Properties

Label 1881.2.a.g.1.3
Level $1881$
Weight $2$
Character 1881.1
Self dual yes
Analytic conductor $15.020$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1881,2,Mod(1,1881)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1881.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1881, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1881.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,2,0,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.0198606202\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 627)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.24698\) of defining polynomial
Character \(\chi\) \(=\) 1881.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.24698 q^{2} +3.04892 q^{4} +2.44504 q^{5} -0.911854 q^{7} +2.35690 q^{8} +5.49396 q^{10} +1.00000 q^{11} +2.85086 q^{13} -2.04892 q^{14} -0.801938 q^{16} -1.85086 q^{17} +1.00000 q^{19} +7.45473 q^{20} +2.24698 q^{22} +7.49396 q^{23} +0.978230 q^{25} +6.40581 q^{26} -2.78017 q^{28} +9.78986 q^{29} +3.78986 q^{31} -6.51573 q^{32} -4.15883 q^{34} -2.22952 q^{35} -8.38404 q^{37} +2.24698 q^{38} +5.76271 q^{40} -5.96077 q^{41} +3.48858 q^{43} +3.04892 q^{44} +16.8388 q^{46} +3.57673 q^{47} -6.16852 q^{49} +2.19806 q^{50} +8.69202 q^{52} +9.26875 q^{53} +2.44504 q^{55} -2.14914 q^{56} +21.9976 q^{58} -2.02177 q^{59} -7.21313 q^{61} +8.51573 q^{62} -13.0368 q^{64} +6.97046 q^{65} -14.3327 q^{67} -5.64310 q^{68} -5.00969 q^{70} -9.05861 q^{71} +0.917231 q^{73} -18.8388 q^{74} +3.04892 q^{76} -0.911854 q^{77} -13.9487 q^{79} -1.96077 q^{80} -13.3937 q^{82} +10.5429 q^{83} -4.52542 q^{85} +7.83877 q^{86} +2.35690 q^{88} +4.00969 q^{89} -2.59956 q^{91} +22.8485 q^{92} +8.03684 q^{94} +2.44504 q^{95} +4.40581 q^{97} -13.8605 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + 7 q^{5} + q^{7} + 3 q^{8} + 7 q^{10} + 3 q^{11} - 5 q^{13} + 3 q^{14} + 2 q^{16} + 8 q^{17} + 3 q^{19} + 2 q^{22} + 13 q^{23} + 6 q^{25} + 6 q^{26} - 7 q^{28} + 6 q^{29} - 12 q^{31} - 7 q^{32}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.24698 1.58885 0.794427 0.607359i \(-0.207771\pi\)
0.794427 + 0.607359i \(0.207771\pi\)
\(3\) 0 0
\(4\) 3.04892 1.52446
\(5\) 2.44504 1.09346 0.546728 0.837310i \(-0.315873\pi\)
0.546728 + 0.837310i \(0.315873\pi\)
\(6\) 0 0
\(7\) −0.911854 −0.344648 −0.172324 0.985040i \(-0.555128\pi\)
−0.172324 + 0.985040i \(0.555128\pi\)
\(8\) 2.35690 0.833289
\(9\) 0 0
\(10\) 5.49396 1.73734
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 2.85086 0.790685 0.395342 0.918534i \(-0.370626\pi\)
0.395342 + 0.918534i \(0.370626\pi\)
\(14\) −2.04892 −0.547596
\(15\) 0 0
\(16\) −0.801938 −0.200484
\(17\) −1.85086 −0.448898 −0.224449 0.974486i \(-0.572058\pi\)
−0.224449 + 0.974486i \(0.572058\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 7.45473 1.66693
\(21\) 0 0
\(22\) 2.24698 0.479058
\(23\) 7.49396 1.56260 0.781299 0.624157i \(-0.214557\pi\)
0.781299 + 0.624157i \(0.214557\pi\)
\(24\) 0 0
\(25\) 0.978230 0.195646
\(26\) 6.40581 1.25628
\(27\) 0 0
\(28\) −2.78017 −0.525402
\(29\) 9.78986 1.81793 0.908965 0.416872i \(-0.136874\pi\)
0.908965 + 0.416872i \(0.136874\pi\)
\(30\) 0 0
\(31\) 3.78986 0.680678 0.340339 0.940303i \(-0.389458\pi\)
0.340339 + 0.940303i \(0.389458\pi\)
\(32\) −6.51573 −1.15183
\(33\) 0 0
\(34\) −4.15883 −0.713234
\(35\) −2.22952 −0.376858
\(36\) 0 0
\(37\) −8.38404 −1.37833 −0.689164 0.724605i \(-0.742022\pi\)
−0.689164 + 0.724605i \(0.742022\pi\)
\(38\) 2.24698 0.364508
\(39\) 0 0
\(40\) 5.76271 0.911164
\(41\) −5.96077 −0.930916 −0.465458 0.885070i \(-0.654110\pi\)
−0.465458 + 0.885070i \(0.654110\pi\)
\(42\) 0 0
\(43\) 3.48858 0.532004 0.266002 0.963973i \(-0.414297\pi\)
0.266002 + 0.963973i \(0.414297\pi\)
\(44\) 3.04892 0.459642
\(45\) 0 0
\(46\) 16.8388 2.48274
\(47\) 3.57673 0.521719 0.260860 0.965377i \(-0.415994\pi\)
0.260860 + 0.965377i \(0.415994\pi\)
\(48\) 0 0
\(49\) −6.16852 −0.881217
\(50\) 2.19806 0.310853
\(51\) 0 0
\(52\) 8.69202 1.20537
\(53\) 9.26875 1.27316 0.636580 0.771210i \(-0.280348\pi\)
0.636580 + 0.771210i \(0.280348\pi\)
\(54\) 0 0
\(55\) 2.44504 0.329689
\(56\) −2.14914 −0.287192
\(57\) 0 0
\(58\) 21.9976 2.88843
\(59\) −2.02177 −0.263212 −0.131606 0.991302i \(-0.542013\pi\)
−0.131606 + 0.991302i \(0.542013\pi\)
\(60\) 0 0
\(61\) −7.21313 −0.923546 −0.461773 0.886998i \(-0.652787\pi\)
