Properties

Label 1890.2.r.a.1529.1
Level $1890$
Weight $2$
Character 1890.1529
Analytic conductor $15.092$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1890,2,Mod(89,1890)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1890, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1890.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1890 = 2 \cdot 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1890.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.0917259820\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1529.1
Character \(\chi\) \(=\) 1890.1529
Dual form 1890.2.r.a.89.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-2.23138 - 0.144779i) q^{5} +(-2.37108 + 1.17388i) q^{7} +1.00000 q^{8} +(1.24107 - 1.86004i) q^{10} +0.745990i q^{11} +(1.67087 - 2.89402i) q^{13} +(0.168925 - 2.64035i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-4.20138 - 2.42567i) q^{17} +(6.50055 - 3.75309i) q^{19} +(0.990306 + 2.00482i) q^{20} +(-0.646046 - 0.372995i) q^{22} +1.86701 q^{23} +(4.95808 + 0.646111i) q^{25} +(1.67087 + 2.89402i) q^{26} +(2.20215 + 1.46647i) q^{28} +(0.644047 - 0.371841i) q^{29} +(-4.33139 + 2.50073i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(4.20138 - 2.42567i) q^{34} +(5.46071 - 2.27609i) q^{35} +(-5.78366 + 3.33920i) q^{37} +7.50618i q^{38} +(-2.23138 - 0.144779i) q^{40} +(0.849794 - 1.47189i) q^{41} +(-7.64047 + 4.41123i) q^{43} +(0.646046 - 0.372995i) q^{44} +(-0.933507 + 1.61688i) q^{46} +(10.0544 + 5.80494i) q^{47} +(4.24400 - 5.56673i) q^{49} +(-3.03859 + 3.97077i) q^{50} -3.34173 q^{52} +(-2.94339 + 5.09811i) q^{53} +(0.108003 - 1.66458i) q^{55} +(-2.37108 + 1.17388i) q^{56} +0.743681i q^{58} +(2.33158 + 4.03841i) q^{59} +(-1.48312 - 0.856279i) q^{61} -5.00146i q^{62} +1.00000 q^{64} +(-4.14732 + 6.21575i) q^{65} +(-3.92576 + 2.26654i) q^{67} +4.85133i q^{68} +(-0.759202 + 5.86716i) q^{70} +4.17217i q^{71} +(-5.10736 + 8.84620i) q^{73} -6.67839i q^{74} +(-6.50055 - 3.75309i) q^{76} +(-0.875705 - 1.76880i) q^{77} +(3.10806 - 5.38333i) q^{79} +(1.24107 - 1.86004i) q^{80} +(0.849794 + 1.47189i) q^{82} +(2.26849 - 1.30971i) q^{83} +(9.02367 + 6.02085i) q^{85} -8.82245i q^{86} +0.745990i q^{88} +(7.58595 + 13.1393i) q^{89} +(-0.564503 + 8.82335i) q^{91} +(-0.933507 - 1.61688i) q^{92} +(-10.0544 + 5.80494i) q^{94} +(-15.0485 + 7.43342i) q^{95} +(2.32004 + 4.01843i) q^{97} +(2.69893 + 6.45877i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 24 q^{2} - 24 q^{4} + 48 q^{8} - 3 q^{14} - 24 q^{16} - 6 q^{22} - 6 q^{23} + 3 q^{28} + 3 q^{29} - 24 q^{32} - 12 q^{35} - 3 q^{41} + 6 q^{44} + 3 q^{46} - 6 q^{49} + 18 q^{50} - 42 q^{55} - 9 q^{61}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1890\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(1081\) \(1541\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −2.23138 0.144779i −0.997902 0.0647470i
\(6\) 0 0
\(7\) −2.37108 + 1.17388i −0.896182 + 0.443686i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.24107 1.86004i 0.392461 0.588196i
\(11\) 0.745990i 0.224924i 0.993656 + 0.112462i \(0.0358737\pi\)
−0.993656 + 0.112462i \(0.964126\pi\)
\(12\) 0 0
\(13\) 1.67087 2.89402i 0.463415 0.802658i −0.535714 0.844400i \(-0.679957\pi\)
0.999128 + 0.0417418i \(0.0132907\pi\)
\(14\) 0.168925 2.64035i 0.0451472 0.705664i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −4.20138 2.42567i −1.01898 0.588311i −0.105175 0.994454i \(-0.533540\pi\)
−0.913810 + 0.406143i \(0.866873\pi\)
\(18\) 0 0
\(19\) 6.50055 3.75309i 1.49133 0.861018i 0.491377 0.870947i \(-0.336494\pi\)
0.999951 + 0.00992860i \(0.00316042\pi\)
\(20\) 0.990306 + 2.00482i 0.221439 + 0.448291i
\(21\) 0 0
\(22\) −0.646046 0.372995i −0.137738 0.0795228i
\(23\) 1.86701 0.389299 0.194650 0.980873i \(-0.437643\pi\)
0.194650 + 0.980873i \(0.437643\pi\)
\(24\) 0 0
\(25\) 4.95808 + 0.646111i 0.991616 + 0.129222i
\(26\) 1.67087 + 2.89402i 0.327684 + 0.567565i
\(27\) 0 0
\(28\) 2.20215 + 1.46647i 0.416167 + 0.277137i
\(29\) 0.644047 0.371841i 0.119597 0.0690491i −0.439008 0.898483i \(-0.644670\pi\)
0.558605 + 0.829434i \(0.311337\pi\)
\(30\) 0 0
\(31\) −4.33139 + 2.50073i −0.777941 + 0.449145i −0.835700 0.549186i \(-0.814938\pi\)
0.0577588 + 0.998331i \(0.481605\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 4.20138 2.42567i 0.720531 0.415999i
\(35\) 5.46071 2.27609i 0.923029 0.384730i
\(36\) 0 0
\(37\) −5.78366 + 3.33920i −0.950827 + 0.548960i −0.893338 0.449386i \(-0.851643\pi\)
−0.0574896 + 0.998346i \(0.518310\pi\)
\(38\) 7.50618i 1.21766i
\(39\) 0 0
\(40\) −2.23138 0.144779i −0.352812 0.0228915i
\(41\) 0.849794 1.47189i 0.132716 0.229870i −0.792007 0.610512i \(-0.790964\pi\)
0.924722 + 0.380642i \(0.124297\pi\)
\(42\) 0 0
\(43\) −7.64047 + 4.41123i −1.16516 + 0.672706i −0.952535 0.304428i \(-0.901535\pi\)
−0.212625 + 0.977134i \(0.568201\pi\)
\(44\) 0.646046 0.372995i 0.0973951 0.0562311i
\(45\) 0 0
\(46\) −0.933507 + 1.61688i −0.137638 + 0.238396i
\(47\) 10.0544 + 5.80494i 1.46659 + 0.846737i 0.999302 0.0373667i \(-0.0118970\pi\)
0.467290 + 0.884104i \(0.345230\pi\)
\(48\) 0 0
\(49\) 4.24400 5.56673i 0.606285 0.795247i
\(50\) −3.03859 + 3.97077i −0.429721 + 0.561551i
\(51\) 0 0
\(52\) −3.34173 −0.463415
\(53\) −2.94339 + 5.09811i −0.404306 + 0.700279i −0.994240 0.107172i \(-0.965820\pi\)
0.589934 + 0.807451i \(0.299154\pi\)
\(54\) 0 0
\(55\) 0.108003 1.66458i 0.0145632 0.224452i
\(56\) −2.37108 + 1.17388i −0.316848 + 0.156867i
\(57\) 0 0
\(58\) 0.743681i 0.0976501i
\(59\) 2.33158 + 4.03841i 0.303546 + 0.525757i 0.976936 0.213530i \(-0.0684962\pi\)
−0.673391 + 0.739287i \(0.735163\pi\)
\(60\) 0 0
\(61\) −1.48312 0.856279i −0.189894 0.109635i 0.402039 0.915623i \(-0.368302\pi\)
−0.591933 + 0.805987i \(0.701635\pi\)
\(62\) 5.00146i 0.635187i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −4.14732 + 6.21575i −0.514412 + 0.770969i
\(66\) 0 0
\(67\) −3.92576 + 2.26654i −0.479608 + 0.276902i −0.720253 0.693711i \(-0.755974\pi\)
0.240645 + 0.970613i \(0.422641\pi\)
\(68\) 4.85133i 0.588311i
\(69\) 0 0
\(70\) −0.759202 + 5.86716i −0.0907420 + 0.701260i
