 0.0101547i
\(155\) 9.30292 + 6.20717i 0.747228 + 0.498572i
\(156\) 0 0
\(157\) 7.04317 0.562106 0.281053 0.959692i \(-0.409316\pi\)
0.281053 + 0.959692i \(0.409316\pi\)
\(158\) 6.21613 0.494529
\(159\) 0 0
\(160\) 1.24107 1.86004i 0.0981152 0.147049i
\(161\) 4.42683 2.19166i 0.348883 0.172727i
\(162\) 0 0
\(163\) 6.38815 3.68820i 0.500359 0.288882i −0.228503 0.973543i \(-0.573383\pi\)
0.728862 + 0.684661i \(0.240050\pi\)
\(164\) −0.849794 1.47189i −0.0663578 0.114935i
\(165\) 0 0
\(166\) −2.26849 1.30971i −0.176069 0.101653i
\(167\) −14.6090 + 8.43452i −1.13048 + 0.652683i −0.944055 0.329787i \(-0.893023\pi\)
−0.186424 + 0.982469i \(0.559690\pi\)
\(168\) 0 0
\(169\) 0.916415 1.58728i 0.0704935 0.122098i
\(170\) 9.72604 4.80431i 0.745953 0.368473i
\(171\) 0 0
\(172\) 7.64047 + 4.41123i 0.582580 + 0.336353i
\(173\) 10.2449i 0.778905i −0.921046 0.389453i \(-0.872664\pi\)
0.921046 0.389453i \(-0.127336\pi\)
\(174\) 0 0
\(175\) 2.54351 12.9819i 0.192271 0.981342i
\(176\) −0.646046 + 0.372995i −0.0486976 + 0.0281156i
\(177\) 0 0
\(178\) 7.58595 + 13.1393i 0.568591 + 0.984829i
\(179\) 16.4577 + 9.50188i 1.23011 + 0.710204i 0.967053 0.254577i \(-0.0819362\pi\)
0.263056 + 0.964780i \(0.415269\pi\)
\(180\) 0 0
\(181\) 5.53416i 0.411351i 0.978620 + 0.205676i \(0.0659391\pi\)
−0.978620 + 0.205676i \(0.934061\pi\)
\(182\) 0.564503 8.82335i 0.0418437 0.654030i
\(183\) 0 0
\(184\) −0.933507 + 1.61688i −0.0688191 + 0.119198i
\(185\) 0.966888 14.9020i 0.0710870 1.09562i
\(186\) 0 0
\(187\) −3.61905 −0.264651
\(188\) 11.6099i 0.846737i
\(189\) 0 0
\(190\) 1.08673 16.7491i 0.0788400 1.21511i
\(191\) 20.0241i 1.44889i 0.689330 + 0.724447i \(0.257905\pi\)
−0.689330 + 0.724447i \(0.742095\pi\)
\(192\) 0 0
\(193\) 19.0139i 1.36865i 0.729176 + 0.684327i \(0.239904\pi\)
−0.729176 + 0.684327i \(0.760096\pi\)
\(194\) −2.32004 + 4.01843i −0.166569 + 0.288506i
\(195\) 0 0
\(196\) 2.69893 + 6.45877i 0.192781 + 0.461341i
\(197\) 6.94184 0.494586 0.247293 0.968941i \(-0.420459\pi\)
0.247293 + 0.968941i \(0.420459\pi\)
\(198\) 0 0
\(199\) −3.90645 2.25539i −0.276921 0.159880i 0.355108 0.934825i \(-0.384444\pi\)
−0.632029 + 0.774945i \(0.717777\pi\)
\(200\) 1.91949 + 4.61688i 0.135728 + 0.326463i
\(201\) 0 0
\(202\) −5.48710 9.50393i −0.386071 0.668694i
\(203\) 0.872995 + 1.76332i 0.0612722 + 0.123761i
\(204\) 0 0
\(205\) 3.79242 + 0.246064i 0.264874 + 0.0171859i
\(206\) 3.33713 5.78008i 0.232509 0.402717i
\(207\) 0 0
\(208\) 1.67087 + 2.89402i 0.115854 + 0.200664i
\(209\) −2.79977 + 4.84934i −0.193664 + 0.335436i
\(210\) 0 0
\(211\) 3.92397 + 6.79652i 0.270137 + 0.467892i 0.968897 0.247465i \(-0.0795976\pi\)
−0.698759 + 0.715357i \(0.746264\pi\)
\(212\) 2.94339 5.09811i 0.202153 0.350140i
\(213\) 0 0
\(214\) 6.82770 + 11.8259i 0.466732 + 0.808403i
\(215\) −17.6874 + 8.73693i −1.20627 + 0.595854i
\(216\) 0 0
\(217\) 7.33450 11.0140i 0.497898 0.747677i
\(218\) 5.13894 8.90090i 0.348053 0.602845i
\(219\) 0 0
\(220\) 0.108003 1.66458i 0.00728159 0.112226i
\(221\) 16.2119i 1.09053i
\(222\) 0 0
\(223\) 10.7610 18.6387i 0.720612 1.24814i −0.240143 0.970738i \(-0.577194\pi\)
0.960755 0.277399i \(-0.0894725\pi\)
\(224\) −2.20215 1.46647i −0.147137 0.0979827i
\(225\) 0 0
\(226\) −10.0641 17.4316i −0.669456 1.15953i
\(227\) 6.95237 4.01395i 0.461445 0.266415i −0.251207 0.967933i \(-0.580827\pi\)
0.712652 + 0.701518i \(0.247494\pi\)
\(228\) 0 0
\(229\) −16.6860 9.63368i −1.10264 0.636612i −0.165730 0.986171i \(-0.552998\pi\)
−0.936914 + 0.349560i \(0.886331\pi\)
\(230\) −1.84892 3.74302i −0.121914 0.246808i
\(231\) 0 0
\(232\) −0.644047 0.371841i −0.0422837 0.0244125i
\(233\) −0.572350 0.991339i −0.0374959 0.0649448i 0.846668 0.532121i \(-0.178605\pi\)
−0.884164 + 0.467176i \(0.845271\pi\)
\(234\) 0 0
\(235\) −21.5948 14.4087i −1.40869 0.939918i
\(236\) 4.66316 0.303546
\(237\) 0 0
\(238\) −5.69490 11.5029i −0.369145 0.745621i
\(239\) −10.1997 + 5.88880i −0.659764 + 0.380915i −0.792187 0.610279i \(-0.791058\pi\)
0.132423 + 0.991193i \(0.457724\pi\)
\(240\) 0 0
\(241\) 19.9120 11.4962i 1.28265 0.740536i 0.305314 0.952252i \(-0.401238\pi\)
0.977331 + 0.211716i \(0.0679051\pi\)
\(242\) 5.22175 9.04434i 0.335667 0.581392i
\(243\) 0 0
\(244\) 1.71256i 0.109635i
\(245\) −15.3631 2.99567i −0.981515 0.191387i
\(246\) 0 0
\(247\) 21.7231 + 12.5418i 1.38221 + 0.798017i
\(248\) 5.00146i 0.317593i
\(249\) 0 0
\(250\) −10.9698 2.15954i −0.693791 0.136581i
\(251\) −1.44964 −0.0915002 −0.0457501 0.998953i \(-0.514568\pi\)
−0.0457501 + 0.998953i \(0.514568\pi\)
\(252\) 0 0
\(253\) 1.39277i 0.0875630i
\(254\) 2.11883i 0.132947i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.07764 + 3.50893i 0.379113 + 0.218881i 0.677432 0.735585i \(-0.263093\pi\)
−0.298319 + 0.954466i \(0.596426\pi\)
\(258\) 0 0
\(259\) −17.6333 1.12815i −1.09568 0.0700998i