−0.461773 + 0.886998i \(0.652787\pi\)
\(62\) 8.51573 1.08150
\(63\) 0 0
\(64\) −13.0368 −1.62960
\(65\) 6.97046 0.864579
\(66\) 0 0
\(67\) −14.3327 −1.75102 −0.875511 0.483198i \(-0.839475\pi\)
−0.875511 + 0.483198i \(0.839475\pi\)
\(68\) −5.64310 −0.684327
\(69\) 0 0
\(70\) −5.00969 −0.598772
\(71\) −9.05861 −1.07506 −0.537529 0.843245i \(-0.680642\pi\)
−0.537529 + 0.843245i \(0.680642\pi\)
\(72\) 0 0
\(73\) 0.917231 0.107354 0.0536769 0.998558i \(-0.482906\pi\)
0.0536769 + 0.998558i \(0.482906\pi\)
\(74\) −18.8388 −2.18996
\(75\) 0 0
\(76\) 3.04892 0.349735
\(77\) −0.911854 −0.103915
\(78\) 0 0
\(79\) −13.9487 −1.56935 −0.784675 0.619907i \(-0.787170\pi\)
−0.784675 + 0.619907i \(0.787170\pi\)
\(80\) −1.96077 −0.219221
\(81\) 0 0
\(82\) −13.3937 −1.47909
\(83\) 10.5429 1.15723 0.578616 0.815600i \(-0.303593\pi\)
0.578616 + 0.815600i \(0.303593\pi\)
\(84\) 0 0
\(85\) −4.52542 −0.490851
\(86\) 7.83877 0.845277
\(87\) 0 0
\(88\) 2.35690 0.251246
\(89\) 4.00969 0.425026 0.212513 0.977158i \(-0.431835\pi\)
0.212513 + 0.977158i \(0.431835\pi\)
\(90\) 0 0
\(91\) −2.59956 −0.272508
\(92\) 22.8485 2.38212
\(93\) 0 0
\(94\) 8.03684 0.828936
\(95\) 2.44504 0.250856
\(96\) 0 0
\(97\) 4.40581 0.447343 0.223671 0.974665i \(-0.428196\pi\)
0.223671 + 0.974665i \(0.428196\pi\)
\(98\) −13.8605 −1.40013
\(99\) 0 0
\(100\) 2.98254 0.298254
\(101\) −7.70709 −0.766884 −0.383442 0.923565i \(-0.625261\pi\)
−0.383442 + 0.923565i \(0.625261\pi\)
\(102\) 0 0
\(103\) −12.6136 −1.24285 −0.621426 0.783473i \(-0.713446\pi\)
−0.621426 + 0.783473i \(0.713446\pi\)
\(104\) 6.71917 0.658869
\(105\) 0 0
\(106\) 20.8267 2.02287
\(107\) 14.6136 1.41275 0.706373 0.707840i \(-0.250330\pi\)
0.706373 + 0.707840i \(0.250330\pi\)
\(108\) 0 0
\(109\) 3.99031 0.382203 0.191101 0.981570i \(-0.438794\pi\)
0.191101 + 0.981570i \(0.438794\pi\)
\(110\) 5.49396 0.523828
\(111\) 0 0
\(112\) 0.731250 0.0690966
\(113\) −8.10321 −0.762286 −0.381143 0.924516i \(-0.624469\pi\)
−0.381143 + 0.924516i \(0.624469\pi\)
\(114\) 0 0
\(115\) 18.3230 1.70863
\(116\) 29.8485 2.77136
\(117\) 0 0
\(118\) −4.54288 −0.418206
\(119\) 1.68771 0.154712
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −16.2078 −1.46738
\(123\) 0 0
\(124\) 11.5550 1.03767
\(125\) −9.83340 −0.879526
\(126\) 0 0
\(127\) −4.29590 −0.381199 −0.190600 0.981668i \(-0.561043\pi\)
−0.190600 + 0.981668i \(0.561043\pi\)
\(128\) −16.2620 −1.43738
\(129\) 0 0
\(130\) 15.6625 1.37369
\(131\) −13.7560 −1.20187 −0.600934 0.799299i \(-0.705204\pi\)
−0.600934 + 0.799299i \(0.705204\pi\)
\(132\) 0 0
\(133\) −0.911854 −0.0790678
\(134\) −32.2054 −2.78212
\(135\) 0 0
\(136\) −4.36227 −0.374062
\(137\) 2.11529 0.180722 0.0903608 0.995909i \(-0.471198\pi\)
0.0903608 + 0.995909i \(0.471198\pi\)
\(138\) 0 0
\(139\) 18.3884 1.55968 0.779840 0.625979i \(-0.215300\pi\)
0.779840 + 0.625979i \(0.215300\pi\)
\(140\) −6.79763 −0.574504
\(141\) 0 0
\(142\) −20.3545 −1.70811
\(143\) 2.85086 0.238400
\(144\) 0 0
\(145\) 23.9366 1.98783
\(146\) 2.06100 0.170569
\(147\) 0 0
\(148\) −25.5623 −2.10120
\(149\) −4.45473 −0.364946 −0.182473 0.983211i \(-0.558410\pi\)
−0.182473 + 0.983211i \(0.558410\pi\)
\(150\) 0 0
\(151\) 12.3787 1.00736 0.503681 0.863890i \(-0.331979\pi\)
0.503681 + 0.863890i \(0.331979\pi\)
\(152\) 2.35690 0.191169
\(153\) 0 0
\(154\) −2.04892 −0.165106
\(155\) 9.26636 0.744292
\(156\) 0 0
\(157\) −11.3690 −0.907343 −0.453672 0.891169i \(-0.649886\pi\)
−0.453672 + 0.891169i \(0.649886\pi\)
\(158\) −31.3424 −2.49347
\(159\) 0 0
\(160\) −15.9312 −1.25947
\(161\) −6.83340 −0.538547
\(162\) 0 0
\(163\) 13.0640 1.02325 0.511625 0.859209i \(-0.329044\pi\)
0.511625 + 0.859209i \(0.329044\pi\)
\(164\) −18.1739 −1.41914
\(165\) 0 0
\(166\) 23.6896 1.83867
\(167\) −14.0683 −1.08864 −0.544319 0.838879i \(-0.683212\pi\)
−0.544319 + 0.838879i \(0.683212\pi\)
\(168\) 0 0
\(169\) −4.87263 −0.374817
\(170\) −10.1685 −0.779890
\(171\) 0 0
\(172\) 10.6364 0.811018
\(173\) −4.15883 −0.316190 −0.158095 0.987424i \(-0.550535\pi\)
−0.158095 + 0.987424i \(0.550535\pi\)
\(174\) 0 0
\(175\) −0.892003 −0.0674291
\(176\) −0.801938 −0.0604483
\(177\) 0 0
\(178\) 9.00969 0.675305
\(179\) 7.41789 0.554439 0.277220 0.960807i \(-0.410587\pi\)
0.277220 + 0.960807i \(0.410587\pi\)
\(180\) 0 0
\(181\) −7.91723 −0.588483 −0.294242 0.955731i \(-0.595067\pi\)
−0.294242 + 0.955731i \(0.595067\pi\)