\(71\) 4.17217i 0.495145i 0.968869 + 0.247573i \(0.0796329\pi\)
−0.968869 + 0.247573i \(0.920367\pi\)
\(72\) 0 0
\(73\) −5.10736 + 8.84620i −0.597771 + 1.03537i 0.395378 + 0.918518i \(0.370613\pi\)
−0.993149 + 0.116851i \(0.962720\pi\)
\(74\) 6.67839i 0.776347i
\(75\) 0 0
\(76\) −6.50055 3.75309i −0.745664 0.430509i
\(77\) −0.875705 1.76880i −0.0997958 0.201573i
\(78\) 0 0
\(79\) 3.10806 5.38333i 0.349685 0.605672i −0.636509 0.771269i \(-0.719622\pi\)
0.986193 + 0.165598i \(0.0529554\pi\)
\(80\) 1.24107 1.86004i 0.138756 0.207959i
\(81\) 0 0
\(82\) 0.849794 + 1.47189i 0.0938441 + 0.162543i
\(83\) 2.26849 1.30971i 0.248999 0.143760i −0.370307 0.928910i \(-0.620747\pi\)
0.619306 + 0.785150i \(0.287414\pi\)
\(84\) 0 0
\(85\) 9.02367 + 6.02085i 0.978755 + 0.653052i
\(86\) 8.82245i 0.951349i
\(87\) 0 0
\(88\) 0.745990i 0.0795228i
\(89\) 7.58595 + 13.1393i 0.804109 + 1.39276i 0.916891 + 0.399138i \(0.130691\pi\)
−0.112782 + 0.993620i \(0.535976\pi\)
\(90\) 0 0
\(91\) −0.564503 + 8.82335i −0.0591760 + 0.924938i
\(92\) −0.933507 1.61688i −0.0973249 0.168572i
\(93\) 0 0
\(94\) −10.0544 + 5.80494i −1.03704 + 0.598734i
\(95\) −15.0485 + 7.43342i −1.54395 + 0.762653i
\(96\) 0 0
\(97\) 2.32004 + 4.01843i 0.235565 + 0.408010i 0.959437 0.281924i \(-0.0909728\pi\)
−0.723872 + 0.689934i \(0.757639\pi\)
\(98\) 2.69893 + 6.45877i 0.272633 + 0.652435i
\(99\) 0 0
\(100\) −1.91949 4.61688i −0.191949 0.461688i
\(101\) 10.9742 1.09197 0.545986 0.837794i \(-0.316155\pi\)
0.545986 + 0.837794i \(0.316155\pi\)
\(102\) 0 0
\(103\) 6.67426 0.657635 0.328817 0.944394i \(-0.393350\pi\)
0.328817 + 0.944394i \(0.393350\pi\)
\(104\) 1.67087 2.89402i 0.163842 0.283782i
\(105\) 0 0
\(106\) −2.94339 5.09811i −0.285888 0.495172i
\(107\) 6.82770 + 11.8259i 0.660058 + 1.14325i 0.980600 + 0.196020i \(0.0628018\pi\)
−0.320541 + 0.947234i \(0.603865\pi\)
\(108\) 0 0
\(109\) −5.13894 + 8.90090i −0.492221 + 0.852551i −0.999960 0.00895944i \(-0.997148\pi\)
0.507739 + 0.861511i \(0.330481\pi\)
\(110\) 1.38757 + 0.925826i 0.132300 + 0.0882740i
\(111\) 0 0
\(112\) 0.168925 2.64035i 0.0159619 0.249490i
\(113\) −10.0641 + 17.4316i −0.946754 + 1.63983i −0.194553 + 0.980892i \(0.562326\pi\)
−0.752201 + 0.658934i \(0.771008\pi\)
\(114\) 0 0
\(115\) −4.16601 0.270304i −0.388483 0.0252060i
\(116\) −0.644047 0.371841i −0.0597983 0.0345245i
\(117\) 0 0
\(118\) −4.66316 −0.429278
\(119\) 12.8092 + 0.819513i 1.17422 + 0.0751246i
\(120\) 0 0
\(121\) 10.4435 0.949409
\(122\) 1.48312 0.856279i 0.134275 0.0775238i
\(123\) 0 0
\(124\) 4.33139 + 2.50073i 0.388971 + 0.224572i
\(125\) −10.9698 2.15954i −0.981168 0.193155i
\(126\) 0 0
\(127\) 2.11883i 0.188015i −0.995571 0.0940077i \(-0.970032\pi\)
0.995571 0.0940077i \(-0.0299678\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −3.30934 6.69956i −0.290248 0.587590i
\(131\) 15.7575 1.37674 0.688370 0.725360i \(-0.258327\pi\)
0.688370 + 0.725360i \(0.258327\pi\)
\(132\) 0 0
\(133\) −11.0076 + 16.5297i −0.954480 + 1.43331i
\(134\) 4.53308i 0.391599i
\(135\) 0 0
\(136\) −4.20138 2.42567i −0.360265 0.207999i
\(137\) 11.0072 0.940405 0.470202 0.882559i \(-0.344181\pi\)
0.470202 + 0.882559i \(0.344181\pi\)
\(138\) 0 0
\(139\) 14.5065 + 8.37531i 1.23042 + 0.710385i 0.967118 0.254328i \(-0.0818543\pi\)
0.263304 + 0.964713i \(0.415188\pi\)
\(140\) −4.70151 3.59107i −0.397350 0.303501i
\(141\) 0 0
\(142\) −3.61321 2.08609i −0.303213 0.175060i
\(143\) 2.15891 + 1.24645i 0.180537 + 0.104233i
\(144\) 0 0
\(145\) −1.49095 + 0.736472i −0.123816 + 0.0611607i
\(146\) −5.10736 8.84620i −0.422688 0.732117i
\(147\) 0 0
\(148\) 5.78366 + 3.33920i 0.475414 + 0.274480i
\(149\) 21.5525i 1.76565i −0.469705 0.882823i \(-0.655640\pi\)
0.469705 0.882823i \(-0.344360\pi\)
\(150\) 0 0
\(151\) −15.3783 −1.25146 −0.625732 0.780038i \(-0.715200\pi\)
−0.625732 + 0.780038i \(0.715200\pi\)
\(152\) 6.50055 3.75309i 0.527264 0.304416i
\(153\) 0 0
\(154\) 1.96968 + 0.126017i 0.158721 + 0.0101547i
\(155\) 10.0270 4.95298i 0.805390 0.397833i
\(156\) 0 0
\(157\) −3.52158 6.09956i −0.281053 0.486798i 0.690591 0.723245i \(-0.257350\pi\)
−0.971644 + 0.236447i \(0.924017\pi\)
\(158\) 3.10806 + 5.38333i 0.247264 + 0.428274i
\(159\) 0 0
\(160\) 0.990306 + 2.00482i 0.0782906 + 0.158495i
\(161\) −4.42683 + 2.19166i −0.348883 + 0.172727i
\(162\) 0 0
\(163\) 6.38815 3.68820i 0.500359 0.288882i −0.228503 0.973543i \(-0.573383\pi\)
0.728862 + 0.684661i \(0.240050\pi\)
\(164\) −1.69959 −0.132716
\(165\) 0 0
\(166\) 2.61943i 0.203307i
\(167\) −14.6090 8.43452i −1.13048 0.652683i −0.186424 0.982469i \(-0.559690\pi\)
−0.944055 + 0.329787i \(0.893023\pi\)
\(168\) 0 0
\(169\) 0.916415 + 1.58728i 0.0704935 + 0.122098i
\(170\) −9.72604 + 4.80431i −0.745953 + 0.368473i
\(171\) 0 0
\(172\) 7.64047 + 4.41123i 0.582580 + 0.336353i
\(173\) −8.87235 5.12245i −0.674552 0.389453i 0.123247 0.992376i \(-0.460669\pi\)
−0.797799 + 0.602923i \(0.794003\pi\)
\(174\) 0 0
\(175\) −12.5144 + 4.28823i −0.946002 + 0.324159i
\(176\) −0.646046 0.372995i −0.0486976 0.0281156i
\(177\) 0 0
\(178\) −15.1719 −1.13718
\(179\) −16.4577 9.50188i −1.23011 0.710204i −0.263056 0.964780i \(-0.584731\pi\)
−0.967053 + 0.254577i \(0.918064\pi\)
\(180\) 0 0
\(181\) 5.53416i 0.411351i 0.978620 + 0.205676i \(0.0659391\pi\)
−0.978620 + 0.205676i \(0.934061\pi\)
\(182\) −7.35899 4.90055i −0.545485 0.363253i
\(183\) 0 0
\(184\) 1.86701 0.137638
\(185\) 13.3890 6.61365i 0.984376 0.486245i
\(186\) 0 0
\(187\) 1.80952 3.13419i 0.132325 0.229194i
\(188\) 11.6099i 0.846737i
\(189\) 0 0
\(190\) 1.08673 16.7491i 0.0788400 1.21511i
\(191\) 17.3414 + 10.0121i 1.25478 + 0.724447i 0.972055 0.234754i \(-0.0754283\pi\)
0.282725 + 0.959201i \(0.408762\pi\)
\(192\) 0 0
\(193\) 16.4666 9.50697i 1.18529 0.684327i 0.228056 0.973648i \(-0.426763\pi\)
0.957232 + 0.289321i \(0.0934296\pi\)
\(194\) −4.64008 −0.333139
\(195\) 0 0
\(196\) −6.94293 0.892045i −0.495923 0.0637175i
\(197\) −6.94184 −0.494586 −0.247293 0.968941i \(-0.579541\pi\)
−0.247293 + 0.968941i \(0.579541\pi\)
\(198\) 0 0
\(199\) −3.90645 2.25539i −0.276921 0.159880i 0.355108 0.934825i \(-0.384444\pi\)