\(260\) −7.45666 0.483811i −0.462442 0.0300047i
\(261\) 0 0
\(262\) −7.87875 + 13.6464i −0.486751 + 0.843077i
\(263\) −1.32494 2.29487i −0.0816996 0.141508i 0.822281 0.569082i \(-0.192701\pi\)
−0.903980 + 0.427575i \(0.859368\pi\)
\(264\) 0 0
\(265\) 5.82972 + 11.8019i 0.358117 + 0.724987i
\(266\) −19.8190 1.26798i −1.21518 0.0777451i
\(267\) 0 0
\(268\) 4.53308i 0.276902i
\(269\) 11.9338 20.6700i 0.727618 1.26027i −0.230269 0.973127i \(-0.573961\pi\)
0.957887 0.287145i \(-0.0927060\pi\)
\(270\) 0 0
\(271\) −16.9678 + 9.79635i −1.03072 + 0.595086i −0.917190 0.398449i \(-0.869549\pi\)
−0.113528 + 0.993535i \(0.536215\pi\)
\(272\) 4.20138 + 2.42567i 0.254746 + 0.147078i
\(273\) 0 0
\(274\) −5.50358 9.53248i −0.332483 0.575878i
\(275\) 2.96215 + 2.26676i 0.178624 + 0.136691i
\(276\) 0 0
\(277\) −17.2708 + 9.97128i −1.03770 + 0.599116i −0.919181 0.393835i \(-0.871148\pi\)
−0.118519 + 0.992952i \(0.537815\pi\)
\(278\) 14.5065 8.37531i 0.870040 0.502318i
\(279\) 0 0
\(280\) 5.46071 2.27609i 0.326340 0.136023i
\(281\) 2.03902 + 1.17723i 0.121638 + 0.0702277i 0.559584 0.828773i \(-0.310961\pi\)
−0.437947 + 0.899001i \(0.644294\pi\)
\(282\) 0 0
\(283\) 8.82966 0.524869 0.262434 0.964950i \(-0.415475\pi\)
0.262434 + 0.964950i \(0.415475\pi\)
\(284\) 4.17217i 0.247573i
\(285\) 0 0
\(286\) 2.15891 + 1.24645i 0.127659 + 0.0737041i
\(287\) 0.287103 4.48751i 0.0169472 0.264889i
\(288\) 0 0
\(289\) 3.26772 + 5.65986i 0.192219 + 0.332933i
\(290\) 1.49095 0.736472i 0.0875513 0.0432471i
\(291\) 0 0
\(292\) −5.10736 + 8.84620i −0.298886 + 0.517685i
\(293\) 8.74058 5.04638i 0.510630 0.294812i −0.222463 0.974941i \(-0.571410\pi\)
0.733093 + 0.680129i \(0.238076\pi\)
\(294\) 0 0
\(295\) −5.78731 + 8.67366i −0.336950 + 0.505000i
\(296\) 5.78366 3.33920i 0.336168 0.194087i
\(297\) 0 0
\(298\) 18.6650 + 10.7762i 1.08123 + 0.624250i
\(299\) 6.23906 0.360814
\(300\) 0 0
\(301\) 10.3565 + 20.9187i 0.596940 + 1.20573i
\(302\) −7.68913 13.3180i −0.442460 0.766363i
\(303\) 0 0
\(304\) 6.50055 3.75309i 0.372832 0.215255i
\(305\) −3.18542 2.12540i −0.182397 0.121700i
\(306\) 0 0
\(307\) −10.7285 −0.612306 −0.306153 0.951982i \(-0.599042\pi\)
−0.306153 + 0.951982i \(0.599042\pi\)
\(308\) −1.96968 0.126017i −0.112233 0.00718046i
\(309\) 0 0
\(310\) −9.30292 6.20717i −0.528370 0.352543i
\(311\) 4.99022 0.282969 0.141485 0.989940i \(-0.454812\pi\)
0.141485 + 0.989940i \(0.454812\pi\)
\(312\) 0 0
\(313\) −20.1068 −1.13651 −0.568253 0.822854i \(-0.692380\pi\)
−0.568253 + 0.822854i \(0.692380\pi\)
\(314\) −7.04317 −0.397469
\(315\) 0 0
\(316\) −6.21613 −0.349685
\(317\) −26.0102 −1.46088 −0.730440 0.682977i \(-0.760685\pi\)
−0.730440 + 0.682977i \(0.760685\pi\)
\(318\) 0 0
\(319\) −0.554779 −0.0310616
\(320\) −1.24107 + 1.86004i −0.0693779 + 0.103979i
\(321\) 0 0
\(322\) −4.42683 + 2.19166i −0.246698 + 0.122136i
\(323\) 36.4150 2.02619
\(324\) 0 0
\(325\) 10.1541 13.2692i 0.563251 0.736045i
\(326\) −6.38815 + 3.68820i −0.353807 + 0.204271i
\(327\) 0 0
\(328\) 0.849794 + 1.47189i 0.0469220 + 0.0812713i
\(329\) −17.0255 + 25.5667i −0.938648 + 1.40954i
\(330\) 0 0
\(331\) 13.3980 0.736418 0.368209 0.929743i \(-0.379971\pi\)
0.368209 + 0.929743i \(0.379971\pi\)
\(332\) 2.26849 + 1.30971i 0.124500 + 0.0718798i
\(333\) 0 0
\(334\) 14.6090 8.43452i 0.799370 0.461516i
\(335\) 8.43171 + 5.62587i 0.460673 + 0.307374i
\(336\) 0 0
\(337\) −7.18391 + 4.14763i −0.391333 + 0.225936i −0.682737 0.730664i \(-0.739211\pi\)
0.291405 + 0.956600i \(0.405877\pi\)
\(338\) −0.916415 + 1.58728i −0.0498464 + 0.0863366i
\(339\) 0 0
\(340\) −9.72604 + 4.80431i −0.527469 + 0.260550i
\(341\) 1.86552 + 3.23118i 0.101024 + 0.174978i
\(342\) 0 0
\(343\) −3.52815 + 18.1811i −0.190502 + 0.981687i
\(344\) −7.64047 4.41123i −0.411946 0.237837i
\(345\) 0 0
\(346\) 10.2449i 0.550769i
\(347\) −16.4408 −0.882591 −0.441295 0.897362i \(-0.645481\pi\)
−0.441295 + 0.897362i \(0.645481\pi\)
\(348\) 0 0
\(349\) −26.2420 15.1508i −1.40470 0.811004i −0.409830 0.912162i \(-0.634412\pi\)
−0.994870 + 0.101158i \(0.967745\pi\)
\(350\) −2.54351 + 12.9819i −0.135956 + 0.693913i
\(351\) 0 0
\(352\) 0.646046 0.372995i 0.0344344 0.0198807i
\(353\) 10.7919 6.23074i 0.574398 0.331629i −0.184506 0.982831i \(-0.559069\pi\)
0.758904 + 0.651203i \(0.225735\pi\)
\(354\) 0 0
\(355\) 7.76040 + 5.17796i 0.411879 + 0.274817i
\(356\) −7.58595 13.1393i −0.402055 0.696379i
\(357\) 0 0
\(358\) −16.4577 9.50188i −0.869818 0.502190i
\(359\) −1.01914 + 0.588399i −0.0537880 + 0.0310545i −0.526653 0.850080i \(-0.676553\pi\)
0.472865 + 0.881135i \(0.343220\pi\)
\(360\) 0 0
\(361\) 18.6714 32.3398i 0.982705 1.70210i
\(362\) 5.53416i 0.290869i
\(363\) 0 0
\(364\) −0.564503 + 8.82335i −0.0295880 + 0.462469i
\(365\) −10.1157 20.4786i −0.529480 1.07190i
\(366\) 0 0
\(367\) −17.7200 30.6920i −0.924978 1.60211i −0.791596 0.611045i \(-0.790749\pi\)