\(182\) −5.84117 −0.432976
\(183\) 0 0
\(184\) 17.6625 1.30210
\(185\) −20.4993 −1.50714
\(186\) 0 0
\(187\) −1.85086 −0.135348
\(188\) 10.9051 0.795340
\(189\) 0 0
\(190\) 5.49396 0.398574
\(191\) −1.17390 −0.0849404 −0.0424702 0.999098i \(-0.513523\pi\)
−0.0424702 + 0.999098i \(0.513523\pi\)
\(192\) 0 0
\(193\) −18.2664 −1.31484 −0.657421 0.753524i \(-0.728352\pi\)
−0.657421 + 0.753524i \(0.728352\pi\)
\(194\) 9.89977 0.710762
\(195\) 0 0
\(196\) −18.8073 −1.34338
\(197\) −15.4819 −1.10304 −0.551519 0.834162i \(-0.685952\pi\)
−0.551519 + 0.834162i \(0.685952\pi\)
\(198\) 0 0
\(199\) 11.5429 0.818253 0.409126 0.912478i \(-0.365834\pi\)
0.409126 + 0.912478i \(0.365834\pi\)
\(200\) 2.30559 0.163030
\(201\) 0 0
\(202\) −17.3177 −1.21847
\(203\) −8.92692 −0.626547
\(204\) 0 0
\(205\) −14.5743 −1.01792
\(206\) −28.3424 −1.97471
\(207\) 0 0
\(208\) −2.28621 −0.158520
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) 4.44504 0.306009 0.153005 0.988225i \(-0.451105\pi\)
0.153005 + 0.988225i \(0.451105\pi\)
\(212\) 28.2597 1.94088
\(213\) 0 0
\(214\) 32.8364 2.24465
\(215\) 8.52973 0.581723
\(216\) 0 0
\(217\) −3.45580 −0.234595
\(218\) 8.96615 0.607264
\(219\) 0 0
\(220\) 7.45473 0.502598
\(221\) −5.27652 −0.354937
\(222\) 0 0
\(223\) −7.72455 −0.517274 −0.258637 0.965975i \(-0.583273\pi\)
−0.258637 + 0.965975i \(0.583273\pi\)
\(224\) 5.94139 0.396976
\(225\) 0 0
\(226\) −18.2078 −1.21116
\(227\) 11.7657 0.780916 0.390458 0.920621i \(-0.372317\pi\)
0.390458 + 0.920621i \(0.372317\pi\)
\(228\) 0 0
\(229\) 15.1414 1.00057 0.500285 0.865861i \(-0.333229\pi\)
0.500285 + 0.865861i \(0.333229\pi\)
\(230\) 41.1715 2.71477
\(231\) 0 0
\(232\) 23.0737 1.51486
\(233\) 7.70841 0.504995 0.252498 0.967598i \(-0.418748\pi\)
0.252498 + 0.967598i \(0.418748\pi\)
\(234\) 0 0
\(235\) 8.74525 0.570477
\(236\) −6.16421 −0.401256
\(237\) 0 0
\(238\) 3.79225 0.245815
\(239\) 6.57002 0.424979 0.212490 0.977163i \(-0.431843\pi\)
0.212490 + 0.977163i \(0.431843\pi\)
\(240\) 0 0
\(241\) −5.45712 −0.351524 −0.175762 0.984433i \(-0.556239\pi\)
−0.175762 + 0.984433i \(0.556239\pi\)
\(242\) 2.24698 0.144441
\(243\) 0 0
\(244\) −21.9922 −1.40791
\(245\) −15.0823 −0.963572
\(246\) 0 0
\(247\) 2.85086 0.181396
\(248\) 8.93230 0.567201
\(249\) 0 0
\(250\) −22.0954 −1.39744
\(251\) −11.3894 −0.718894 −0.359447 0.933166i \(-0.617035\pi\)
−0.359447 + 0.933166i \(0.617035\pi\)
\(252\) 0 0
\(253\) 7.49396 0.471141
\(254\) −9.65279 −0.605670
\(255\) 0 0
\(256\) −10.4668 −0.654176
\(257\) 9.08144 0.566485 0.283242 0.959048i \(-0.408590\pi\)
0.283242 + 0.959048i \(0.408590\pi\)
\(258\) 0 0
\(259\) 7.64502 0.475039
\(260\) 21.2524 1.31802
\(261\) 0 0
\(262\) −30.9095 −1.90959
\(263\) −17.0761 −1.05296 −0.526478 0.850189i \(-0.676488\pi\)
−0.526478 + 0.850189i \(0.676488\pi\)
\(264\) 0 0
\(265\) 22.6625 1.39215
\(266\) −2.04892 −0.125627
\(267\) 0 0
\(268\) −43.6993 −2.66936
\(269\) −14.6582 −0.893724 −0.446862 0.894603i \(-0.647459\pi\)
−0.446862 + 0.894603i \(0.647459\pi\)
\(270\) 0 0
\(271\) 15.6189 0.948783 0.474392 0.880314i \(-0.342668\pi\)
0.474392 + 0.880314i \(0.342668\pi\)
\(272\) 1.48427 0.0899971
\(273\) 0 0
\(274\) 4.75302 0.287140
\(275\) 0.978230 0.0589895
\(276\) 0 0
\(277\) −24.7657 −1.48803 −0.744013 0.668165i \(-0.767080\pi\)
−0.744013 + 0.668165i \(0.767080\pi\)
\(278\) 41.3183 2.47810
\(279\) 0 0
\(280\) −5.25475 −0.314031
\(281\) 23.9463 1.42852 0.714258 0.699882i \(-0.246764\pi\)
0.714258 + 0.699882i \(0.246764\pi\)
\(282\) 0 0
\(283\) 5.75063 0.341839 0.170920 0.985285i \(-0.445326\pi\)
0.170920 + 0.985285i \(0.445326\pi\)
\(284\) −27.6189 −1.63888
\(285\) 0 0
\(286\) 6.40581 0.378784
\(287\) 5.43535 0.320839
\(288\) 0 0
\(289\) −13.5743 −0.798490
\(290\) 53.7851 3.15837
\(291\) 0 0
\(292\) 2.79656 0.163656
\(293\) 8.27114 0.483205 0.241603 0.970375i \(-0.422327\pi\)
0.241603 + 0.970375i \(0.422327\pi\)
\(294\) 0 0
\(295\) −4.94331 −0.287811
\(296\) −19.7603 −1.14855
\(297\) 0 0
\(298\) −10.0097 −0.579846
\(299\) 21.3642 1.23552
\(300\) 0 0
\(301\) −3.18108 −0.183354
\(302\) 27.8146 1.60055
\(303\) 0 0
\(304\) −0.801938 −0.0459943
\(305\) −17.6364 −1.00986
\(306\) 0 0
\(307\) 17.1226 0.977238 0.488619 0.872497i \(-0.337501\pi\)
0.488619 + 0.872497i \(0.337501\pi\)
\(308\) −2.78017 −0.158415
\(309\) 0 0
\(310\) 20.8213 1.18257
\(311\) −22.8025 −1.29301 −0.646506 0.762909i \(-0.723771\pi\)