−0.632029 + 0.774945i \(0.717777\pi\)
\(200\) 4.95808 + 0.646111i 0.350589 + 0.0456869i
\(201\) 0 0
\(202\) −5.48710 + 9.50393i −0.386071 + 0.668694i
\(203\) −1.09059 + 1.63770i −0.0765442 + 0.114944i
\(204\) 0 0
\(205\) −2.10931 + 3.16130i −0.147320 + 0.220795i
\(206\) −3.33713 + 5.78008i −0.232509 + 0.402717i
\(207\) 0 0
\(208\) 1.67087 + 2.89402i 0.115854 + 0.200664i
\(209\) 2.79977 + 4.84934i 0.193664 + 0.335436i
\(210\) 0 0
\(211\) 3.92397 6.79652i 0.270137 0.467892i −0.698759 0.715357i \(-0.746264\pi\)
0.968897 + 0.247465i \(0.0795976\pi\)
\(212\) 5.88679 0.404306
\(213\) 0 0
\(214\) −13.6554 −0.933464
\(215\) 17.6874 8.73693i 1.20627 0.595854i
\(216\) 0 0
\(217\) 7.33450 11.0140i 0.497898 0.747677i
\(218\) −5.13894 8.90090i −0.348053 0.602845i
\(219\) 0 0
\(220\) −1.49557 + 0.738758i −0.100832 + 0.0498071i
\(221\) −14.0399 + 8.10593i −0.944425 + 0.545264i
\(222\) 0 0
\(223\) 10.7610 + 18.6387i 0.720612 + 1.24814i 0.960755 + 0.277399i \(0.0894725\pi\)
−0.240143 + 0.970738i \(0.577194\pi\)
\(224\) 2.20215 + 1.46647i 0.147137 + 0.0979827i
\(225\) 0 0
\(226\) −10.0641 17.4316i −0.669456 1.15953i
\(227\) 8.02790i 0.532831i −0.963858 0.266415i \(-0.914161\pi\)
0.963858 0.266415i \(-0.0858393\pi\)
\(228\) 0 0
\(229\) 19.2674i 1.27322i 0.771185 + 0.636612i \(0.219665\pi\)
−0.771185 + 0.636612i \(0.780335\pi\)
\(230\) 2.31710 3.47272i 0.152785 0.228984i
\(231\) 0 0
\(232\) 0.644047 0.371841i 0.0422837 0.0244125i
\(233\) 0.572350 + 0.991339i 0.0374959 + 0.0649448i 0.884164 0.467176i \(-0.154729\pi\)
−0.846668 + 0.532121i \(0.821395\pi\)
\(234\) 0 0
\(235\) −21.5948 14.4087i −1.40869 0.939918i
\(236\) 2.33158 4.03841i 0.151773 0.262878i
\(237\) 0 0
\(238\) −7.11434 + 10.6834i −0.461154 + 0.692500i
\(239\) −10.1997 5.88880i −0.659764 0.380915i 0.132423 0.991193i \(-0.457724\pi\)
−0.792187 + 0.610279i \(0.791058\pi\)
\(240\) 0 0
\(241\) 22.9924i 1.48107i 0.672017 + 0.740536i \(0.265428\pi\)
−0.672017 + 0.740536i \(0.734572\pi\)
\(242\) −5.22175 + 9.04434i −0.335667 + 0.581392i
\(243\) 0 0
\(244\) 1.71256i 0.109635i
\(245\) −10.2759 + 11.8070i −0.656503 + 0.754323i
\(246\) 0 0
\(247\) 25.0837i 1.59603i
\(248\) −4.33139 + 2.50073i −0.275044 + 0.158797i
\(249\) 0 0
\(250\) 7.35511 8.42035i 0.465178 0.532550i
\(251\) 1.44964 0.0915002 0.0457501 0.998953i \(-0.485432\pi\)
0.0457501 + 0.998953i \(0.485432\pi\)
\(252\) 0 0
\(253\) 1.39277i 0.0875630i
\(254\) 1.83496 + 1.05941i 0.115135 + 0.0664735i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 7.01785i 0.437762i 0.975752 + 0.218881i \(0.0702406\pi\)
−0.975752 + 0.218881i \(0.929759\pi\)
\(258\) 0 0
\(259\) 9.79366 14.7068i 0.608549 0.913838i
\(260\) 7.45666 + 0.483811i 0.462442 + 0.0300047i
\(261\) 0 0
\(262\) −7.87875 + 13.6464i −0.486751 + 0.843077i
\(263\) −2.64989 −0.163399 −0.0816996 0.996657i \(-0.526035\pi\)
−0.0816996 + 0.996657i \(0.526035\pi\)
\(264\) 0 0
\(265\) 7.30592 10.9497i 0.448799 0.672632i
\(266\) −8.81138 17.7977i −0.540260 1.09125i
\(267\) 0 0
\(268\) 3.92576 + 2.26654i 0.239804 + 0.138451i
\(269\) −11.9338 + 20.6700i −0.727618 + 1.26027i 0.230269 + 0.973127i \(0.426039\pi\)
−0.957887 + 0.287145i \(0.907294\pi\)
\(270\) 0 0
\(271\) −16.9678 + 9.79635i −1.03072 + 0.595086i −0.917190 0.398449i \(-0.869549\pi\)
−0.113528 + 0.993535i \(0.536215\pi\)
\(272\) 4.20138 2.42567i 0.254746 0.147078i
\(273\) 0 0
\(274\) −5.50358 + 9.53248i −0.332483 + 0.575878i
\(275\) −0.481992 + 3.69868i −0.0290652 + 0.223039i
\(276\) 0 0
\(277\) 19.9426i 1.19823i −0.800662 0.599116i \(-0.795519\pi\)
0.800662 0.599116i \(-0.204481\pi\)
\(278\) −14.5065 + 8.37531i −0.870040 + 0.502318i
\(279\) 0 0
\(280\) 5.46071 2.27609i 0.326340 0.136023i
\(281\) 2.03902 1.17723i 0.121638 0.0702277i −0.437947 0.899001i \(-0.644294\pi\)
0.559584 + 0.828773i \(0.310961\pi\)
\(282\) 0 0
\(283\) −4.41483 7.64671i −0.262434 0.454550i 0.704454 0.709750i \(-0.251192\pi\)
−0.966888 + 0.255200i \(0.917859\pi\)
\(284\) 3.61321 2.08609i 0.214404 0.123786i
\(285\) 0 0
\(286\) −2.15891 + 1.24645i −0.127659 + 0.0737041i
\(287\) −0.287103 + 4.48751i −0.0169472 + 0.264889i
\(288\) 0 0
\(289\) 3.26772 + 5.65986i 0.192219 + 0.332933i
\(290\) 0.107669 1.65943i 0.00632255 0.0974452i
\(291\) 0 0
\(292\) 10.2147 0.597771
\(293\) 8.74058 + 5.04638i 0.510630 + 0.294812i 0.733093 0.680129i \(-0.238076\pi\)
−0.222463 + 0.974941i \(0.571410\pi\)
\(294\) 0 0
\(295\) −4.61795 9.34878i −0.268868 0.544307i
\(296\) −5.78366 + 3.33920i −0.336168 + 0.194087i
\(297\) 0 0
\(298\) 18.6650 + 10.7762i 1.08123 + 0.624250i
\(299\) 3.11953 5.40319i 0.180407 0.312474i
\(300\) 0 0
\(301\) 12.9379 19.4284i 0.745726 1.11983i
\(302\) 7.68913 13.3180i 0.442460 0.766363i
\(303\) 0 0
\(304\) 7.50618i 0.430509i
\(305\) 3.18542 + 2.12540i 0.182397 + 0.121700i
\(306\) 0 0
\(307\) −10.7285 −0.612306 −0.306153 0.951982i \(-0.599042\pi\)
−0.306153 + 0.951982i \(0.599042\pi\)
\(308\) −1.09397 + 1.64278i −0.0623348 + 0.0936062i
\(309\) 0 0
\(310\) −0.724105 + 11.1601i −0.0411264 + 0.633854i
\(311\) 2.49511 + 4.32165i 0.141485 + 0.245059i 0.928056 0.372441i \(-0.121479\pi\)
−0.786571 + 0.617500i \(0.788146\pi\)
\(312\) 0 0
\(313\) 10.0534 17.4130i 0.568253 0.984243i −0.428486 0.903548i \(-0.640953\pi\)
0.996739 0.0806942i \(-0.0257137\pi\)
\(314\) 7.04317 0.397469
\(315\) 0 0
\(316\) −6.21613 −0.349685
\(317\) −13.0051 + 22.5255i −0.730440 + 1.26516i 0.226256 + 0.974068i \(0.427351\pi\)
−0.956695 + 0.291091i \(0.905982\pi\)
\(318\) 0 0
\(319\) 0.277389 + 0.480452i 0.0155308 + 0.0269002i
\(320\) −2.23138 0.144779i −0.124738 0.00809337i
\(321\) 0 0
\(322\) 0.315386 4.92958i 0.0175758 0.274715i
\(323\) −36.4150 −2.02619
\(324\) 0 0
\(325\) 10.1541 13.2692i 0.563251 0.736045i
\(326\) 7.37640i 0.408541i
\(327\) 0 0
\(328\) 0.849794 1.47189i 0.0469220 0.0812713i
\(329\) −30.6542 1.96120i −1.69002 0.108125i
\(330\) 0 0
\(331\) −6.69898 + 11.6030i −0.368209 + 0.637757i −0.989286 0.145993i \(-0.953362\pi\)
0.621076 + 0.783750i \(0.286696\pi\)
\(332\) −2.26849 1.30971i −0.124500 0.0718798i
\(333\) 0 0
\(334\) 14.6090 8.43452i 0.799370 0.461516i
\(335\) 9.08800 4.48914i 0.496531 0.245268i