−0.133383 0.991065i \(-0.542584\pi\)
\(368\) 0.933507 1.61688i 0.0486624 0.0842858i
\(369\) 0 0
\(370\) −0.966888 + 14.9020i −0.0502661 + 0.774718i
\(371\) 13.9580 6.91040i 0.724664 0.358770i
\(372\) 0 0
\(373\) −21.9698 12.6843i −1.13755 0.656767i −0.191730 0.981448i \(-0.561410\pi\)
−0.945824 + 0.324680i \(0.894743\pi\)
\(374\) 3.61905 0.187136
\(375\) 0 0
\(376\) 11.6099i 0.598734i
\(377\) 2.48518i 0.127993i
\(378\) 0 0
\(379\) 24.3494 1.25075 0.625373 0.780326i \(-0.284947\pi\)
0.625373 + 0.780326i \(0.284947\pi\)
\(380\) −1.08673 + 16.7491i −0.0557483 + 0.859212i
\(381\) 0 0
\(382\) 20.0241i 1.02452i
\(383\) 11.3669 + 6.56268i 0.580821 + 0.335337i 0.761460 0.648212i \(-0.224483\pi\)
−0.180639 + 0.983550i \(0.557816\pi\)
\(384\) 0 0
\(385\) 2.67890 3.50728i 0.136530 0.178748i
\(386\) 19.0139i 0.967784i
\(387\) 0 0
\(388\) 2.32004 4.01843i 0.117782 0.204005i
\(389\) −16.7387 + 9.66411i −0.848688 + 0.489990i −0.860208 0.509944i \(-0.829666\pi\)
0.0115202 + 0.999934i \(0.496333\pi\)
\(390\) 0 0
\(391\) 7.84404 4.52876i 0.396690 0.229029i
\(392\) −2.69893 6.45877i −0.136317 0.326217i
\(393\) 0 0
\(394\) −6.94184 −0.349725
\(395\) 7.71465 11.5622i 0.388166 0.581760i
\(396\) 0 0
\(397\) −18.0143 31.2016i −0.904111 1.56597i −0.822107 0.569334i \(-0.807201\pi\)
−0.0820040 0.996632i \(-0.526132\pi\)
\(398\) 3.90645 + 2.25539i 0.195812 + 0.113052i
\(399\) 0 0
\(400\) −1.91949 4.61688i −0.0959745 0.230844i
\(401\) 2.72857 + 1.57534i 0.136258 + 0.0786688i 0.566580 0.824007i \(-0.308266\pi\)
−0.430321 + 0.902676i \(0.641600\pi\)
\(402\) 0 0
\(403\) 14.4744 8.35677i 0.721019 0.416281i
\(404\) 5.48710 + 9.50393i 0.272993 + 0.472838i
\(405\) 0 0
\(406\) −0.872995 1.76332i −0.0433260 0.0875123i
\(407\) 2.49101 4.31455i 0.123475 0.213864i
\(408\) 0 0
\(409\) 15.9469i 0.788525i −0.918998 0.394262i \(-0.871000\pi\)
0.918998 0.394262i \(-0.129000\pi\)
\(410\) −3.79242 0.246064i −0.187294 0.0121522i
\(411\) 0 0
\(412\) −3.33713 + 5.78008i −0.164409 + 0.284764i
\(413\) 10.2690 + 6.83838i 0.505303 + 0.336495i
\(414\) 0 0
\(415\) −5.25147 + 2.59403i −0.257785 + 0.127336i
\(416\) −1.67087 2.89402i −0.0819209 0.141891i
\(417\) 0 0
\(418\) 2.79977 4.84934i 0.136941 0.237189i
\(419\) −17.4629 30.2467i −0.853120 1.47765i −0.878378 0.477966i \(-0.841374\pi\)
0.0252584 0.999681i \(-0.491959\pi\)
\(420\) 0 0
\(421\) 18.6679 32.3338i 0.909818 1.57585i 0.0955030 0.995429i \(-0.469554\pi\)
0.814315 0.580423i \(-0.197113\pi\)
\(422\) −3.92397 6.79652i −0.191016 0.330849i
\(423\) 0 0
\(424\) −2.94339 + 5.09811i −0.142944 + 0.247586i
\(425\) 3.13450 24.0533i 0.152046 1.16676i
\(426\) 0 0
\(427\) −2.51141 + 3.77131i −0.121536 + 0.182506i
\(428\) −6.82770 11.8259i −0.330029 0.571627i
\(429\) 0 0
\(430\) 17.6874 8.73693i 0.852963 0.421332i
\(431\) 7.75117 + 4.47514i 0.373361 + 0.215560i 0.674926 0.737886i \(-0.264176\pi\)
−0.301565 + 0.953446i \(0.597509\pi\)
\(432\) 0 0
\(433\) 12.0060 0.576972 0.288486 0.957484i \(-0.406848\pi\)
0.288486 + 0.957484i \(0.406848\pi\)
\(434\) −7.33450 + 11.0140i −0.352067 + 0.528688i
\(435\) 0 0
\(436\) −5.13894 + 8.90090i −0.246110 + 0.426276i
\(437\) 14.0142i 0.670388i
\(438\) 0 0
\(439\) 32.7739i 1.56422i 0.623144 + 0.782108i \(0.285855\pi\)
−0.623144 + 0.782108i \(0.714145\pi\)
\(440\) −0.108003 + 1.66458i −0.00514886 + 0.0793559i
\(441\) 0 0
\(442\) 16.2119i 0.771119i
\(443\) 6.10539 0.290076 0.145038 0.989426i \(-0.453670\pi\)
0.145038 + 0.989426i \(0.453670\pi\)
\(444\) 0 0
\(445\) 33.8542 + 2.19657i 1.60484 + 0.104127i
\(446\) −10.7610 + 18.6387i −0.509550 + 0.882566i
\(447\) 0 0
\(448\) 2.20215 + 1.46647i 0.104042 + 0.0692842i
\(449\) 4.39667i 0.207492i −0.994604 0.103746i \(-0.966917\pi\)
0.994604 0.103746i \(-0.0330828\pi\)
\(450\) 0 0
\(451\) 1.09801 + 0.633938i 0.0517034 + 0.0298510i
\(452\) 10.0641 + 17.4316i 0.473377 + 0.819913i
\(453\) 0 0
\(454\) −6.95237 + 4.01395i −0.326291 + 0.188384i
\(455\) −15.7112 12.0004i −0.736552 0.562587i
\(456\) 0 0
\(457\) 33.2534i 1.55553i −0.628555 0.777765i \(-0.716353\pi\)
0.628555 0.777765i \(-0.283647\pi\)
\(458\) 16.6860 + 9.63368i 0.779687 + 0.450152i
\(459\) 0 0
\(460\) 1.84892 + 3.74302i 0.0862062 + 0.174519i
\(461\) −6.22235 + 10.7774i −0.289804 + 0.501955i −0.973763 0.227566i \(-0.926923\pi\)
0.683959 + 0.729520i \(0.260257\pi\)
\(462\) 0 0
\(463\) −2.79388 + 1.61305i −0.129843 + 0.0749647i −0.563514 0.826106i \(-0.690551\pi\)
0.433672 + 0.901071i \(0.357218\pi\)
\(464\) 0.644047 + 0.371841i 0.0298991 + 0.0172623i
\(465\) 0 0
\(466\) 0.572350 + 0.991339i 0.0265136 + 0.0459229i
\(467\) −36.0480 + 20.8123i −1.66810 + 0.963080i −0.699443 + 0.714688i \(0.746569\pi\)
−0.968660 + 0.248392i \(0.920098\pi\)
\(468\) 0 0
\(469\) 6.64763 9.98253i 0.306959 0.460950i
\(470\) 21.5948 + 14.4087i 0.996095 + 0.664622i
\(471\) 0 0
\(472\) −4.66316 −0.214639