−0.646506 + 0.762909i \(0.723771\pi\)
\(312\) 0 0
\(313\) −8.07069 −0.456182 −0.228091 0.973640i \(-0.573248\pi\)
−0.228091 + 0.973640i \(0.573248\pi\)
\(314\) −25.5459 −1.44164
\(315\) 0 0
\(316\) −42.5284 −2.39241
\(317\) 6.76271 0.379832 0.189916 0.981800i \(-0.439179\pi\)
0.189916 + 0.981800i \(0.439179\pi\)
\(318\) 0 0
\(319\) 9.78986 0.548127
\(320\) −31.8756 −1.78190
\(321\) 0 0
\(322\) −15.3545 −0.855673
\(323\) −1.85086 −0.102984
\(324\) 0 0
\(325\) 2.78879 0.154694
\(326\) 29.3545 1.62580
\(327\) 0 0
\(328\) −14.0489 −0.775722
\(329\) −3.26145 −0.179810
\(330\) 0 0
\(331\) 22.3739 1.22978 0.614890 0.788613i \(-0.289200\pi\)
0.614890 + 0.788613i \(0.289200\pi\)
\(332\) 32.1444 1.76415
\(333\) 0 0
\(334\) −31.6112 −1.72969
\(335\) −35.0441 −1.91467
\(336\) 0 0
\(337\) 21.1323 1.15115 0.575574 0.817750i \(-0.304779\pi\)
0.575574 + 0.817750i \(0.304779\pi\)
\(338\) −10.9487 −0.595530
\(339\) 0 0
\(340\) −13.7976 −0.748281
\(341\) 3.78986 0.205232
\(342\) 0 0
\(343\) 12.0078 0.648359
\(344\) 8.22223 0.443313
\(345\) 0 0
\(346\) −9.34481 −0.502380
\(347\) 29.9288 1.60666 0.803332 0.595531i \(-0.203058\pi\)
0.803332 + 0.595531i \(0.203058\pi\)
\(348\) 0 0
\(349\) −29.7603 −1.59303 −0.796517 0.604617i \(-0.793326\pi\)
−0.796517 + 0.604617i \(0.793326\pi\)
\(350\) −2.00431 −0.107135
\(351\) 0 0
\(352\) −6.51573 −0.347290
\(353\) −17.9782 −0.956885 −0.478442 0.878119i \(-0.658798\pi\)
−0.478442 + 0.878119i \(0.658798\pi\)
\(354\) 0 0
\(355\) −22.1487 −1.17553
\(356\) 12.2252 0.647935
\(357\) 0 0
\(358\) 16.6679 0.880924
\(359\) −23.3163 −1.23059 −0.615295 0.788297i \(-0.710963\pi\)
−0.615295 + 0.788297i \(0.710963\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −17.7899 −0.935014
\(363\) 0 0
\(364\) −7.92585 −0.415428
\(365\) 2.24267 0.117387
\(366\) 0 0
\(367\) 14.2784 0.745328 0.372664 0.927966i \(-0.378444\pi\)
0.372664 + 0.927966i \(0.378444\pi\)
\(368\) −6.00969 −0.313277
\(369\) 0 0
\(370\) −46.0616 −2.39463
\(371\) −8.45175 −0.438793
\(372\) 0 0
\(373\) 15.1540 0.784647 0.392323 0.919827i \(-0.371671\pi\)
0.392323 + 0.919827i \(0.371671\pi\)
\(374\) −4.15883 −0.215048
\(375\) 0 0
\(376\) 8.42998 0.434743
\(377\) 27.9095 1.43741
\(378\) 0 0
\(379\) −8.05861 −0.413943 −0.206971 0.978347i \(-0.566361\pi\)
−0.206971 + 0.978347i \(0.566361\pi\)
\(380\) 7.45473 0.382420
\(381\) 0 0
\(382\) −2.63773 −0.134958
\(383\) 5.09783 0.260487 0.130244 0.991482i \(-0.458424\pi\)
0.130244 + 0.991482i \(0.458424\pi\)
\(384\) 0 0
\(385\) −2.22952 −0.113627
\(386\) −41.0441 −2.08909
\(387\) 0 0
\(388\) 13.4330 0.681955
\(389\) 11.7181 0.594131 0.297066 0.954857i \(-0.403992\pi\)
0.297066 + 0.954857i \(0.403992\pi\)
\(390\) 0 0
\(391\) −13.8702 −0.701448
\(392\) −14.5386 −0.734308
\(393\) 0 0
\(394\) −34.7875 −1.75257
\(395\) −34.1051 −1.71602
\(396\) 0 0
\(397\) −6.75196 −0.338871 −0.169435 0.985541i \(-0.554194\pi\)
−0.169435 + 0.985541i \(0.554194\pi\)
\(398\) 25.9366 1.30008
\(399\) 0 0
\(400\) −0.784479 −0.0392240
\(401\) −26.0761 −1.30218 −0.651088 0.759002i \(-0.725687\pi\)
−0.651088 + 0.759002i \(0.725687\pi\)
\(402\) 0 0
\(403\) 10.8043 0.538202
\(404\) −23.4983 −1.16908
\(405\) 0 0
\(406\) −20.0586 −0.995492
\(407\) −8.38404 −0.415582
\(408\) 0 0
\(409\) 22.4698 1.11106 0.555530 0.831497i \(-0.312515\pi\)
0.555530 + 0.831497i \(0.312515\pi\)
\(410\) −32.7482 −1.61732
\(411\) 0 0
\(412\) −38.4577 −1.89468
\(413\) 1.84356 0.0907156
\(414\) 0 0
\(415\) 25.7778 1.26538
\(416\) −18.5754 −0.910734
\(417\) 0 0
\(418\) 2.24698 0.109903
\(419\) 25.8984 1.26522 0.632611 0.774470i \(-0.281983\pi\)
0.632611 + 0.774470i \(0.281983\pi\)
\(420\) 0 0
\(421\) −30.1371 −1.46879 −0.734395 0.678722i \(-0.762534\pi\)
−0.734395 + 0.678722i \(0.762534\pi\)
\(422\) 9.98792 0.486204
\(423\) 0 0
\(424\) 21.8455 1.06091
\(425\) −1.81056 −0.0878251
\(426\) 0 0
\(427\) 6.57732 0.318299
\(428\) 44.5555 2.15367
\(429\) 0 0
\(430\) 19.1661 0.924273
\(431\) 38.5090 1.85491 0.927457 0.373929i \(-0.121990\pi\)
0.927457 + 0.373929i \(0.121990\pi\)
\(432\) 0 0
\(433\) −27.4330 −1.31834 −0.659172 0.751992i \(-0.729093\pi\)
−0.659172 + 0.751992i \(0.729093\pi\)
\(434\) −7.76510 −0.372737
\(435\) 0 0
\(436\) 12.1661 0.582652
\(437\) 7.49396 0.358485
\(438\) 0 0
\(439\) −19.7362 −0.941955 −0.470978 0.882145i \(-0.656099\pi\)
−0.470978 + 0.882145i \(0.656099\pi\)