\(336\) 0 0
\(337\) 7.18391 + 4.14763i 0.391333 + 0.225936i 0.682737 0.730664i \(-0.260789\pi\)
−0.291405 + 0.956600i \(0.594123\pi\)
\(338\) −1.83283 −0.0996929
\(339\) 0 0
\(340\) 0.702369 10.8252i 0.0380913 0.587076i
\(341\) −1.86552 3.23118i −0.101024 0.174978i
\(342\) 0 0
\(343\) −3.52815 + 18.1811i −0.190502 + 0.981687i
\(344\) −7.64047 + 4.41123i −0.411946 + 0.237837i
\(345\) 0 0
\(346\) 8.87235 5.12245i 0.476980 0.275385i
\(347\) −8.22042 14.2382i −0.441295 0.764346i 0.556490 0.830854i \(-0.312148\pi\)
−0.997786 + 0.0665078i \(0.978814\pi\)
\(348\) 0 0
\(349\) 26.2420 15.1508i 1.40470 0.811004i 0.409830 0.912162i \(-0.365588\pi\)
0.994870 + 0.101158i \(0.0322547\pi\)
\(350\) 2.54351 12.9819i 0.135956 0.693913i
\(351\) 0 0
\(352\) 0.646046 0.372995i 0.0344344 0.0198807i
\(353\) 12.4615i 0.663257i −0.943410 0.331629i \(-0.892402\pi\)
0.943410 0.331629i \(-0.107598\pi\)
\(354\) 0 0
\(355\) 0.604041 9.30968i 0.0320592 0.494107i
\(356\) 7.58595 13.1393i 0.402055 0.696379i
\(357\) 0 0
\(358\) 16.4577 9.50188i 0.869818 0.502190i
\(359\) 1.01914 0.588399i 0.0537880 0.0310545i −0.472865 0.881135i \(-0.656780\pi\)
0.526653 + 0.850080i \(0.323447\pi\)
\(360\) 0 0
\(361\) 18.6714 32.3398i 0.982705 1.70210i
\(362\) −4.79273 2.76708i −0.251900 0.145435i
\(363\) 0 0
\(364\) 7.92350 3.92280i 0.415304 0.205611i
\(365\) 12.6772 18.9998i 0.663554 0.994493i
\(366\) 0 0
\(367\) 35.4401 1.84996 0.924978 0.380020i \(-0.124083\pi\)
0.924978 + 0.380020i \(0.124083\pi\)
\(368\) −0.933507 + 1.61688i −0.0486624 + 0.0842858i
\(369\) 0 0
\(370\) −0.966888 + 14.9020i −0.0502661 + 0.774718i
\(371\) 0.994427 15.5432i 0.0516281 0.806963i
\(372\) 0 0
\(373\) 25.3686i 1.31353i 0.754093 + 0.656767i \(0.228077\pi\)
−0.754093 + 0.656767i \(0.771923\pi\)
\(374\) 1.80952 + 3.13419i 0.0935682 + 0.162065i
\(375\) 0 0
\(376\) 10.0544 + 5.80494i 0.518519 + 0.299367i
\(377\) 2.48518i 0.127993i
\(378\) 0 0
\(379\) 24.3494 1.25075 0.625373 0.780326i \(-0.284947\pi\)
0.625373 + 0.780326i \(0.284947\pi\)
\(380\) 13.9618 + 9.31570i 0.716225 + 0.477885i
\(381\) 0 0
\(382\) −17.3414 + 10.0121i −0.887263 + 0.512262i
\(383\) 13.1254i 0.670674i 0.942098 + 0.335337i \(0.108850\pi\)
−0.942098 + 0.335337i \(0.891150\pi\)
\(384\) 0 0
\(385\) 1.69794 + 4.07364i 0.0865352 + 0.207612i
\(386\) 19.0139i 0.967784i
\(387\) 0 0
\(388\) 2.32004 4.01843i 0.117782 0.204005i
\(389\) 19.3282i 0.979980i 0.871728 + 0.489990i \(0.163000\pi\)
−0.871728 + 0.489990i \(0.837000\pi\)
\(390\) 0 0
\(391\) −7.84404 4.52876i −0.396690 0.229029i
\(392\) 4.24400 5.56673i 0.214354 0.281162i
\(393\) 0 0
\(394\) 3.47092 6.01181i 0.174862 0.302871i
\(395\) −7.71465 + 11.5622i −0.388166 + 0.581760i
\(396\) 0 0
\(397\) −18.0143 31.2016i −0.904111 1.56597i −0.822107 0.569334i \(-0.807201\pi\)
−0.0820040 0.996632i \(-0.526132\pi\)
\(398\) 3.90645 2.25539i 0.195812 0.113052i
\(399\) 0 0
\(400\) −3.03859 + 3.97077i −0.151929 + 0.198538i
\(401\) 3.15068i 0.157338i 0.996901 + 0.0786688i \(0.0250669\pi\)
−0.996901 + 0.0786688i \(0.974933\pi\)
\(402\) 0 0
\(403\) 16.7135i 0.832561i
\(404\) −5.48710 9.50393i −0.272993 0.472838i
\(405\) 0 0
\(406\) −0.872995 1.76332i −0.0433260 0.0875123i
\(407\) −2.49101 4.31455i −0.123475 0.213864i
\(408\) 0 0
\(409\) −13.8104 + 7.97346i −0.682882 + 0.394262i −0.800940 0.598744i \(-0.795667\pi\)
0.118058 + 0.993007i \(0.462333\pi\)
\(410\) −1.68311 3.40736i −0.0831230 0.168278i
\(411\) 0 0
\(412\) −3.33713 5.78008i −0.164409 0.284764i
\(413\) −10.2690 6.83838i −0.505303 0.336495i
\(414\) 0 0
\(415\) −5.25147 + 2.59403i −0.257785 + 0.127336i
\(416\) −3.34173 −0.163842
\(417\) 0 0
\(418\) −5.59954 −0.273882
\(419\) 17.4629 30.2467i 0.853120 1.47765i −0.0252584 0.999681i \(-0.508041\pi\)
0.878378 0.477966i \(-0.158626\pi\)
\(420\) 0 0
\(421\) 18.6679 + 32.3338i 0.909818 + 1.57585i 0.814315 + 0.580423i \(0.197113\pi\)
0.0955030 + 0.995429i \(0.469554\pi\)
\(422\) 3.92397 + 6.79652i 0.191016 + 0.330849i
\(423\) 0 0
\(424\) −2.94339 + 5.09811i −0.142944 + 0.247586i
\(425\) −19.2635 14.7412i −0.934418 0.715054i
\(426\) 0 0
\(427\) 4.52176 + 0.289294i 0.218823 + 0.0139999i
\(428\) 6.82770 11.8259i 0.330029 0.571627i
\(429\) 0 0
\(430\) −1.27730 + 19.6862i −0.0615970 + 0.949353i
\(431\) −7.75117 4.47514i −0.373361 0.215560i 0.301565 0.953446i \(-0.402491\pi\)
−0.674926 + 0.737886i \(0.735824\pi\)
\(432\) 0 0
\(433\) 12.0060 0.576972 0.288486 0.957484i \(-0.406848\pi\)
0.288486 + 0.957484i \(0.406848\pi\)
\(434\) 5.87113 + 11.8588i 0.281823 + 0.569243i
\(435\) 0 0
\(436\) 10.2779 0.492221
\(437\) 12.1366 7.00708i 0.580573 0.335194i
\(438\) 0 0
\(439\) −28.3831 16.3870i −1.35465 0.782108i −0.365753 0.930712i \(-0.619189\pi\)
−0.988897 + 0.148604i \(0.952522\pi\)
\(440\) 0.108003 1.66458i 0.00514886 0.0793559i
\(441\) 0 0
\(442\) 16.2119i 0.771119i
\(443\) 3.05270 5.28743i 0.145038 0.251213i −0.784349 0.620320i \(-0.787003\pi\)
0.929387 + 0.369106i \(0.120336\pi\)
\(444\) 0 0
\(445\) −15.0248 30.4169i −0.712245 1.44190i
\(446\) −21.5221 −1.01910
\(447\) 0 0
\(448\) −2.37108 + 1.17388i −0.112023 + 0.0554608i
\(449\) 4.39667i 0.207492i 0.994604 + 0.103746i \(0.0330828\pi\)
−0.994604 + 0.103746i \(0.966917\pi\)
\(450\) 0 0
\(451\) 1.09801 + 0.633938i 0.0517034 + 0.0298510i
\(452\) 20.1283 0.946754
\(453\) 0 0
\(454\) 6.95237 + 4.01395i 0.326291 + 0.188384i
\(455\) 2.53705 19.6065i 0.118939 0.919166i
\(456\) 0 0
\(457\) 28.7983 + 16.6267i 1.34713 + 0.777765i 0.987842 0.155462i \(-0.0496866\pi\)
0.359287 + 0.933227i \(0.383020\pi\)
\(458\) −16.6860 9.63368i −0.779687 0.450152i
\(459\) 0 0
\(460\) 1.84892 + 3.74302i 0.0862062 + 0.174519i
\(461\) 6.22235 + 10.7774i 0.289804 + 0.501955i 0.973763 0.227566i \(-0.0730766\pi\)
−0.683959 + 0.729520i \(0.739743\pi\)
\(462\) 0 0
\(463\) 2.79388 + 1.61305i 0.129843 + 0.0749647i 0.563514 0.826106i \(-0.309449\pi\)
−0.433672 + 0.901071i \(0.642782\pi\)
\(464\) 0.743681i 0.0345245i
\(465\) 0 0
\(466\) −1.14470 −0.0530272
\(467\) 36.0480 20.8123i 1.66810 0.963080i 0.699443 0.714688i \(-0.253431\pi\)
0.968660 0.248392i \(-0.0799021\pi\)
\(468\) 0 0