\(473\) −6.58146 −0.302616
\(474\) 0 0
\(475\) −29.8053 22.8082i −1.36756 1.04651i
\(476\) 5.69490 + 11.5029i 0.261025 + 0.527234i
\(477\) 0 0
\(478\) 10.1997 5.88880i 0.466523 0.269347i
\(479\) 11.5051 + 19.9275i 0.525683 + 0.910509i 0.999552 + 0.0299141i \(0.00952336\pi\)
−0.473870 + 0.880595i \(0.657143\pi\)
\(480\) 0 0
\(481\) −19.3274 11.1587i −0.881255 0.508793i
\(482\) −19.9120 + 11.4962i −0.906967 + 0.523638i
\(483\) 0 0
\(484\) −5.22175 + 9.04434i −0.237352 + 0.411106i
\(485\) 4.59510 + 9.30252i 0.208653 + 0.422406i
\(486\) 0 0
\(487\) −9.17108 5.29492i −0.415581 0.239936i 0.277604 0.960696i \(-0.410460\pi\)
−0.693185 + 0.720760i \(0.743793\pi\)
\(488\) 1.71256i 0.0775238i
\(489\) 0 0
\(490\) 15.3631 + 2.99567i 0.694036 + 0.135331i
\(491\) −2.99490 + 1.72911i −0.135158 + 0.0780336i −0.566054 0.824368i \(-0.691531\pi\)
0.430896 + 0.902401i \(0.358197\pi\)
\(492\) 0 0
\(493\) 1.80392 + 3.12449i 0.0812446 + 0.140720i
\(494\) −21.7231 12.5418i −0.977368 0.564283i
\(495\) 0 0
\(496\) 5.00146i 0.224572i
\(497\) 6.11836 9.18775i 0.274446 0.412127i
\(498\) 0 0
\(499\) 7.23460 12.5307i 0.323865 0.560951i −0.657417 0.753527i \(-0.728351\pi\)
0.981282 + 0.192576i \(0.0616843\pi\)
\(500\) 10.9698 + 2.15954i 0.490584 + 0.0965776i
\(501\) 0 0
\(502\) 1.44964 0.0647004
\(503\) 33.2244i 1.48140i −0.671833 0.740702i \(-0.734493\pi\)
0.671833 0.740702i \(-0.265507\pi\)
\(504\) 0 0
\(505\) −24.4876 1.58883i −1.08968 0.0707019i
\(506\) 1.39277i 0.0619164i
\(507\) 0 0
\(508\) 2.11883i 0.0940077i
\(509\) 20.9146 36.2251i 0.927023 1.60565i 0.138748 0.990328i \(-0.455692\pi\)
0.788275 0.615323i \(-0.210974\pi\)
\(510\) 0 0
\(511\) −24.2199 + 11.9909i −1.07142 + 0.530445i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −6.07764 3.50893i −0.268073 0.154772i
\(515\) −6.60956 13.3807i −0.291252 0.589623i
\(516\) 0 0
\(517\) −4.33043 7.50052i −0.190452 0.329872i
\(518\) 17.6333 + 1.12815i 0.774763 + 0.0495680i
\(519\) 0 0
\(520\) 7.45666 + 0.483811i 0.326996 + 0.0212165i
\(521\) 11.1096 19.2425i 0.486722 0.843027i −0.513161 0.858292i \(-0.671526\pi\)
0.999883 + 0.0152648i \(0.00485914\pi\)
\(522\) 0 0
\(523\) 15.3867 + 26.6505i 0.672813 + 1.16535i 0.977103 + 0.212766i \(0.0682473\pi\)
−0.304291 + 0.952579i \(0.598419\pi\)
\(524\) 7.87875 13.6464i 0.344185 0.596146i
\(525\) 0 0
\(526\) 1.32494 + 2.29487i 0.0577703 + 0.100061i
\(527\) 12.1319 21.0130i 0.528473 0.915343i
\(528\) 0 0
\(529\) 9.75713 + 16.8998i 0.424223 + 0.734776i
\(530\) −5.82972 11.8019i −0.253227 0.512643i
\(531\) 0 0
\(532\) 19.8190 + 1.26798i 0.859262 + 0.0549741i
\(533\) 2.83978 4.91865i 0.123005 0.213050i
\(534\) 0 0
\(535\) 30.4703 + 1.97701i 1.31735 + 0.0854735i
\(536\) 4.53308i 0.195799i
\(537\) 0 0
\(538\) −11.9338 + 20.6700i −0.514504 + 0.891147i
\(539\) −4.15272 3.16598i −0.178871 0.136368i
\(540\) 0 0
\(541\) 2.61686 + 4.53253i 0.112508 + 0.194869i 0.916781 0.399391i \(-0.130778\pi\)
−0.804273 + 0.594260i \(0.797445\pi\)
\(542\) 16.9678 9.79635i 0.728828 0.420789i
\(543\) 0 0
\(544\) −4.20138 2.42567i −0.180133 0.104000i
\(545\) −10.1782 20.6053i −0.435988 0.882632i
\(546\) 0 0
\(547\) −3.57961 2.06669i −0.153053 0.0883652i 0.421518 0.906820i \(-0.361498\pi\)
−0.574571 + 0.818455i \(0.694831\pi\)
\(548\) 5.50358 + 9.53248i 0.235101 + 0.407207i
\(549\) 0 0
\(550\) −2.96215 2.26676i −0.126307 0.0966548i
\(551\) 5.58221 0.237810
\(552\) 0 0
\(553\) −13.6889 9.11577i −0.582109 0.387642i
\(554\) 17.2708 9.97128i 0.733765 0.423639i
\(555\) 0 0
\(556\) −14.5065 + 8.37531i −0.615211 + 0.355192i
\(557\) 6.66281 11.5403i 0.282312 0.488979i −0.689642 0.724151i \(-0.742232\pi\)
0.971954 + 0.235172i \(0.0755652\pi\)
\(558\) 0 0
\(559\) 29.4823i 1.24697i
\(560\) −5.46071 + 2.27609i −0.230757 + 0.0961825i
\(561\) 0 0
\(562\) −2.03902 1.17723i −0.0860110 0.0496585i
\(563\) 9.39051i 0.395763i −0.980226 0.197881i \(-0.936594\pi\)
0.980226 0.197881i \(-0.0634061\pi\)
\(564\) 0 0
\(565\) −44.9137 2.91414i −1.88953 0.122599i
\(566\) −8.82966 −0.371138
\(567\) 0 0
\(568\) 4.17217i 0.175060i
\(569\) 34.6834i 1.45400i −0.686635 0.727002i \(-0.740913\pi\)
0.686635 0.727002i \(-0.259087\pi\)
\(570\) 0 0
\(571\) 11.4946 0.481034 0.240517 0.970645i \(-0.422683\pi\)
0.240517 + 0.970645i \(0.422683\pi\)
\(572\) −2.15891 1.24645i −0.0902687 0.0521167i
\(573\) 0 0
\(574\) −0.287103 + 4.48751i −0.0119835 + 0.187305i
\(575\) −9.25680 1.20630i −0.386035 0.0503061i
\(576\) 0 0
\(577\) 8.61149 14.9155i 0.358501 0.620942i −0.629209 0.777236i \(-0.716621\pi\)
0.987711 + 0.156293i \(0.0499546\pi\)
\(578\) −3.26772 5.65986i −0.135919 0.235419i
\(579\) 0 0
\(580\) −1.49095 + 0.736472i −0.0619081 + 0.0305803i
\(581\) 3.07490 + 6.21086i 0.127568 + 0.257670i
\(582\) 0 0
\(583\) 4.39148i 0.181877i
\(584\) 5.10736 8.84620i 0.211344 0.366059i
\(585\) 0 0
\(586\) −8.74058 + 5.04638i −0.361070 + 0.208464i