\(440\) 5.76271 0.274726
\(441\) 0 0
\(442\) −11.8562 −0.563943
\(443\) −41.0237 −1.94909 −0.974547 0.224183i \(-0.928029\pi\)
−0.974547 + 0.224183i \(0.928029\pi\)
\(444\) 0 0
\(445\) 9.80386 0.464747
\(446\) −17.3569 −0.821873
\(447\) 0 0
\(448\) 11.8877 0.561641
\(449\) −0.353912 −0.0167021 −0.00835107 0.999965i \(-0.502658\pi\)
−0.00835107 + 0.999965i \(0.502658\pi\)
\(450\) 0 0
\(451\) −5.96077 −0.280682
\(452\) −24.7060 −1.16207
\(453\) 0 0
\(454\) 26.4373 1.24076
\(455\) −6.35604 −0.297976
\(456\) 0 0
\(457\) 2.05131 0.0959562 0.0479781 0.998848i \(-0.484722\pi\)
0.0479781 + 0.998848i \(0.484722\pi\)
\(458\) 34.0224 1.58976
\(459\) 0 0
\(460\) 55.8654 2.60474
\(461\) 33.5187 1.56112 0.780561 0.625080i \(-0.214933\pi\)
0.780561 + 0.625080i \(0.214933\pi\)
\(462\) 0 0
\(463\) −13.8834 −0.645215 −0.322608 0.946533i \(-0.604559\pi\)
−0.322608 + 0.946533i \(0.604559\pi\)
\(464\) −7.85086 −0.364467
\(465\) 0 0
\(466\) 17.3207 0.802364
\(467\) 8.08575 0.374164 0.187082 0.982344i \(-0.440097\pi\)
0.187082 + 0.982344i \(0.440097\pi\)
\(468\) 0 0
\(469\) 13.0694 0.603487
\(470\) 19.6504 0.906405
\(471\) 0 0
\(472\) −4.76510 −0.219332
\(473\) 3.48858 0.160405
\(474\) 0 0
\(475\) 0.978230 0.0448843
\(476\) 5.14569 0.235852
\(477\) 0 0
\(478\) 14.7627 0.675231
\(479\) −10.1371 −0.463174 −0.231587 0.972814i \(-0.574392\pi\)
−0.231587 + 0.972814i \(0.574392\pi\)
\(480\) 0 0
\(481\) −23.9017 −1.08982
\(482\) −12.2620 −0.558521
\(483\) 0 0
\(484\) 3.04892 0.138587
\(485\) 10.7724 0.489149
\(486\) 0 0
\(487\) −25.3980 −1.15090 −0.575448 0.817839i \(-0.695172\pi\)
−0.575448 + 0.817839i \(0.695172\pi\)
\(488\) −17.0006 −0.769581
\(489\) 0 0
\(490\) −33.8896 −1.53098
\(491\) 32.5870 1.47063 0.735316 0.677725i \(-0.237034\pi\)
0.735316 + 0.677725i \(0.237034\pi\)
\(492\) 0 0
\(493\) −18.1196 −0.816066
\(494\) 6.40581 0.288211
\(495\) 0 0
\(496\) −3.03923 −0.136465
\(497\) 8.26013 0.370517
\(498\) 0 0
\(499\) 39.3569 1.76186 0.880928 0.473250i \(-0.156919\pi\)
0.880928 + 0.473250i \(0.156919\pi\)
\(500\) −29.9812 −1.34080
\(501\) 0 0
\(502\) −25.5918 −1.14222
\(503\) 24.0325 1.07156 0.535779 0.844358i \(-0.320018\pi\)
0.535779 + 0.844358i \(0.320018\pi\)
\(504\) 0 0
\(505\) −18.8442 −0.838554
\(506\) 16.8388 0.748575
\(507\) 0 0
\(508\) −13.0978 −0.581122
\(509\) 36.4620 1.61615 0.808075 0.589079i \(-0.200509\pi\)
0.808075 + 0.589079i \(0.200509\pi\)
\(510\) 0 0
\(511\) −0.836381 −0.0369993
\(512\) 9.00538 0.397985
\(513\) 0 0
\(514\) 20.4058 0.900062
\(515\) −30.8407 −1.35900
\(516\) 0 0
\(517\) 3.57673 0.157304
\(518\) 17.1782 0.754767
\(519\) 0 0
\(520\) 16.4286 0.720444
\(521\) −34.9101 −1.52944 −0.764719 0.644364i \(-0.777122\pi\)
−0.764719 + 0.644364i \(0.777122\pi\)
\(522\) 0 0
\(523\) −14.2935 −0.625011 −0.312506 0.949916i \(-0.601168\pi\)
−0.312506 + 0.949916i \(0.601168\pi\)
\(524\) −41.9409 −1.83220
\(525\) 0 0
\(526\) −38.3696 −1.67299
\(527\) −7.01447 −0.305555
\(528\) 0 0
\(529\) 33.1594 1.44171
\(530\) 50.9221 2.21192
\(531\) 0 0
\(532\) −2.78017 −0.120536
\(533\) −16.9933 −0.736061
\(534\) 0 0
\(535\) 35.7308 1.54478
\(536\) −33.7808 −1.45911
\(537\) 0 0
\(538\) −32.9366 −1.42000
\(539\) −6.16852 −0.265697
\(540\) 0 0
\(541\) 18.9162 0.813269 0.406635 0.913591i \(-0.366702\pi\)
0.406635 + 0.913591i \(0.366702\pi\)
\(542\) 35.0954 1.50748
\(543\) 0 0
\(544\) 12.0597 0.517054
\(545\) 9.75648 0.417922
\(546\) 0 0
\(547\) −26.0495 −1.11380 −0.556898 0.830581i \(-0.688009\pi\)
−0.556898 + 0.830581i \(0.688009\pi\)
\(548\) 6.44935 0.275503
\(549\) 0 0
\(550\) 2.19806 0.0937257
\(551\) 9.78986 0.417062
\(552\) 0 0
\(553\) 12.7192 0.540874
\(554\) −55.6480 −2.36426
\(555\) 0 0
\(556\) 56.0646 2.37767
\(557\) 26.6920 1.13098 0.565489 0.824756i \(-0.308688\pi\)
0.565489 + 0.824756i \(0.308688\pi\)
\(558\) 0 0
\(559\) 9.94544 0.420647
\(560\) 1.78794 0.0755541
\(561\) 0 0
\(562\) 53.8068 2.26970
\(563\) −11.9202 −0.502377 −0.251189 0.967938i \(-0.580821\pi\)
−0.251189 + 0.967938i \(0.580821\pi\)
\(564\) 0 0
\(565\) −19.8127 −0.833526
\(566\) 12.9215 0.543133
\(567\) 0 0
\(568\) −21.3502 −0.895834
\(569\) −30.8237 −1.29220 −0.646099 0.763254i \(-0.723600\pi\)
−0.646099 + 0.763254i \(0.723600\pi\)
\(570\) 0 0
\(571\) 37.2959 1.56078 0.780392 0.625290i \(-0.215019\pi\)
0.780392 + 0.625290i \(0.215019\pi\)
\(572\) 8.69202 0.363432
\(573\) 0 0
\(574\) 12.2131 0.509766