\(469\) 6.64763 9.98253i 0.306959 0.460950i
\(470\) 23.2757 11.4973i 1.07363 0.530332i
\(471\) 0 0
\(472\) 2.33158 + 4.03841i 0.107320 + 0.185883i
\(473\) −3.29073 5.69971i −0.151308 0.262073i
\(474\) 0 0
\(475\) 34.6551 14.4081i 1.59009 0.661087i
\(476\) −5.69490 11.5029i −0.261025 0.527234i
\(477\) 0 0
\(478\) 10.1997 5.88880i 0.466523 0.269347i
\(479\) 23.0103 1.05137 0.525683 0.850681i \(-0.323810\pi\)
0.525683 + 0.850681i \(0.323810\pi\)
\(480\) 0 0
\(481\) 22.3174i 1.01759i
\(482\) −19.9120 11.4962i −0.906967 0.523638i
\(483\) 0 0
\(484\) −5.22175 9.04434i −0.237352 0.411106i
\(485\) −4.59510 9.30252i −0.208653 0.422406i
\(486\) 0 0
\(487\) −9.17108 5.29492i −0.415581 0.239936i 0.277604 0.960696i \(-0.410460\pi\)
−0.693185 + 0.720760i \(0.743793\pi\)
\(488\) −1.48312 0.856279i −0.0671376 0.0387619i
\(489\) 0 0
\(490\) −5.08724 14.8027i −0.229818 0.668718i
\(491\) −2.99490 1.72911i −0.135158 0.0780336i 0.430896 0.902401i \(-0.358197\pi\)
−0.566054 + 0.824368i \(0.691531\pi\)
\(492\) 0 0
\(493\) −3.60785 −0.162489
\(494\) 21.7231 + 12.5418i 0.977368 + 0.564283i
\(495\) 0 0
\(496\) 5.00146i 0.224572i
\(497\) −4.89764 9.89253i −0.219689 0.443741i
\(498\) 0 0
\(499\) −14.4692 −0.647730 −0.323865 0.946103i \(-0.604982\pi\)
−0.323865 + 0.946103i \(0.604982\pi\)
\(500\) 3.61468 + 10.5799i 0.161653 + 0.473147i
\(501\) 0 0
\(502\) −0.724818 + 1.25542i −0.0323502 + 0.0560322i
\(503\) 33.2244i 1.48140i 0.671833 + 0.740702i \(0.265507\pi\)
−0.671833 + 0.740702i \(0.734493\pi\)
\(504\) 0 0
\(505\) −24.4876 1.58883i −1.08968 0.0707019i
\(506\) −1.20618 0.696387i −0.0536211 0.0309582i
\(507\) 0 0
\(508\) −1.83496 + 1.05941i −0.0814131 + 0.0470039i
\(509\) 41.8292 1.85405 0.927023 0.375005i \(-0.122359\pi\)
0.927023 + 0.375005i \(0.122359\pi\)
\(510\) 0 0
\(511\) 1.72552 26.9705i 0.0763327 1.19310i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −6.07764 3.50893i −0.268073 0.154772i
\(515\) −14.8928 0.966290i −0.656255 0.0425798i
\(516\) 0 0
\(517\) −4.33043 + 7.50052i −0.190452 + 0.329872i
\(518\) 7.83965 + 15.8350i 0.344454 + 0.695749i
\(519\) 0 0
\(520\) −4.14732 + 6.21575i −0.181872 + 0.272579i
\(521\) −11.1096 + 19.2425i −0.486722 + 0.843027i −0.999883 0.0152648i \(-0.995141\pi\)
0.513161 + 0.858292i \(0.328474\pi\)
\(522\) 0 0
\(523\) 15.3867 + 26.6505i 0.672813 + 1.16535i 0.977103 + 0.212766i \(0.0682473\pi\)
−0.304291 + 0.952579i \(0.598419\pi\)
\(524\) −7.87875 13.6464i −0.344185 0.596146i
\(525\) 0 0
\(526\) 1.32494 2.29487i 0.0577703 0.100061i
\(527\) 24.2638 1.05695
\(528\) 0 0
\(529\) −19.5143 −0.848446
\(530\) 5.82972 + 11.8019i 0.253227 + 0.512643i
\(531\) 0 0
\(532\) 19.8190 + 1.26798i 0.859262 + 0.0549741i
\(533\) −2.83978 4.91865i −0.123005 0.213050i
\(534\) 0 0
\(535\) −13.5230 27.3766i −0.584651 1.18359i
\(536\) −3.92576 + 2.26654i −0.169567 + 0.0978996i
\(537\) 0 0
\(538\) −11.9338 20.6700i −0.514504 0.891147i
\(539\) 4.15272 + 3.16598i 0.178871 + 0.136368i
\(540\) 0 0
\(541\) 2.61686 + 4.53253i 0.112508 + 0.194869i 0.916781 0.399391i \(-0.130778\pi\)
−0.804273 + 0.594260i \(0.797445\pi\)
\(542\) 19.5927i 0.841578i
\(543\) 0 0
\(544\) 4.85133i 0.207999i
\(545\) 12.7556 19.1172i 0.546388 0.818893i
\(546\) 0 0
\(547\) 3.57961 2.06669i 0.153053 0.0883652i −0.421518 0.906820i \(-0.638502\pi\)
0.574571 + 0.818455i \(0.305169\pi\)
\(548\) −5.50358 9.53248i −0.235101 0.407207i
\(549\) 0 0
\(550\) −2.96215 2.26676i −0.126307 0.0966548i
\(551\) 2.79110 4.83433i 0.118905 0.205950i
\(552\) 0 0
\(553\) −1.05006 + 16.4128i −0.0446532 + 0.697942i
\(554\) 17.2708 + 9.97128i 0.733765 + 0.423639i
\(555\) 0 0
\(556\) 16.7506i 0.710385i
\(557\) −6.66281 + 11.5403i −0.282312 + 0.488979i −0.971954 0.235172i \(-0.924435\pi\)
0.689642 + 0.724151i \(0.257768\pi\)
\(558\) 0 0
\(559\) 29.4823i 1.24697i
\(560\) −0.759202 + 5.86716i −0.0320822 + 0.247933i
\(561\) 0 0
\(562\) 2.35446i 0.0993170i
\(563\) 8.13242 4.69526i 0.342741 0.197881i −0.318743 0.947841i \(-0.603261\pi\)
0.661483 + 0.749960i \(0.269927\pi\)
\(564\) 0 0
\(565\) 24.9806 37.4394i 1.05094 1.57509i
\(566\) 8.82966 0.371138
\(567\) 0 0
\(568\) 4.17217i 0.175060i
\(569\) −30.0367 17.3417i −1.25921 0.727002i −0.286285 0.958144i \(-0.592420\pi\)
−0.972920 + 0.231142i \(0.925754\pi\)
\(570\) 0 0
\(571\) −5.74730 9.95461i −0.240517 0.416588i 0.720345 0.693616i \(-0.243984\pi\)
−0.960862 + 0.277029i \(0.910650\pi\)
\(572\) 2.49290i 0.104233i
\(573\) 0 0
\(574\) −3.74275 2.49240i −0.156219 0.104031i
\(575\) 9.25680 + 1.20630i 0.386035 + 0.0503061i
\(576\) 0 0
\(577\) 8.61149 14.9155i 0.358501 0.620942i −0.629209 0.777236i \(-0.716621\pi\)
0.987711 + 0.156293i \(0.0499546\pi\)
\(578\) −6.53545 −0.271839
\(579\) 0 0
\(580\) 1.38328 + 0.922960i 0.0574374 + 0.0383238i
\(581\) −3.84131 + 5.76837i −0.159364 + 0.239312i
\(582\) 0 0
\(583\) −3.80314 2.19574i −0.157510 0.0909384i
\(584\) −5.10736 + 8.84620i −0.211344 + 0.366059i
\(585\) 0 0
\(586\) −8.74058 + 5.04638i −0.361070 + 0.208464i
\(587\) 18.3983 10.6223i 0.759380 0.438428i −0.0696932 0.997568i \(-0.522202\pi\)
0.829073 + 0.559140i \(0.188869\pi\)
\(588\) 0 0
\(589\) −18.7710 + 32.5122i −0.773444 + 1.33964i
\(590\) 10.4053 + 0.675125i 0.428378 + 0.0277945i
\(591\) 0 0
\(592\) 6.67839i 0.274480i
\(593\) 5.35047 3.08910i 0.219718 0.126854i −0.386102 0.922456i \(-0.626179\pi\)
0.605819 + 0.795602i \(0.292845\pi\)
\(594\) 0 0
\(595\) −28.4636 3.68315i −1.16689 0.150994i
\(596\) −18.6650 + 10.7762i −0.764547 + 0.441412i
\(597\) 0 0
\(598\) 3.11953 + 5.40319i 0.127567 + 0.220953i
\(599\) −17.5461 + 10.1302i −0.716914 + 0.413911i −0.813616 0.581403i \(-0.802504\pi\)
0.0967017 + 0.995313i \(0.469171\pi\)
\(600\) 0 0
\(601\) 1.81095 1.04555i 0.0738700 0.0426489i −0.462610 0.886562i \(-0.653087\pi\)
0.536480 + 0.843913i \(0.319754\pi\)
\(602\) 10.3565 + 20.9187i 0.422100 + 0.852583i
\(603\) 0 0
\(604\) 7.68913 + 13.3180i 0.312866 + 0.541900i
\(605\) −23.3034 1.51200i −0.947417 0.0614713i
\(606\) 0 0
\(607\) −13.4794 −0.547111 −0.273555 0.961856i \(-0.588200\pi\)
−0.273555 + 0.961856i \(0.588200\pi\)
\(608\) −6.50055 3.75309i −0.263632 0.152208i
\(609\) 0 0