\(587\) 18.3983 + 10.6223i 0.759380 + 0.438428i 0.829073 0.559140i \(-0.188869\pi\)
−0.0696932 + 0.997568i \(0.522202\pi\)
\(588\) 0 0
\(589\) −18.7710 32.5122i −0.773444 1.33964i
\(590\) 5.78731 8.67366i 0.238260 0.357089i
\(591\) 0 0
\(592\) −5.78366 + 3.33920i −0.237707 + 0.137240i
\(593\) −5.35047 + 3.08910i −0.219718 + 0.126854i −0.605819 0.795602i \(-0.707155\pi\)
0.386102 + 0.922456i \(0.373821\pi\)
\(594\) 0 0
\(595\) −28.4636 3.68315i −1.16689 0.150994i
\(596\) −18.6650 10.7762i −0.764547 0.441412i
\(597\) 0 0
\(598\) −6.23906 −0.255134
\(599\) 20.2605i 0.827821i 0.910318 + 0.413911i \(0.135837\pi\)
−0.910318 + 0.413911i \(0.864163\pi\)
\(600\) 0 0
\(601\) −1.81095 1.04555i −0.0738700 0.0426489i 0.462610 0.886562i \(-0.346913\pi\)
−0.536480 + 0.843913i \(0.680246\pi\)
\(602\) −10.3565 20.9187i −0.422100 0.852583i
\(603\) 0 0
\(604\) 7.68913 + 13.3180i 0.312866 + 0.541900i
\(605\) −10.3423 20.9373i −0.420473 0.851223i
\(606\) 0 0
\(607\) 6.73968 11.6735i 0.273555 0.473812i −0.696214 0.717834i \(-0.745134\pi\)
0.969770 + 0.244022i \(0.0784670\pi\)
\(608\) −6.50055 + 3.75309i −0.263632 + 0.152208i
\(609\) 0 0
\(610\) 3.18542 + 2.12540i 0.128974 + 0.0860551i
\(611\) −33.5993 + 19.3985i −1.35928 + 0.784781i
\(612\) 0 0
\(613\) 9.41875 + 5.43792i 0.380420 + 0.219636i 0.678001 0.735061i \(-0.262847\pi\)
−0.297581 + 0.954697i \(0.596180\pi\)
\(614\) 10.7285 0.432965
\(615\) 0 0
\(616\) 1.96968 + 0.126017i 0.0793605 + 0.00507735i
\(617\) 0.714583 + 1.23769i 0.0287680 + 0.0498277i 0.880051 0.474879i \(-0.157508\pi\)
−0.851283 + 0.524707i \(0.824175\pi\)
\(618\) 0 0
\(619\) −19.3002 + 11.1430i −0.775739 + 0.447873i −0.834918 0.550374i \(-0.814485\pi\)
0.0591788 + 0.998247i \(0.481152\pi\)
\(620\) 9.30292 + 6.20717i 0.373614 + 0.249286i
\(621\) 0 0
\(622\) −4.99022 −0.200089
\(623\) 2.56292 40.0592i 0.102681 1.60494i
\(624\) 0 0
\(625\) −17.6311 + 17.7241i −0.705244 + 0.708964i
\(626\) 20.1068 0.803631
\(627\) 0 0
\(628\) 7.04317 0.281053
\(629\) −32.3991 −1.29184
\(630\) 0 0
\(631\) 13.9478 0.555255 0.277627 0.960689i \(-0.410452\pi\)
0.277627 + 0.960689i \(0.410452\pi\)
\(632\) 6.21613 0.247264
\(633\) 0 0
\(634\) 26.0102 1.03300
\(635\) 3.94110 + 2.62961i 0.156398 + 0.104353i
\(636\) 0 0
\(637\) −14.1823 + 18.6025i −0.561923 + 0.737059i
\(638\) 0.554779 0.0219639
\(639\) 0 0
\(640\) 1.24107 1.86004i 0.0490576 0.0735245i
\(641\) −7.54412 + 4.35560i −0.297975 + 0.172036i −0.641533 0.767096i \(-0.721701\pi\)
0.343558 + 0.939132i \(0.388368\pi\)
\(642\) 0 0
\(643\) 21.6235 + 37.4529i 0.852746 + 1.47700i 0.878720 + 0.477337i \(0.158398\pi\)
−0.0259739 + 0.999663i \(0.508269\pi\)
\(644\) 4.42683 2.19166i 0.174442 0.0863634i
\(645\) 0 0
\(646\) −36.4150 −1.43273
\(647\) 31.0729 + 17.9400i 1.22160 + 0.705293i 0.965260 0.261293i \(-0.0841487\pi\)
0.256344 + 0.966586i \(0.417482\pi\)
\(648\) 0 0
\(649\) −3.01262 + 1.73933i −0.118256 + 0.0682748i
\(650\) −10.1541 + 13.2692i −0.398278 + 0.520462i
\(651\) 0 0
\(652\) 6.38815 3.68820i 0.250179 0.144441i
\(653\) 1.94271 3.36488i 0.0760243 0.131678i −0.825507 0.564392i \(-0.809111\pi\)
0.901531 + 0.432714i \(0.142444\pi\)
\(654\) 0 0
\(655\) 15.6047 + 31.5909i 0.609728 + 1.23436i
\(656\) −0.849794 1.47189i −0.0331789 0.0574675i
\(657\) 0 0
\(658\) 17.0255 25.5667i 0.663725 0.996693i
\(659\) 12.1007 + 6.98632i 0.471375 + 0.272149i 0.716815 0.697263i \(-0.245599\pi\)
−0.245440 + 0.969412i \(0.578932\pi\)
\(660\) 0 0
\(661\) 44.7175i 1.73931i −0.493662 0.869654i \(-0.664342\pi\)
0.493662 0.869654i \(-0.335658\pi\)
\(662\) −13.3980 −0.520726
\(663\) 0 0
\(664\) −2.26849 1.30971i −0.0880345 0.0508267i
\(665\) −26.9552 + 35.2904i −1.04528 + 1.36850i
\(666\) 0 0
\(667\) 1.20244 0.694232i 0.0465589 0.0268808i
\(668\) −14.6090 + 8.43452i −0.565240 + 0.326341i
\(669\) 0 0
\(670\) −8.43171 5.62587i −0.325745 0.217346i
\(671\) −0.638775 1.10639i −0.0246596 0.0427118i
\(672\) 0 0
\(673\) 32.2357 + 18.6113i 1.24259 + 0.717412i 0.969622 0.244610i \(-0.0786598\pi\)
0.272973 + 0.962022i \(0.411993\pi\)
\(674\) 7.18391 4.14763i 0.276714 0.159761i
\(675\) 0 0
\(676\) 0.916415 1.58728i 0.0352467 0.0610492i
\(677\) 12.5830i 0.483605i 0.970325 + 0.241803i \(0.0777386\pi\)
−0.970325 + 0.241803i \(0.922261\pi\)
\(678\) 0 0
\(679\) 11.0020 5.44692i 0.422218 0.209033i
\(680\) 9.72604 4.80431i 0.372977 0.184237i
\(681\) 0 0
\(682\) −1.86552 3.23118i −0.0714345 0.123728i
\(683\) 8.98544 15.5632i 0.343818 0.595511i −0.641320 0.767274i \(-0.721613\pi\)
0.985138 + 0.171763i \(0.0549462\pi\)
\(684\) 0 0
\(685\) −24.5611 1.59360i −0.938432 0.0608884i
\(686\) 3.52815 18.1811i 0.134705 0.694157i
\(687\) 0 0
\(688\) 7.64047 + 4.41123i 0.291290 + 0.168176i
\(689\) 19.6721 0.749446
\(690\) 0 0
\(691\) 44.2400i 1.68297i −0.540280 0.841485i \(-0.681682\pi\)
0.540280 0.841485i \(-0.318318\pi\)