\(575\) 7.33081 0.305716
\(576\) 0 0
\(577\) −40.5405 −1.68772 −0.843861 0.536562i \(-0.819723\pi\)
−0.843861 + 0.536562i \(0.819723\pi\)
\(578\) −30.5013 −1.26868
\(579\) 0 0
\(580\) 72.9807 3.03036
\(581\) −9.61356 −0.398838
\(582\) 0 0
\(583\) 9.26875 0.383872
\(584\) 2.16182 0.0894566
\(585\) 0 0
\(586\) 18.5851 0.767743
\(587\) 8.97690 0.370516 0.185258 0.982690i \(-0.440688\pi\)
0.185258 + 0.982690i \(0.440688\pi\)
\(588\) 0 0
\(589\) 3.78986 0.156158
\(590\) −11.1075 −0.457289
\(591\) 0 0
\(592\) 6.72348 0.276333
\(593\) −31.6112 −1.29812 −0.649058 0.760739i \(-0.724837\pi\)
−0.649058 + 0.760739i \(0.724837\pi\)
\(594\) 0 0
\(595\) 4.12652 0.169171
\(596\) −13.5821 −0.556345
\(597\) 0 0
\(598\) 48.0049 1.96307
\(599\) 11.6504 0.476022 0.238011 0.971262i \(-0.423504\pi\)
0.238011 + 0.971262i \(0.423504\pi\)
\(600\) 0 0
\(601\) −23.7114 −0.967208 −0.483604 0.875287i \(-0.660673\pi\)
−0.483604 + 0.875287i \(0.660673\pi\)
\(602\) −7.14782 −0.291323
\(603\) 0 0
\(604\) 37.7415 1.53568
\(605\) 2.44504 0.0994051
\(606\) 0 0
\(607\) 41.8039 1.69677 0.848383 0.529383i \(-0.177576\pi\)
0.848383 + 0.529383i \(0.177576\pi\)
\(608\) −6.51573 −0.264248
\(609\) 0 0
\(610\) −39.6286 −1.60452
\(611\) 10.1967 0.412516
\(612\) 0 0
\(613\) −3.00298 −0.121289 −0.0606447 0.998159i \(-0.519316\pi\)
−0.0606447 + 0.998159i \(0.519316\pi\)
\(614\) 38.4741 1.55269
\(615\) 0 0
\(616\) −2.14914 −0.0865915
\(617\) −27.3254 −1.10008 −0.550040 0.835138i \(-0.685388\pi\)
−0.550040 + 0.835138i \(0.685388\pi\)
\(618\) 0 0
\(619\) 43.2683 1.73910 0.869549 0.493846i \(-0.164409\pi\)
0.869549 + 0.493846i \(0.164409\pi\)
\(620\) 28.2524 1.13464
\(621\) 0 0
\(622\) −51.2368 −2.05441
\(623\) −3.65625 −0.146485
\(624\) 0 0
\(625\) −28.9342 −1.15737
\(626\) −18.1347 −0.724807
\(627\) 0 0
\(628\) −34.6631 −1.38321
\(629\) 15.5176 0.618729
\(630\) 0 0
\(631\) 43.3478 1.72565 0.862824 0.505504i \(-0.168693\pi\)
0.862824 + 0.505504i \(0.168693\pi\)
\(632\) −32.8756 −1.30772
\(633\) 0 0
\(634\) 15.1957 0.603497
\(635\) −10.5036 −0.416825
\(636\) 0 0
\(637\) −17.5856 −0.696765
\(638\) 21.9976 0.870894
\(639\) 0 0
\(640\) −39.7614 −1.57171
\(641\) 30.7342 1.21393 0.606965 0.794729i \(-0.292387\pi\)
0.606965 + 0.794729i \(0.292387\pi\)
\(642\) 0 0
\(643\) −24.1661 −0.953019 −0.476510 0.879169i \(-0.658098\pi\)
−0.476510 + 0.879169i \(0.658098\pi\)
\(644\) −20.8345 −0.820993
\(645\) 0 0
\(646\) −4.15883 −0.163627
\(647\) 41.3072 1.62396 0.811978 0.583689i \(-0.198391\pi\)
0.811978 + 0.583689i \(0.198391\pi\)
\(648\) 0 0
\(649\) −2.02177 −0.0793614
\(650\) 6.26636 0.245787
\(651\) 0 0
\(652\) 39.8310 1.55990
\(653\) 45.4271 1.77770 0.888850 0.458198i \(-0.151505\pi\)
0.888850 + 0.458198i \(0.151505\pi\)
\(654\) 0 0
\(655\) −33.6340 −1.31419
\(656\) 4.78017 0.186634
\(657\) 0 0
\(658\) −7.32842 −0.285692
\(659\) 41.1618 1.60344 0.801718 0.597702i \(-0.203919\pi\)
0.801718 + 0.597702i \(0.203919\pi\)
\(660\) 0 0
\(661\) −20.1575 −0.784036 −0.392018 0.919958i \(-0.628223\pi\)
−0.392018 + 0.919958i \(0.628223\pi\)
\(662\) 50.2737 1.95394
\(663\) 0 0
\(664\) 24.8485 0.964307
\(665\) −2.22952 −0.0864571
\(666\) 0 0
\(667\) 73.3648 2.84070
\(668\) −42.8931 −1.65958
\(669\) 0 0
\(670\) −78.7434 −3.04212
\(671\) −7.21313 −0.278460
\(672\) 0 0
\(673\) 34.3347 1.32350 0.661752 0.749723i \(-0.269813\pi\)
0.661752 + 0.749723i \(0.269813\pi\)
\(674\) 47.4838 1.82901
\(675\) 0 0
\(676\) −14.8562 −0.571394
\(677\) 9.15452 0.351837 0.175918 0.984405i \(-0.443711\pi\)
0.175918 + 0.984405i \(0.443711\pi\)
\(678\) 0 0
\(679\) −4.01746 −0.154176
\(680\) −10.6659 −0.409020
\(681\) 0 0
\(682\) 8.51573 0.326084
\(683\) −26.8528 −1.02749 −0.513746 0.857942i \(-0.671743\pi\)
−0.513746 + 0.857942i \(0.671743\pi\)
\(684\) 0 0
\(685\) 5.17198 0.197611
\(686\) 26.9812 1.03015
\(687\) 0 0
\(688\) −2.79763 −0.106658
\(689\) 26.4239 1.00667
\(690\) 0 0
\(691\) −40.3803 −1.53614 −0.768070 0.640366i \(-0.778783\pi\)
−0.768070 + 0.640366i \(0.778783\pi\)
\(692\) −12.6799 −0.482019
\(693\) 0 0
\(694\) 67.2495 2.55276
\(695\) 44.9603 1.70544
\(696\) 0 0
\(697\) 11.0325 0.417887
\(698\) −66.8708 −2.53110
\(699\) 0 0
\(700\) −2.71964 −0.102793
\(701\) 45.5502 1.72041 0.860203 0.509952i \(-0.170337\pi\)
0.860203 + 0.509952i \(0.170337\pi\)
\(702\) 0 0
\(703\) −8.38404 −0.316210
\(704\) −13.0368 −0.491344
\(705\) 0 0