\(610\) −3.43336 + 1.69596i −0.139013 + 0.0686672i
\(611\) 33.5993 19.3985i 1.35928 0.784781i
\(612\) 0 0
\(613\) 9.41875 + 5.43792i 0.380420 + 0.219636i 0.678001 0.735061i \(-0.262847\pi\)
−0.297581 + 0.954697i \(0.596180\pi\)
\(614\) 5.36423 9.29112i 0.216483 0.374959i
\(615\) 0 0
\(616\) −0.875705 1.76880i −0.0352832 0.0712669i
\(617\) −0.714583 + 1.23769i −0.0287680 + 0.0498277i −0.880051 0.474879i \(-0.842492\pi\)
0.851283 + 0.524707i \(0.175825\pi\)
\(618\) 0 0
\(619\) 22.2859i 0.895747i −0.894097 0.447873i \(-0.852182\pi\)
0.894097 0.447873i \(-0.147818\pi\)
\(620\) −9.30292 6.20717i −0.373614 0.249286i
\(621\) 0 0
\(622\) −4.99022 −0.200089
\(623\) −33.4108 22.2491i −1.33858 0.891393i
\(624\) 0 0
\(625\) 24.1651 + 6.40694i 0.966603 + 0.256278i
\(626\) 10.0534 + 17.4130i 0.401815 + 0.695965i
\(627\) 0 0
\(628\) −3.52158 + 6.09956i −0.140526 + 0.243399i
\(629\) 32.3991 1.29184
\(630\) 0 0
\(631\) 13.9478 0.555255 0.277627 0.960689i \(-0.410452\pi\)
0.277627 + 0.960689i \(0.410452\pi\)
\(632\) 3.10806 5.38333i 0.123632 0.214137i
\(633\) 0 0
\(634\) −13.0051 22.5255i −0.516499 0.894602i
\(635\) −0.306761 + 4.72790i −0.0121734 + 0.187621i
\(636\) 0 0
\(637\) −9.01910 21.5835i −0.357350 0.855169i
\(638\) −0.554779 −0.0219639
\(639\) 0 0
\(640\) 1.24107 1.86004i 0.0490576 0.0735245i
\(641\) 8.71120i 0.344072i 0.985091 + 0.172036i \(0.0550345\pi\)
−0.985091 + 0.172036i \(0.944965\pi\)
\(642\) 0 0
\(643\) 21.6235 37.4529i 0.852746 1.47700i −0.0259739 0.999663i \(-0.508269\pi\)
0.878720 0.477337i \(-0.158398\pi\)
\(644\) 4.11145 + 2.73792i 0.162014 + 0.107889i
\(645\) 0 0
\(646\) 18.2075 31.5363i 0.716365 1.24078i
\(647\) −31.0729 17.9400i −1.22160 0.705293i −0.256344 0.966586i \(-0.582518\pi\)
−0.965260 + 0.261293i \(0.915851\pi\)
\(648\) 0 0
\(649\) −3.01262 + 1.73933i −0.118256 + 0.0682748i
\(650\) 6.41442 + 15.4284i 0.251594 + 0.605150i
\(651\) 0 0
\(652\) −6.38815 3.68820i −0.250179 0.144441i
\(653\) 3.88543 0.152049 0.0760243 0.997106i \(-0.475777\pi\)
0.0760243 + 0.997106i \(0.475777\pi\)
\(654\) 0 0
\(655\) −35.1609 2.28135i −1.37385 0.0891397i
\(656\) 0.849794 + 1.47189i 0.0331789 + 0.0574675i
\(657\) 0 0
\(658\) 17.0255 25.5667i 0.663725 0.996693i
\(659\) 12.1007 6.98632i 0.471375 0.272149i −0.245440 0.969412i \(-0.578932\pi\)
0.716815 + 0.697263i \(0.245599\pi\)
\(660\) 0 0
\(661\) −38.7265 + 22.3587i −1.50628 + 0.869654i −0.506311 + 0.862351i \(0.668991\pi\)
−0.999973 + 0.00730324i \(0.997675\pi\)
\(662\) −6.69898 11.6030i −0.260363 0.450962i
\(663\) 0 0
\(664\) 2.26849 1.30971i 0.0880345 0.0508267i
\(665\) 26.9552 35.2904i 1.04528 1.36850i
\(666\) 0 0
\(667\) 1.20244 0.694232i 0.0465589 0.0268808i
\(668\) 16.8690i 0.652683i
\(669\) 0 0
\(670\) −0.656293 + 10.1150i −0.0253548 + 0.390777i
\(671\) 0.638775 1.10639i 0.0246596 0.0427118i
\(672\) 0 0
\(673\) −32.2357 + 18.6113i −1.24259 + 0.717412i −0.969622 0.244610i \(-0.921340\pi\)
−0.272973 + 0.962022i \(0.588007\pi\)
\(674\) −7.18391 + 4.14763i −0.276714 + 0.159761i
\(675\) 0 0
\(676\) 0.916415 1.58728i 0.0352467 0.0610492i
\(677\) 10.8972 + 6.29151i 0.418814 + 0.241803i 0.694570 0.719425i \(-0.255595\pi\)
−0.275756 + 0.961228i \(0.588928\pi\)
\(678\) 0 0
\(679\) −10.2182 6.80454i −0.392137 0.261134i
\(680\) 9.02367 + 6.02085i 0.346042 + 0.230889i
\(681\) 0 0
\(682\) 3.73104 0.142869
\(683\) −8.98544 + 15.5632i −0.343818 + 0.595511i −0.985138 0.171763i \(-0.945054\pi\)
0.641320 + 0.767274i \(0.278387\pi\)
\(684\) 0 0
\(685\) −24.5611 1.59360i −0.938432 0.0608884i
\(686\) −13.9812 12.1460i −0.533805 0.463737i
\(687\) 0 0
\(688\) 8.82245i 0.336353i
\(689\) 9.83603 + 17.0365i 0.374723 + 0.649039i
\(690\) 0 0
\(691\) 38.3130 + 22.1200i 1.45750 + 0.841485i 0.998888 0.0471537i \(-0.0150151\pi\)
0.458608 + 0.888639i \(0.348348\pi\)
\(692\) 10.2449i 0.389453i
\(693\) 0 0
\(694\) 16.4408 0.624086
\(695\) −31.1568 20.7887i −1.18185 0.788560i
\(696\) 0 0
\(697\) −7.14061 + 4.12264i −0.270470 + 0.156156i
\(698\) 30.3016i 1.14693i
\(699\) 0 0
\(700\) 9.97093 + 8.69371i 0.376866 + 0.328591i
\(701\) 29.6654i 1.12045i 0.828342 + 0.560223i \(0.189284\pi\)
−0.828342 + 0.560223i \(0.810716\pi\)
\(702\) 0 0
\(703\) −25.0646 + 43.4132i −0.945330 + 1.63736i
\(704\) 0.745990i 0.0281156i
\(705\) 0 0
\(706\) 10.7919 + 6.23074i 0.406160 + 0.234497i
\(707\) −26.0206 + 12.8824i −0.978607 + 0.484493i
\(708\) 0 0
\(709\) −18.3682 + 31.8146i −0.689831 + 1.19482i 0.282062 + 0.959396i \(0.408982\pi\)
−0.971892 + 0.235425i \(0.924352\pi\)
\(710\) 7.76040 + 5.17796i 0.291243 + 0.194325i
\(711\) 0 0
\(712\) 7.58595 + 13.1393i 0.284296 + 0.492414i
\(713\) −8.08678 + 4.66890i −0.302852 + 0.174852i
\(714\) 0 0
\(715\) −4.63689 3.09386i −0.173410 0.115704i
\(716\) 19.0038i 0.710204i
\(717\) 0 0
\(718\) 1.17680i 0.0439177i
\(719\) −15.0842 26.1266i −0.562546 0.974358i −0.997273 0.0737961i \(-0.976489\pi\)
0.434727 0.900562i \(-0.356845\pi\)
\(720\) 0 0
\(721\) −15.8252 + 7.83480i −0.589360 + 0.291783i
\(722\) 18.6714 + 32.3398i 0.694878 + 1.20356i
\(723\) 0 0
\(724\) 4.79273 2.76708i 0.178120 0.102838i
\(725\) 3.43349 1.42749i 0.127516 0.0530156i
\(726\) 0 0
\(727\) −2.77440 4.80540i −0.102897 0.178222i 0.809980 0.586457i \(-0.199478\pi\)
−0.912877 + 0.408235i \(0.866144\pi\)
\(728\) −0.564503 + 8.82335i −0.0209219 + 0.327015i
\(729\) 0 0
\(730\) 10.1157 + 20.4786i 0.374399 + 0.757949i
\(731\) 42.8007 1.58304
\(732\) 0 0
\(733\) −20.2714 −0.748740 −0.374370 0.927279i \(-0.622141\pi\)
−0.374370 + 0.927279i \(0.622141\pi\)
\(734\) −17.7200 + 30.6920i −0.654059 + 1.13286i
\(735\) 0 0
\(736\) −0.933507 1.61688i −0.0344095 0.0595991i
\(737\) −1.69082 2.92858i −0.0622820 0.107876i
\(738\) 0 0
\(739\) 24.5774 42.5693i 0.904095 1.56594i 0.0819667 0.996635i \(-0.473880\pi\)
0.822128 0.569303i \(-0.192787\pi\)
\(740\) −12.4221 8.28835i −0.456644 0.304686i
\(741\) 0 0
\(742\) 12.9636 + 8.63280i 0.475908 + 0.316920i
\(743\) −13.5537 + 23.4757i −0.497237 + 0.861240i −0.999995 0.00318755i \(-0.998985\pi\)
0.502758 + 0.864427i \(0.332319\pi\)
\(744\) 0 0
\(745\) −3.12033 + 48.0916i −0.114320 + 1.76194i
\(746\) −21.9698 12.6843i −0.804372 0.464405i