\(692\) 10.2449i 0.389453i
\(693\) 0 0
\(694\) 16.4408 0.624086
\(695\) 2.42513 37.3769i 0.0919905 1.41779i
\(696\) 0 0
\(697\) 8.24527i 0.312312i
\(698\) 26.2420 + 15.1508i 0.993273 + 0.573466i
\(699\) 0 0
\(700\) 2.54351 12.9819i 0.0961355 0.490671i
\(701\) 29.6654i 1.12045i −0.828342 0.560223i \(-0.810716\pi\)
0.828342 0.560223i \(-0.189284\pi\)
\(702\) 0 0
\(703\) −25.0646 + 43.4132i −0.945330 + 1.63736i
\(704\) −0.646046 + 0.372995i −0.0243488 + 0.0140578i
\(705\) 0 0
\(706\) −10.7919 + 6.23074i −0.406160 + 0.234497i
\(707\) −1.85382 + 28.9757i −0.0697200 + 1.08974i
\(708\) 0 0
\(709\) 36.7363 1.37966 0.689831 0.723971i \(-0.257685\pi\)
0.689831 + 0.723971i \(0.257685\pi\)
\(710\) −7.76040 5.17796i −0.291243 0.194325i
\(711\) 0 0
\(712\) 7.58595 + 13.1393i 0.284296 + 0.492414i
\(713\) −8.08678 4.66890i −0.302852 0.174852i
\(714\) 0 0
\(715\) 4.99781 2.46873i 0.186907 0.0923253i
\(716\) 16.4577 + 9.50188i 0.615054 + 0.355102i
\(717\) 0 0
\(718\) 1.01914 0.588399i 0.0380339 0.0219589i
\(719\) 15.0842 + 26.1266i 0.562546 + 0.974358i 0.997273 + 0.0737961i \(0.0235114\pi\)
−0.434727 + 0.900562i \(0.643155\pi\)
\(720\) 0 0
\(721\) −15.8252 + 7.83480i −0.589360 + 0.291783i
\(722\) −18.6714 + 32.3398i −0.694878 + 1.20356i
\(723\) 0 0
\(724\) 5.53416i 0.205676i
\(725\) 0.480501 3.68723i 0.0178453 0.136940i
\(726\) 0 0
\(727\) −2.77440 + 4.80540i −0.102897 + 0.178222i −0.912877 0.408235i \(-0.866144\pi\)
0.809980 + 0.586457i \(0.199478\pi\)
\(728\) 0.564503 8.82335i 0.0209219 0.327015i
\(729\) 0 0
\(730\) 10.1157 + 20.4786i 0.374399 + 0.757949i
\(731\) 21.4003 + 37.0665i 0.791520 + 1.37095i
\(732\) 0 0
\(733\) 10.1357 17.5555i 0.374370 0.648428i −0.615863 0.787854i \(-0.711192\pi\)
0.990233 + 0.139426i \(0.0445257\pi\)
\(734\) 17.7200 + 30.6920i 0.654059 + 1.13286i
\(735\) 0 0
\(736\) −0.933507 + 1.61688i −0.0344095 + 0.0595991i
\(737\) 1.69082 + 2.92858i 0.0622820 + 0.107876i
\(738\) 0 0
\(739\) 24.5774 42.5693i 0.904095 1.56594i 0.0819667 0.996635i \(-0.473880\pi\)
0.822128 0.569303i \(-0.192787\pi\)
\(740\) 0.966888 14.9020i 0.0355435 0.547809i
\(741\) 0 0
\(742\) −13.9580 + 6.91040i −0.512415 + 0.253689i
\(743\) 13.5537 + 23.4757i 0.497237 + 0.861240i 0.999995 0.00318755i \(-0.00101463\pi\)
−0.502758 + 0.864427i \(0.667681\pi\)
\(744\) 0 0
\(745\) 43.2088 21.3435i 1.58305 0.781967i
\(746\) 21.9698 + 12.6843i 0.804372 + 0.464405i
\(747\) 0 0
\(748\) −3.61905 −0.132325
\(749\) 2.30674 36.0551i 0.0842865 1.31742i
\(750\) 0 0
\(751\) −20.6403 + 35.7500i −0.753174 + 1.30454i 0.193102 + 0.981179i \(0.438145\pi\)
−0.946277 + 0.323358i \(0.895188\pi\)
\(752\) 11.6099i 0.423369i
\(753\) 0 0
\(754\) 2.48518i 0.0905050i
\(755\) −34.3147 2.22644i −1.24884 0.0810285i
\(756\) 0 0
\(757\) 37.6630i 1.36888i 0.729067 + 0.684442i \(0.239954\pi\)
−0.729067 + 0.684442i \(0.760046\pi\)
\(758\) −24.3494 −0.884411
\(759\) 0 0
\(760\) 1.08673 16.7491i 0.0394200 0.607554i
\(761\) −10.0532 + 17.4126i −0.364427 + 0.631207i −0.988684 0.150013i \(-0.952069\pi\)
0.624257 + 0.781219i \(0.285402\pi\)
\(762\) 0 0
\(763\) −24.3696 + 12.0650i −0.882239 + 0.436783i
\(764\) 20.0241i 0.724447i
\(765\) 0 0
\(766\) −11.3669 6.56268i −0.410702 0.237119i
\(767\) 7.79151 + 13.4953i 0.281335 + 0.487287i
\(768\) 0 0
\(769\) 24.3791 14.0753i 0.879134 0.507568i 0.00876117 0.999962i \(-0.497211\pi\)
0.870373 + 0.492393i \(0.163878\pi\)
\(770\) −2.67890 + 3.50728i −0.0965409 + 0.126394i
\(771\) 0 0
\(772\) 19.0139i 0.684327i
\(773\) −37.3009 21.5357i −1.34162 0.774585i −0.354576 0.935027i \(-0.615375\pi\)
−0.987045 + 0.160442i \(0.948708\pi\)
\(774\) 0 0
\(775\) −23.0911 + 9.60026i −0.829458 + 0.344852i
\(776\) −2.32004 + 4.01843i −0.0832846 + 0.144253i
\(777\) 0 0
\(778\) 16.7387 9.66411i 0.600113 0.346475i
\(779\) −11.0483 6.37871i −0.395845 0.228541i
\(780\) 0 0
\(781\) 1.55620 + 2.69541i 0.0556852 + 0.0964495i
\(782\) −7.84404 + 4.52876i −0.280502 + 0.161948i
\(783\) 0 0
\(784\) 2.69893 + 6.45877i 0.0963904 + 0.230671i
\(785\) −8.74106 + 13.1006i −0.311982 + 0.467579i
\(786\) 0 0
\(787\) −35.3175 −1.25893 −0.629466 0.777028i \(-0.716726\pi\)
−0.629466 + 0.777028i \(0.716726\pi\)
\(788\) 6.94184 0.247293
\(789\) 0 0
\(790\) −7.71465 + 11.5622i −0.274475 + 0.411366i
\(791\) −3.40017 + 53.1457i −0.120896 + 1.88964i
\(792\) 0 0
\(793\) −4.95618 + 2.86145i −0.175999 + 0.101613i
\(794\) 18.0143 + 31.2016i 0.639303 + 1.10730i
\(795\) 0 0
\(796\) −3.90645 2.25539i −0.138460 0.0799401i
\(797\) 14.2561 8.23077i 0.504978 0.291549i −0.225789 0.974176i \(-0.572496\pi\)
0.730767 + 0.682627i \(0.239163\pi\)
\(798\) 0 0
\(799\) −28.1617 + 48.7775i −0.996289 + 1.72562i
\(800\) 1.91949 + 4.61688i 0.0678642 + 0.163231i
\(801\) 0 0
\(802\) −2.72857 1.57534i −0.0963492 0.0556272i
\(803\) 7.62008i 0.268907i
\(804\) 0 0
\(805\) −1.41744 + 10.9541i −0.0499583 + 0.386081i