\(706\) −40.3967 −1.52035
\(707\) 7.02774 0.264305
\(708\) 0 0
\(709\) 11.5894 0.435249 0.217625 0.976033i \(-0.430169\pi\)
0.217625 + 0.976033i \(0.430169\pi\)
\(710\) −49.7676 −1.86775
\(711\) 0 0
\(712\) 9.45042 0.354169
\(713\) 28.4010 1.06363
\(714\) 0 0
\(715\) 6.97046 0.260680
\(716\) 22.6165 0.845220
\(717\) 0 0
\(718\) −52.3913 −1.95523
\(719\) −19.5579 −0.729388 −0.364694 0.931127i \(-0.618826\pi\)
−0.364694 + 0.931127i \(0.618826\pi\)
\(720\) 0 0
\(721\) 11.5017 0.428347
\(722\) 2.24698 0.0836239
\(723\) 0 0
\(724\) −24.1390 −0.897118
\(725\) 9.57673 0.355671
\(726\) 0 0
\(727\) 35.5652 1.31904 0.659521 0.751686i \(-0.270759\pi\)
0.659521 + 0.751686i \(0.270759\pi\)
\(728\) −6.12690 −0.227078
\(729\) 0 0
\(730\) 5.03923 0.186510
\(731\) −6.45686 −0.238816
\(732\) 0 0
\(733\) −25.4198 −0.938902 −0.469451 0.882958i \(-0.655548\pi\)
−0.469451 + 0.882958i \(0.655548\pi\)
\(734\) 32.0834 1.18422
\(735\) 0 0
\(736\) −48.8286 −1.79985
\(737\) −14.3327 −0.527953
\(738\) 0 0
\(739\) 18.9903 0.698570 0.349285 0.937017i \(-0.386425\pi\)
0.349285 + 0.937017i \(0.386425\pi\)
\(740\) −62.5008 −2.29757
\(741\) 0 0
\(742\) −18.9909 −0.697178
\(743\) −30.6510 −1.12448 −0.562238 0.826976i \(-0.690059\pi\)
−0.562238 + 0.826976i \(0.690059\pi\)
\(744\) 0 0
\(745\) −10.8920 −0.399052
\(746\) 34.0508 1.24669
\(747\) 0 0
\(748\) −5.64310 −0.206332
\(749\) −13.3254 −0.486901
\(750\) 0 0
\(751\) 21.5579 0.786660 0.393330 0.919397i \(-0.371323\pi\)
0.393330 + 0.919397i \(0.371323\pi\)
\(752\) −2.86831 −0.104597
\(753\) 0 0
\(754\) 62.7120 2.28384
\(755\) 30.2664 1.10151
\(756\) 0 0
\(757\) 21.0315 0.764401 0.382201 0.924079i \(-0.375166\pi\)
0.382201 + 0.924079i \(0.375166\pi\)
\(758\) −18.1075 −0.657695
\(759\) 0 0
\(760\) 5.76271 0.209035
\(761\) −7.30127 −0.264671 −0.132335 0.991205i \(-0.542248\pi\)
−0.132335 + 0.991205i \(0.542248\pi\)
\(762\) 0 0
\(763\) −3.63858 −0.131725
\(764\) −3.57912 −0.129488
\(765\) 0 0
\(766\) 11.4547 0.413876
\(767\) −5.76377 −0.208118
\(768\) 0 0
\(769\) 29.0756 1.04849 0.524246 0.851567i \(-0.324347\pi\)
0.524246 + 0.851567i \(0.324347\pi\)
\(770\) −5.00969 −0.180537
\(771\) 0 0
\(772\) −55.6926 −2.00442
\(773\) 32.5090 1.16927 0.584634 0.811297i \(-0.301238\pi\)
0.584634 + 0.811297i \(0.301238\pi\)
\(774\) 0 0
\(775\) 3.70735 0.133172
\(776\) 10.3840 0.372765
\(777\) 0 0
\(778\) 26.3303 0.943988
\(779\) −5.96077 −0.213567
\(780\) 0 0
\(781\) −9.05861 −0.324142
\(782\) −31.1661 −1.11450
\(783\) 0 0
\(784\) 4.94677 0.176670
\(785\) −27.7976 −0.992140
\(786\) 0 0
\(787\) 0.287273 0.0102402 0.00512009 0.999987i \(-0.498370\pi\)
0.00512009 + 0.999987i \(0.498370\pi\)
\(788\) −47.2030 −1.68154
\(789\) 0 0
\(790\) −76.6335 −2.72650
\(791\) 7.38895 0.262721
\(792\) 0 0
\(793\) −20.5636 −0.730234
\(794\) −15.1715 −0.538417
\(795\) 0 0
\(796\) 35.1933 1.24739
\(797\) 40.9197 1.44945 0.724726 0.689037i \(-0.241966\pi\)
0.724726 + 0.689037i \(0.241966\pi\)
\(798\) 0 0
\(799\) −6.62001 −0.234199
\(800\) −6.37388 −0.225351
\(801\) 0 0
\(802\) −58.5924 −2.06897
\(803\) 0.917231 0.0323684
\(804\) 0 0
\(805\) −16.7079 −0.588878
\(806\) 24.2771 0.855125
\(807\) 0 0
\(808\) −18.1648 −0.639035
\(809\) −11.2336 −0.394951 −0.197476 0.980308i \(-0.563274\pi\)
−0.197476 + 0.980308i \(0.563274\pi\)
\(810\) 0 0
\(811\) 22.7356 0.798354 0.399177 0.916874i \(-0.369296\pi\)
0.399177 + 0.916874i \(0.369296\pi\)
\(812\) −27.2174 −0.955145
\(813\) 0 0
\(814\) −18.8388 −0.660299
\(815\) 31.9420 1.11888
\(816\) 0 0
\(817\) 3.48858 0.122050
\(818\) 50.4892 1.76531
\(819\) 0 0
\(820\) −44.4359 −1.55177
\(821\) −23.7912 −0.830318 −0.415159 0.909749i \(-0.636274\pi\)
−0.415159 + 0.909749i \(0.636274\pi\)
\(822\) 0 0
\(823\) 3.27844 0.114279 0.0571396 0.998366i \(-0.481802\pi\)
0.0571396 + 0.998366i \(0.481802\pi\)
\(824\) −29.7289 −1.03565
\(825\) 0 0
\(826\) 4.14244 0.144134
\(827\) −18.0224 −0.626699 −0.313349 0.949638i \(-0.601451\pi\)
−0.313349 + 0.949638i \(0.601451\pi\)
\(828\) 0 0
\(829\) 27.3279 0.949139 0.474569 0.880218i \(-0.342604\pi\)
0.474569 + 0.880218i \(0.342604\pi\)
\(830\) 57.9221 2.01051
\(831\) 0 0
\(832\) −37.1661 −1.28850
\(833\) 11.4170 0.395577
\(834\) 0 0
\(835\) −34.3976 −1.19038
\(836\) 3.04892 0.105449
\(837\) 0 0
\(838\) 58.1933 2.01025
\(839\) −15.8213 −0.546212 −0.273106 0.961984i \(-0.588051\pi\)
−0.273106 + 0.961984i \(0.588051\pi\)