\(747\) 0 0
\(748\) −3.61905 −0.132325
\(749\) −30.0712 20.0252i −1.09878 0.731706i
\(750\) 0 0
\(751\) 41.2806 1.50635 0.753174 0.657821i \(-0.228522\pi\)
0.753174 + 0.657821i \(0.228522\pi\)
\(752\) −10.0544 + 5.80494i −0.366648 + 0.211684i
\(753\) 0 0
\(754\) 2.15223 + 1.24259i 0.0783797 + 0.0452525i
\(755\) 34.3147 + 2.22644i 1.24884 + 0.0810285i
\(756\) 0 0
\(757\) 37.6630i 1.36888i 0.729067 + 0.684442i \(0.239954\pi\)
−0.729067 + 0.684442i \(0.760046\pi\)
\(758\) −12.1747 + 21.0872i −0.442206 + 0.765923i
\(759\) 0 0
\(760\) −15.0485 + 7.43342i −0.545868 + 0.269638i
\(761\) −20.1064 −0.728855 −0.364427 0.931232i \(-0.618735\pi\)
−0.364427 + 0.931232i \(0.618735\pi\)
\(762\) 0 0
\(763\) 1.73619 27.1372i 0.0628544 0.982433i
\(764\) 20.0241i 0.724447i
\(765\) 0 0
\(766\) −11.3669 6.56268i −0.410702 0.237119i
\(767\) 15.5830 0.562670
\(768\) 0 0
\(769\) −24.3791 14.0753i −0.879134 0.507568i −0.00876117 0.999962i \(-0.502789\pi\)
−0.870373 + 0.492393i \(0.836122\pi\)
\(770\) −4.37685 0.566357i −0.157731 0.0204101i
\(771\) 0 0
\(772\) −16.4666 9.50697i −0.592644 0.342163i
\(773\) 37.3009 + 21.5357i 1.34162 + 0.774585i 0.987045 0.160442i \(-0.0512920\pi\)
0.354576 + 0.935027i \(0.384625\pi\)
\(774\) 0 0
\(775\) −23.0911 + 9.60026i −0.829458 + 0.344852i
\(776\) 2.32004 + 4.01843i 0.0832846 + 0.144253i
\(777\) 0 0
\(778\) −16.7387 9.66411i −0.600113 0.346475i
\(779\) 12.7574i 0.457082i
\(780\) 0 0
\(781\) −3.11240 −0.111370
\(782\) 7.84404 4.52876i 0.280502 0.161948i
\(783\) 0 0
\(784\) 2.69893 + 6.45877i 0.0963904 + 0.230671i
\(785\) 6.97489 + 14.1203i 0.248945 + 0.503974i
\(786\) 0 0
\(787\) 17.6587 + 30.5858i 0.629466 + 1.09027i 0.987659 + 0.156620i \(0.0500596\pi\)
−0.358193 + 0.933648i \(0.616607\pi\)
\(788\) 3.47092 + 6.01181i 0.123646 + 0.214162i
\(789\) 0 0
\(790\) −6.15587 12.4622i −0.219016 0.443385i
\(791\) 3.40017 53.1457i 0.120896 1.88964i
\(792\) 0 0
\(793\) −4.95618 + 2.86145i −0.175999 + 0.101613i
\(794\) 36.0286 1.27861
\(795\) 0 0
\(796\) 4.51077i 0.159880i
\(797\) 14.2561 + 8.23077i 0.504978 + 0.291549i 0.730767 0.682627i \(-0.239163\pi\)
−0.225789 + 0.974176i \(0.572496\pi\)
\(798\) 0 0
\(799\) −28.1617 48.7775i −0.996289 1.72562i
\(800\) −1.91949 4.61688i −0.0678642 0.163231i
\(801\) 0 0
\(802\) −2.72857 1.57534i −0.0963492 0.0556272i
\(803\) −6.59918 3.81004i −0.232880 0.134453i
\(804\) 0 0
\(805\) 10.1952 4.24950i 0.359335 0.149775i
\(806\) −14.4744 8.35677i −0.509838 0.294355i
\(807\) 0 0
\(808\) 10.9742 0.386071
\(809\) −21.2722 12.2815i −0.747890 0.431795i 0.0770407 0.997028i \(-0.475453\pi\)
−0.824931 + 0.565233i \(0.808786\pi\)
\(810\) 0 0
\(811\) 7.28238i 0.255719i 0.991792 + 0.127860i \(0.0408107\pi\)
−0.991792 + 0.127860i \(0.959189\pi\)
\(812\) 1.96358 + 0.125627i 0.0689082 + 0.00440863i
\(813\) 0 0
\(814\) 4.98201 0.174619
\(815\) −14.7883 + 7.30490i −0.518013 + 0.255879i
\(816\) 0 0
\(817\) −33.1115 + 57.3508i −1.15842 + 2.00645i
\(818\) 15.9469i 0.557571i
\(819\) 0 0
\(820\) 3.79242 + 0.246064i 0.132437 + 0.00859293i
\(821\) −5.79033 3.34305i −0.202084 0.116673i 0.395543 0.918447i \(-0.370556\pi\)
−0.597627 + 0.801774i \(0.703890\pi\)
\(822\) 0 0
\(823\) 9.87790 5.70301i 0.344322 0.198794i −0.317860 0.948138i \(-0.602964\pi\)
0.662182 + 0.749343i \(0.269631\pi\)
\(824\) 6.67426 0.232509
\(825\) 0 0
\(826\) 11.0567 5.47400i 0.384712 0.190465i
\(827\) 9.16990 0.318868 0.159434 0.987209i \(-0.449033\pi\)
0.159434 + 0.987209i \(0.449033\pi\)
\(828\) 0 0
\(829\) 13.6953 + 7.90700i 0.475659 + 0.274622i 0.718605 0.695418i \(-0.244781\pi\)
−0.242947 + 0.970040i \(0.578114\pi\)
\(830\) 0.379237 5.84493i 0.0131635 0.202880i
\(831\) 0 0
\(832\) 1.67087 2.89402i 0.0579268 0.100332i
\(833\) −31.3337 + 13.0934i −1.08565 + 0.453660i
\(834\) 0 0
\(835\) 31.3771 + 20.9357i 1.08585 + 0.724508i
\(836\) 2.79977 4.84934i 0.0968320 0.167718i
\(837\) 0 0
\(838\) 17.4629 + 30.2467i 0.603247 + 1.04485i
\(839\) −14.0897 24.4040i −0.486429 0.842520i 0.513449 0.858120i \(-0.328367\pi\)
−0.999878 + 0.0156002i \(0.995034\pi\)
\(840\) 0 0
\(841\) −14.2235 + 24.6358i −0.490464 + 0.849509i
\(842\) −37.3358 −1.28668
\(843\) 0 0
\(844\) −7.84794 −0.270137
\(845\) −1.81506 3.67449i −0.0624401 0.126406i
\(846\) 0 0
\(847\) −24.7623 + 12.2594i −0.850844 + 0.421240i
\(848\) −2.94339 5.09811i −0.101077 0.175070i
\(849\) 0 0
\(850\) 22.3980 9.31209i 0.768246 0.319402i
\(851\) −10.7982 + 6.23433i −0.370157 + 0.213710i
\(852\) 0 0
\(853\) 4.37925 + 7.58508i 0.149943 + 0.259708i 0.931206 0.364493i \(-0.118758\pi\)
−0.781263 + 0.624201i \(0.785424\pi\)
\(854\) −2.51141 + 3.77131i −0.0859388 + 0.129051i
\(855\) 0 0
\(856\) 6.82770 + 11.8259i 0.233366 + 0.404202i
\(857\) 31.9068i 1.08992i 0.838464 + 0.544958i \(0.183454\pi\)
−0.838464 + 0.544958i \(0.816546\pi\)
\(858\) 0 0
\(859\) 45.7568i 1.56120i −0.625030 0.780601i \(-0.714913\pi\)
0.625030 0.780601i \(-0.285087\pi\)
\(860\) −16.4101 10.9493i −0.559580 0.373367i
\(861\) 0 0
\(862\) 7.75117 4.47514i 0.264006 0.152424i
\(863\) −21.5708 37.3618i −0.734280 1.27181i −0.955039 0.296481i \(-0.904187\pi\)
0.220759 0.975328i \(-0.429147\pi\)
\(864\) 0 0
\(865\) 19.0559 + 12.7146i 0.647921 + 0.432311i
\(866\) −6.00301 + 10.3975i −0.203991 + 0.353322i
\(867\) 0 0
\(868\) −13.2056 0.844874i −0.448228 0.0286769i
\(869\) 4.01591 + 2.31859i 0.136230 + 0.0786526i
\(870\) 0 0
\(871\) 15.1483i 0.513282i
\(872\) −5.13894 + 8.90090i −0.174026 + 0.301422i
\(873\) 0 0
\(874\) 14.0142i 0.474036i
\(875\) 28.5453 7.75682i 0.965006 0.262228i
\(876\) 0 0
\(877\) 18.3979i 0.621255i −0.950532 0.310627i \(-0.899461\pi\)
0.950532 0.310627i \(-0.100539\pi\)
\(878\) 28.3831 16.3870i 0.957882 0.553034i
\(879\) 0 0
\(880\) 1.38757 + 0.925826i 0.0467750 + 0.0312096i
\(881\) −8.81308 −0.296920 −0.148460 0.988918i \(-0.547432\pi\)
−0.148460 + 0.988918i \(0.547432\pi\)
\(882\) 0 0
\(883\) 2.02023i 0.0679863i 0.999422 + 0.0339931i \(0.0108224\pi\)
−0.999422 + 0.0339931i \(0.989178\pi\)
\(884\) 14.0399 + 8.10593i 0.472212 + 0.272632i
\(885\) 0 0
\(886\) 3.05270 + 5.28743i 0.102557 + 0.177635i