\(806\) −14.4744 + 8.35677i −0.509838 + 0.294355i
\(807\) 0 0
\(808\) −5.48710 9.50393i −0.193035 0.334347i
\(809\) 21.2722 + 12.2815i 0.747890 + 0.431795i 0.824931 0.565233i \(-0.191214\pi\)
−0.0770407 + 0.997028i \(0.524547\pi\)
\(810\) 0 0
\(811\) 7.28238i 0.255719i 0.991792 + 0.127860i \(0.0408107\pi\)
−0.991792 + 0.127860i \(0.959189\pi\)
\(812\) 0.872995 + 1.76332i 0.0306361 + 0.0618806i
\(813\) 0 0
\(814\) −2.49101 + 4.31455i −0.0873097 + 0.151225i
\(815\) −1.06795 + 16.4595i −0.0374085 + 0.576552i
\(816\) 0 0
\(817\) 66.2230 2.31685
\(818\) 15.9469i 0.557571i
\(819\) 0 0
\(820\) 3.79242 + 0.246064i 0.132437 + 0.00859293i
\(821\) 6.68610i 0.233346i −0.993170 0.116673i \(-0.962777\pi\)
0.993170 0.116673i \(-0.0372230\pi\)
\(822\) 0 0
\(823\) 11.4060i 0.397589i 0.980041 + 0.198794i \(0.0637026\pi\)
−0.980041 + 0.198794i \(0.936297\pi\)
\(824\) 3.33713 5.78008i 0.116254 0.201359i
\(825\) 0 0
\(826\) −10.2690 6.83838i −0.357303 0.237938i
\(827\) −9.16990 −0.318868 −0.159434 0.987209i \(-0.550967\pi\)
−0.159434 + 0.987209i \(0.550967\pi\)
\(828\) 0 0
\(829\) 13.6953 + 7.90700i 0.475659 + 0.274622i 0.718605 0.695418i \(-0.244781\pi\)
−0.242947 + 0.970040i \(0.578114\pi\)
\(830\) 5.25147 2.59403i 0.182281 0.0900402i
\(831\) 0 0
\(832\) 1.67087 + 2.89402i 0.0579268 + 0.100332i
\(833\) −4.32761 + 33.6825i −0.149943 + 1.16703i
\(834\) 0 0
\(835\) 2.44228 37.6412i 0.0845184 1.30263i
\(836\) −2.79977 + 4.84934i −0.0968320 + 0.167718i
\(837\) 0 0
\(838\) 17.4629 + 30.2467i 0.603247 + 1.04485i
\(839\) 14.0897 24.4040i 0.486429 0.842520i −0.513449 0.858120i \(-0.671633\pi\)
0.999878 + 0.0156002i \(0.00496589\pi\)
\(840\) 0 0
\(841\) −14.2235 24.6358i −0.490464 0.849509i
\(842\) −18.6679 + 32.3338i −0.643339 + 1.11430i
\(843\) 0 0
\(844\) 3.92397 + 6.79652i 0.135069 + 0.233946i
\(845\) 1.81506 + 3.67449i 0.0624401 + 0.126406i
\(846\) 0 0
\(847\) −24.7623 + 12.2594i −0.850844 + 0.421240i
\(848\) 2.94339 5.09811i 0.101077 0.175070i
\(849\) 0 0
\(850\) −3.13450 + 24.0533i −0.107512 + 0.825021i
\(851\) 12.4687i 0.427420i
\(852\) 0 0
\(853\) 4.37925 7.58508i 0.149943 0.259708i −0.781263 0.624201i \(-0.785424\pi\)
0.931206 + 0.364493i \(0.118758\pi\)
\(854\) 2.51141 3.77131i 0.0859388 0.129051i
\(855\) 0 0
\(856\) 6.82770 + 11.8259i 0.233366 + 0.404202i
\(857\) −27.6321 + 15.9534i −0.943894 + 0.544958i −0.891179 0.453652i \(-0.850121\pi\)
−0.0527153 + 0.998610i \(0.516788\pi\)
\(858\) 0 0
\(859\) 39.6265 + 22.8784i 1.35204 + 0.780601i 0.988535 0.150992i \(-0.0482466\pi\)
0.363505 + 0.931592i \(0.381580\pi\)
\(860\) −17.6874 + 8.73693i −0.603136 + 0.297927i
\(861\) 0 0
\(862\) −7.75117 4.47514i −0.264006 0.152424i
\(863\) 21.5708 + 37.3618i 0.734280 + 1.27181i 0.955039 + 0.296481i \(0.0958132\pi\)
−0.220759 + 0.975328i \(0.570853\pi\)
\(864\) 0 0
\(865\) 19.0559 + 12.7146i 0.647921 + 0.432311i
\(866\) −12.0060 −0.407981
\(867\) 0 0
\(868\) 7.33450 11.0140i 0.248949 0.373839i
\(869\) 4.01591 2.31859i 0.136230 0.0786526i
\(870\) 0 0
\(871\) 13.1188 7.57417i 0.444515 0.256641i
\(872\) 5.13894 8.90090i 0.174026 0.301422i
\(873\) 0 0
\(874\) 14.0142i 0.474036i
\(875\) 20.9902 + 20.8425i 0.709599 + 0.704605i
\(876\) 0 0
\(877\) 15.9331 + 9.19897i 0.538022 + 0.310627i 0.744277 0.667871i \(-0.232794\pi\)
−0.206255 + 0.978498i \(0.566128\pi\)
\(878\) 32.7739i 1.10607i
\(879\) 0 0
\(880\) 0.108003 1.66458i 0.00364079 0.0561131i
\(881\) 8.81308 0.296920 0.148460 0.988918i \(-0.452568\pi\)
0.148460 + 0.988918i \(0.452568\pi\)
\(882\) 0 0
\(883\) 2.02023i 0.0679863i 0.999422 + 0.0339931i \(0.0108224\pi\)
−0.999422 + 0.0339931i \(0.989178\pi\)
\(884\) 16.2119i 0.545264i
\(885\) 0 0
\(886\) −6.10539 −0.205115
\(887\) −28.8147 16.6362i −0.967504 0.558589i −0.0690297 0.997615i \(-0.521990\pi\)
−0.898474 + 0.439026i \(0.855324\pi\)
\(888\) 0 0
\(889\) 3.10720 4.66597i 0.104212 0.156492i
\(890\) −33.8542 2.19657i −1.13480 0.0736291i
\(891\) 0 0
\(892\) 10.7610 18.6387i 0.360306 0.624068i
\(893\) 43.5729 + 75.4705i 1.45811 + 2.52553i
\(894\) 0 0
\(895\) −38.0991 + 18.8195i −1.27351 + 0.629068i
\(896\) −2.20215 1.46647i −0.0735687 0.0489913i
\(897\) 0 0
\(898\) 4.39667i 0.146719i
\(899\) 1.85975 3.22118i 0.0620261 0.107432i
\(900\) 0 0
\(901\) 24.7326 14.2794i 0.823963 0.475715i
\(902\) −1.09801 0.633938i −0.0365598 0.0211078i
\(903\) 0 0
\(904\) −10.0641 17.4316i −0.334728 0.579766i
\(905\) −10.2938 6.86828i −0.342176 0.228309i
\(906\) 0 0
\(907\) 9.65915 5.57672i 0.320727 0.185172i −0.330990 0.943634i \(-0.607383\pi\)
0.651717 + 0.758463i \(0.274049\pi\)
\(908\) 6.95237 4.01395i 0.230722 0.133208i
\(909\) 0 0
\(910\) 15.7112 + 12.0004i 0.520821 + 0.397809i
\(911\) −33.9893 19.6237i −1.12612 0.650163i −0.183160 0.983083i \(-0.558633\pi\)
−0.942955 + 0.332920i \(0.891966\pi\)
\(912\) 0 0
\(913\) −1.95407 −0.0646701
\(914\) 33.2534i 1.09993i
\(915\) 0 0
\(916\) −16.6860 9.63368i −0.551322 0.318306i
\(917\) 37.3622 18.4975i 1.23381 0.610840i
\(918\) 0 0
\(919\) −13.5598 23.4863i −0.447298 0.774743i 0.550911 0.834564i \(-0.314280\pi\)
−0.998209 + 0.0598209i \(0.980947\pi\)
\(920\) −1.84892 3.74302i −0.0609570 0.123404i
\(921\) 0 0
\(922\) 6.22235 10.7774i 0.204922 0.354936i
\(923\) 12.0744 6.97114i 0.397432 0.229458i
\(924\) 0 0
\(925\) 26.5183 + 20.2929i 0.871918 + 0.667226i
\(926\) 2.79388 1.61305i 0.0918126 0.0530080i
\(927\) 0 0
\(928\) −0.644047 0.371841i −0.0211419 0.0122063i
\(929\) −44.1075 −1.44712 −0.723559 0.690262i \(-0.757495\pi\)
−0.723559 + 0.690262i \(0.757495\pi\)
\(930\) 0 0
\(931\) 41.7849 + 31.8562i 1.36944 + 1.04405i
\(932\) −0.572350 0.991339i −0.0187479 0.0324724i
\(933\) 0 0
\(934\) 36.0480 20.8123i 1.17953 0.681000i
\(935\) 4.49149 6.73157i 0.146887 0.220146i
\(936\) 0 0
\(937\) 31.2098 1.01958 0.509789 0.860299i \(-0.329723\pi\)
0.509789 + 0.860299i \(0.329723\pi\)
\(938\) −6.64763 + 9.98253i −0.217053 + 0.325941i
\(939\) 0 0
\(940\) −21.5948 14.4087i −0.704345 0.469959i
\(941\) −6.51025 −0.212228 −0.106114 0.994354i \(-0.533841\pi\)
−0.106114 + 0.994354i \(0.533841\pi\)
\(942\) 0 0
\(943\) −3.17316 −0.103332
\(944\) 4.66316 0.151773
\(945\) 0 0
\(946\) 6.58146 0.213982
\(947\) −33.4969 −1.08850 −0.544252 0.838922i \(-0.683186\pi\)
−0.544252 + 0.838922i \(0.683186\pi\)
\(948\) 0 0
\(949\) −34.1348 −1.10806
\(950\) 29.8053 + 22.8082i 0.967012 + 0.739996i
\(951\) 0 0
\(952\) −5.69490 11.5029i −0.184573 0.372811i
\(953\) −9.08698 −0.294356 −0.147178 0.989110i \(-0.547019\pi\)
−0.147178 + 0.989110i \(0.547019\pi\)
\(954\) 0 0
\(955\) −37.2457 24.8513i −1.20524 0.804171i
\(956\) −10.1997 + 5.88880i −0.329882 + 0.190457i
\(957\) 0 0
\(958\) −11.5051 19.9275i −0.371714 0.643827i
\(959\) −1.85939 + 29.0628i −0.0600427 + 0.938486i
\(960\) 0 0
\(961\) 5.98536 0.193076
\(962\) 19.3274 + 11.1587i 0.623141 + 0.359771i
\(963\) 0 0
\(964\) 19.9120 11.4962i 0.641323 0.370268i
\(965\) −35.3667 23.5976i −1.13849 0.759634i
\(966\) 0 0
\(967\) 0.584986 0.337742i 0.0188119 0.0108610i −0.490565 0.871405i \(-0.663209\pi\)
0.509376 + 0.860544i \(0.329876\pi\)
\(968\) 5.22175 9.04434i 0.167833 0.290696i
\(969\) 0 0
\(970\) −4.59510 9.30252i −0.147540 0.298686i
\(971\) 3.90049 + 6.75585i 0.125173 + 0.216805i 0.921800 0.387665i \(-0.126718\pi\)
−0.796628 + 0.604470i \(0.793385\pi\)
\(972\) 0 0
\(973\) −44.2276 2.82960i −1.41787 0.0907129i
\(974\) 9.17108 + 5.29492i 0.293860 + 0.169660i
\(975\) 0 0
\(976\) 1.71256i 0.0548176i
\(977\) −45.4500 −1.45407 −0.727037 0.686598i \(-0.759103\pi\)
−0.727037 + 0.686598i \(0.759103\pi\)
\(978\) 0 0
\(979\) 9.80175 + 5.65904i 0.313265 + 0.180864i
\(980\) −15.3631 2.99567i −0.490757 0.0956933i
\(981\) 0 0
\(982\) 2.99490 1.72911i 0.0955713 0.0551781i
\(983\) −51.2704 + 29.6010i −1.63527 + 0.944125i −0.652843 + 0.757493i \(0.726424\pi\)
−0.982430 + 0.186632i \(0.940243\pi\)
\(984\) 0 0
\(985\) −8.61531 + 12.9121i −0.274507 + 0.411413i
\(986\) −1.80392 3.12449i −0.0574486 0.0995039i
\(987\) 0 0
\(988\) 21.7231 + 12.5418i 0.691103 + 0.399009i
\(989\) 14.2649 8.23582i 0.453596 0.261884i
\(990\) 0 0
\(991\) −3.52175 + 6.09985i −0.111872 + 0.193768i −0.916525 0.399977i \(-0.869018\pi\)
0.804653 + 0.593745i \(0.202351\pi\)
\(992\) 5.00146i 0.158797i
\(993\) 0 0
\(994\) −6.11836 + 9.18775i −0.194063 + 0.291418i
\(995\) 9.04328 4.46705i 0.286691 0.141615i
\(996\) 0 0
\(997\) 21.9085 + 37.9467i 0.693851 + 1.20178i 0.970567 + 0.240833i \(0.0774205\pi\)
−0.276716 + 0.960952i \(0.589246\pi\)
\(998\) −7.23460 + 12.5307i −0.229007 + 0.396652i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1890.2.bi.a.899.7 48
3.2 odd 2 630.2.bi.b.479.5 yes 48
5.4 even 2 1890.2.bi.b.899.9 48
7.5 odd 6 1890.2.r.b.89.1 48
9.4 even 3 630.2.r.b.59.21 yes 48
9.5 odd 6 1890.2.r.a.1529.1 48
15.14 odd 2 630.2.bi.a.479.20 yes 48
21.5 even 6 630.2.r.a.299.4 yes 48
35.19 odd 6 1890.2.r.a.89.1 48
45.4 even 6 630.2.r.a.59.4 48
45.14 odd 6 1890.2.r.b.1529.1 48
63.5 even 6 1890.2.bi.b.719.9 48
63.40 odd 6 630.2.bi.a.509.20 yes 48
105.89 even 6 630.2.r.b.299.21 yes 48
315.194 even 6 inner 1890.2.bi.a.719.7 48
315.229 odd 6 630.2.bi.b.509.5 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.r.a.59.4 48 45.4 even 6
630.2.r.a.299.4 yes 48 21.5 even 6
630.2.r.b.59.21 yes 48 9.4 even 3
630.2.r.b.299.21 yes 48 105.89 even 6
630.2.bi.a.479.20 yes 48 15.14 odd 2
630.2.bi.a.509.20 yes 48 63.40 odd 6
630.2.bi.b.479.5 yes 48 3.2 odd 2
630.2.bi.b.509.5 yes 48 315.229 odd 6
1890.2.r.a.89.1 48 35.19 odd 6
1890.2.r.a.1529.1 48 9.5 odd 6
1890.2.r.b.89.1 48 7.5 odd 6
1890.2.r.b.1529.1 48 45.14 odd 6
1890.2.bi.a.719.7 48 315.194 even 6 inner
1890.2.bi.a.899.7 48 1.1 even 1 trivial
1890.2.bi.b.719.9 48 63.5 even 6
1890.2.bi.b.899.9 48 5.4 even 2