\(887\) 33.2724i 1.11718i −0.829445 0.558589i \(-0.811343\pi\)
0.829445 0.558589i \(-0.188657\pi\)
\(888\) 0 0
\(889\) 2.48725 + 5.02390i 0.0834198 + 0.168496i
\(890\) 33.8542 + 2.19657i 1.13480 + 0.0736291i
\(891\) 0 0
\(892\) 10.7610 18.6387i 0.360306 0.624068i
\(893\) 87.1459 2.91623
\(894\) 0 0
\(895\) 35.3477 + 23.5850i 1.18154 + 0.788359i
\(896\) 0.168925 2.64035i 0.00564340 0.0882080i
\(897\) 0 0
\(898\) −3.80762 2.19833i −0.127062 0.0733593i
\(899\) −1.85975 + 3.22118i −0.0620261 + 0.107432i
\(900\) 0 0
\(901\) 24.7326 14.2794i 0.823963 0.475715i
\(902\) −1.09801 + 0.633938i −0.0365598 + 0.0211078i
\(903\) 0 0
\(904\) −10.0641 + 17.4316i −0.334728 + 0.579766i
\(905\) 0.801228 12.3488i 0.0266337 0.410488i
\(906\) 0 0
\(907\) 11.1534i 0.370344i 0.982706 + 0.185172i \(0.0592842\pi\)
−0.982706 + 0.185172i \(0.940716\pi\)
\(908\) −6.95237 + 4.01395i −0.230722 + 0.133208i
\(909\) 0 0
\(910\) 15.7112 + 12.0004i 0.520821 + 0.397809i
\(911\) −33.9893 + 19.6237i −1.12612 + 0.650163i −0.942955 0.332920i \(-0.891966\pi\)
−0.183160 + 0.983083i \(0.558633\pi\)
\(912\) 0 0
\(913\) 0.977033 + 1.69227i 0.0323351 + 0.0560060i
\(914\) −28.7983 + 16.6267i −0.952564 + 0.549963i
\(915\) 0 0
\(916\) 16.6860 9.63368i 0.551322 0.318306i
\(917\) −37.3622 + 18.4975i −1.23381 + 0.610840i
\(918\) 0 0
\(919\) −13.5598 23.4863i −0.447298 0.774743i 0.550911 0.834564i \(-0.314280\pi\)
−0.998209 + 0.0598209i \(0.980947\pi\)
\(920\) −4.16601 0.270304i −0.137349 0.00891165i
\(921\) 0 0
\(922\) −12.4447 −0.409844
\(923\) 12.0744 + 6.97114i 0.397432 + 0.229458i
\(924\) 0 0
\(925\) −30.8333 + 12.8191i −1.01379 + 0.421490i
\(926\) −2.79388 + 1.61305i −0.0918126 + 0.0530080i
\(927\) 0 0
\(928\) −0.644047 0.371841i −0.0211419 0.0122063i
\(929\) −22.0537 + 38.1982i −0.723559 + 1.25324i 0.236005 + 0.971752i \(0.424162\pi\)
−0.959564 + 0.281490i \(0.909171\pi\)
\(930\) 0 0
\(931\) 6.69585 52.1149i 0.219448 1.70800i
\(932\) 0.572350 0.991339i 0.0187479 0.0324724i
\(933\) 0 0
\(934\) 41.6247i 1.36200i
\(935\) −4.49149 + 6.73157i −0.146887 + 0.220146i
\(936\) 0 0
\(937\) 31.2098 1.01958 0.509789 0.860299i \(-0.329723\pi\)
0.509789 + 0.860299i \(0.329723\pi\)
\(938\) 5.32131 + 10.7483i 0.173747 + 0.350944i
\(939\) 0 0
\(940\) −1.68086 + 25.9060i −0.0548237 + 0.844961i
\(941\) −3.25513 5.63804i −0.106114 0.183795i 0.808079 0.589074i \(-0.200508\pi\)
−0.914193 + 0.405280i \(0.867174\pi\)
\(942\) 0 0
\(943\) 1.58658 2.74803i 0.0516661 0.0894883i
\(944\) −4.66316 −0.151773
\(945\) 0 0
\(946\) 6.58146 0.213982
\(947\) −16.7485 + 29.0092i −0.544252 + 0.942672i 0.454402 + 0.890797i \(0.349853\pi\)
−0.998654 + 0.0518752i \(0.983480\pi\)
\(948\) 0 0
\(949\) 17.0674 + 29.5616i 0.554032 + 0.959611i
\(950\) −4.84983 + 37.2163i −0.157349 + 1.20745i
\(951\) 0 0
\(952\) 12.8092 + 0.819513i 0.415150 + 0.0265606i
\(953\) 9.08698 0.294356 0.147178 0.989110i \(-0.452981\pi\)
0.147178 + 0.989110i \(0.452981\pi\)
\(954\) 0 0
\(955\) −37.2457 24.8513i −1.20524 0.804171i
\(956\) 11.7776i 0.380915i
\(957\) 0 0
\(958\) −11.5051 + 19.9275i −0.371714 + 0.643827i
\(959\) −26.0988 + 12.9211i −0.842774 + 0.417245i
\(960\) 0 0
\(961\) −2.99268 + 5.18347i −0.0965380 + 0.167209i
\(962\) −19.3274 11.1587i −0.623141 0.359771i
\(963\) 0 0
\(964\) 19.9120 11.4962i 0.641323 0.370268i
\(965\) −38.1195 + 18.8296i −1.22711 + 0.606147i
\(966\) 0 0
\(967\) −0.584986 0.337742i −0.0188119 0.0108610i 0.490565 0.871405i \(-0.336791\pi\)
−0.509376 + 0.860544i \(0.670124\pi\)
\(968\) 10.4435 0.335667
\(969\) 0 0
\(970\) 10.3538 + 0.671785i 0.332440 + 0.0215697i
\(971\) −3.90049 6.75585i −0.125173 0.216805i 0.796628 0.604470i \(-0.206615\pi\)
−0.921800 + 0.387665i \(0.873282\pi\)
\(972\) 0 0
\(973\) −44.2276 2.82960i −1.41787 0.0907129i
\(974\) 9.17108 5.29492i 0.293860 0.169660i
\(975\) 0 0
\(976\) 1.48312 0.856279i 0.0474734 0.0274088i
\(977\) −22.7250 39.3609i −0.727037 1.25927i −0.958130 0.286334i \(-0.907563\pi\)
0.231093 0.972932i \(-0.425770\pi\)
\(978\) 0 0
\(979\) −9.80175 + 5.65904i −0.313265 + 0.180864i
\(980\) 15.3631 + 2.99567i 0.490757 + 0.0956933i
\(981\) 0 0
\(982\) 2.99490 1.72911i 0.0955713 0.0551781i
\(983\) 59.2020i 1.88825i 0.329587 + 0.944125i \(0.393091\pi\)
−0.329587 + 0.944125i \(0.606909\pi\)
\(984\) 0 0
\(985\) 15.4899 + 1.00503i 0.493548 + 0.0320229i
\(986\) 1.80392 3.12449i 0.0574486 0.0995039i
\(987\) 0 0
\(988\) −21.7231 + 12.5418i −0.691103 + 0.399009i
\(989\) −14.2649 + 8.23582i −0.453596 + 0.261884i
\(990\) 0 0
\(991\) −3.52175 + 6.09985i −0.111872 + 0.193768i −0.916525 0.399977i \(-0.869018\pi\)
0.804653 + 0.593745i \(0.202351\pi\)
\(992\) 4.33139 + 2.50073i 0.137522 + 0.0793983i
\(993\) 0 0
\(994\) 11.0160 + 0.704785i 0.349406 + 0.0223544i
\(995\) 8.39022 + 5.59819i 0.265988 + 0.177474i
\(996\) 0 0
\(997\) −43.8171 −1.38770 −0.693851 0.720119i \(-0.744087\pi\)
−0.693851 + 0.720119i \(0.744087\pi\)
\(998\) 7.23460 12.5307i 0.229007 0.396652i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1890.2.r.a.1529.1 48
3.2 odd 2 630.2.r.b.59.21 yes 48
5.4 even 2 1890.2.r.b.1529.1 48
7.5 odd 6 1890.2.bi.b.719.9 48
9.2 odd 6 1890.2.bi.a.899.7 48
9.7 even 3 630.2.bi.b.479.5 yes 48
15.14 odd 2 630.2.r.a.59.4 48
21.5 even 6 630.2.bi.a.509.20 yes 48
35.19 odd 6 1890.2.bi.a.719.7 48
45.29 odd 6 1890.2.bi.b.899.9 48
45.34 even 6 630.2.bi.a.479.20 yes 48
63.47 even 6 1890.2.r.b.89.1 48
63.61 odd 6 630.2.r.a.299.4 yes 48
105.89 even 6 630.2.bi.b.509.5 yes 48
315.124 odd 6 630.2.r.b.299.21 yes 48
315.299 even 6 inner 1890.2.r.a.89.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.r.a.59.4 48 15.14 odd 2
630.2.r.a.299.4 yes 48 63.61 odd 6
630.2.r.b.59.21 yes 48 3.2 odd 2
630.2.r.b.299.21 yes 48 315.124 odd 6
630.2.bi.a.479.20 yes 48 45.34 even 6
630.2.bi.a.509.20 yes 48 21.5 even 6
630.2.bi.b.479.5 yes 48 9.7 even 3
630.2.bi.b.509.5 yes 48 105.89 even 6
1890.2.r.a.89.1 48 315.299 even 6 inner
1890.2.r.a.1529.1 48 1.1 even 1 trivial
1890.2.r.b.89.1 48 63.47 even 6
1890.2.r.b.1529.1 48 5.4 even 2
1890.2.bi.a.719.7 48 35.19 odd 6
1890.2.bi.a.899.7 48 9.2 odd 6
1890.2.bi.b.719.9 48 7.5 odd 6
1890.2.bi.b.899.9 48 45.29 odd 6