\(840\) 0 0
\(841\) 66.8413 2.30487
\(842\) −67.7174 −2.33369
\(843\) 0 0
\(844\) 13.5526 0.466499
\(845\) −11.9138 −0.409846
\(846\) 0 0
\(847\) −0.911854 −0.0313317
\(848\) −7.43296 −0.255249
\(849\) 0 0
\(850\) −4.06829 −0.139541
\(851\) −62.8297 −2.15377
\(852\) 0 0
\(853\) 19.3817 0.663615 0.331808 0.943347i \(-0.392342\pi\)
0.331808 + 0.943347i \(0.392342\pi\)
\(854\) 14.7791 0.505730
\(855\) 0 0
\(856\) 34.4426 1.17723
\(857\) −47.9963 −1.63952 −0.819761 0.572706i \(-0.805894\pi\)
−0.819761 + 0.572706i \(0.805894\pi\)
\(858\) 0 0
\(859\) −24.4946 −0.835743 −0.417872 0.908506i \(-0.637224\pi\)
−0.417872 + 0.908506i \(0.637224\pi\)
\(860\) 26.0064 0.886812
\(861\) 0 0
\(862\) 86.5290 2.94719
\(863\) 4.69441 0.159800 0.0798999 0.996803i \(-0.474540\pi\)
0.0798999 + 0.996803i \(0.474540\pi\)
\(864\) 0 0
\(865\) −10.1685 −0.345740
\(866\) −61.6413 −2.09466
\(867\) 0 0
\(868\) −10.5364 −0.357630
\(869\) −13.9487 −0.473177
\(870\) 0 0
\(871\) −40.8605 −1.38451
\(872\) 9.40475 0.318485
\(873\) 0 0
\(874\) 16.8388 0.569580
\(875\) 8.96662 0.303127
\(876\) 0 0
\(877\) −0.429976 −0.0145193 −0.00725964 0.999974i \(-0.502311\pi\)
−0.00725964 + 0.999974i \(0.502311\pi\)
\(878\) −44.3467 −1.49663
\(879\) 0 0
\(880\) −1.96077 −0.0660976
\(881\) 4.67589 0.157535 0.0787674 0.996893i \(-0.474902\pi\)
0.0787674 + 0.996893i \(0.474902\pi\)
\(882\) 0 0
\(883\) 43.8044 1.47414 0.737069 0.675818i \(-0.236209\pi\)
0.737069 + 0.675818i \(0.236209\pi\)
\(884\) −16.0877 −0.541087
\(885\) 0 0
\(886\) −92.1794 −3.09683
\(887\) −30.0455 −1.00883 −0.504414 0.863462i \(-0.668291\pi\)
−0.504414 + 0.863462i \(0.668291\pi\)
\(888\) 0 0
\(889\) 3.91723 0.131380
\(890\) 22.0291 0.738416
\(891\) 0 0
\(892\) −23.5515 −0.788563
\(893\) 3.57673 0.119691
\(894\) 0 0
\(895\) 18.1371 0.606255
\(896\) 14.8286 0.495389
\(897\) 0 0
\(898\) −0.795233 −0.0265373
\(899\) 37.1021 1.23743
\(900\) 0 0
\(901\) −17.1551 −0.571520
\(902\) −13.3937 −0.445962
\(903\) 0 0
\(904\) −19.0984 −0.635204
\(905\) −19.3580 −0.643480
\(906\) 0 0
\(907\) 2.81461 0.0934576 0.0467288 0.998908i \(-0.485120\pi\)
0.0467288 + 0.998908i \(0.485120\pi\)
\(908\) 35.8726 1.19047
\(909\) 0 0
\(910\) −14.2819 −0.473440
\(911\) 21.9987 0.728849 0.364424 0.931233i \(-0.381266\pi\)
0.364424 + 0.931233i \(0.381266\pi\)
\(912\) 0 0
\(913\) 10.5429 0.348918
\(914\) 4.60925 0.152461
\(915\) 0 0
\(916\) 46.1648 1.52533
\(917\) 12.5435 0.414222
\(918\) 0 0
\(919\) −4.60494 −0.151903 −0.0759515 0.997112i \(-0.524199\pi\)
−0.0759515 + 0.997112i \(0.524199\pi\)
\(920\) 43.1855 1.42378
\(921\) 0 0
\(922\) 75.3159 2.48040
\(923\) −25.8248 −0.850033
\(924\) 0 0
\(925\) −8.20152 −0.269664
\(926\) −31.1957 −1.02515
\(927\) 0 0
\(928\) −63.7881 −2.09395
\(929\) 53.8329 1.76620 0.883100 0.469184i \(-0.155452\pi\)
0.883100 + 0.469184i \(0.155452\pi\)
\(930\) 0 0
\(931\) −6.16852 −0.202165
\(932\) 23.5023 0.769844
\(933\) 0 0
\(934\) 18.1685 0.594492
\(935\) −4.52542 −0.147997
\(936\) 0 0
\(937\) 31.2935 1.02231 0.511157 0.859487i \(-0.329217\pi\)
0.511157 + 0.859487i \(0.329217\pi\)
\(938\) 29.3666 0.958853
\(939\) 0 0
\(940\) 26.6635 0.869669
\(941\) −25.5958 −0.834401 −0.417200 0.908815i \(-0.636989\pi\)
−0.417200 + 0.908815i \(0.636989\pi\)
\(942\) 0 0
\(943\) −44.6698 −1.45465
\(944\) 1.62133 0.0527699
\(945\) 0 0
\(946\) 7.83877 0.254861
\(947\) 1.50843 0.0490175 0.0245088 0.999700i \(-0.492198\pi\)
0.0245088 + 0.999700i \(0.492198\pi\)
\(948\) 0 0
\(949\) 2.61489 0.0848830
\(950\) 2.19806 0.0713146
\(951\) 0 0
\(952\) 3.97776 0.128920
\(953\) 37.5338 1.21584 0.607919 0.793999i \(-0.292004\pi\)
0.607919 + 0.793999i \(0.292004\pi\)
\(954\) 0 0
\(955\) −2.87023 −0.0928785
\(956\) 20.0315 0.647864
\(957\) 0 0
\(958\) −22.7778 −0.735916
\(959\) −1.92884 −0.0622854
\(960\) 0 0
\(961\) −16.6370 −0.536677
\(962\) −53.7066 −1.73157
\(963\) 0 0
\(964\) −16.6383 −0.535884
\(965\) −44.6620 −1.43772
\(966\) 0 0
\(967\) 28.5144 0.916961 0.458481 0.888704i \(-0.348394\pi\)
0.458481 + 0.888704i \(0.348394\pi\)
\(968\) 2.35690 0.0757535
\(969\) 0 0
\(970\) 24.2054 0.777187
\(971\) −42.6292 −1.36804 −0.684018 0.729465i \(-0.739769\pi\)
−0.684018 + 0.729465i \(0.739769\pi\)
\(972\) 0 0
\(973\) −16.7675 −0.537541
\(974\) −57.0689 −1.82861
\(975\) 0 0
\(976\) 5.78448 0.185157
\(977\) −19.7633 −0.632284 −0.316142 0.948712i \(-0.602388\pi\)
−0.316142 + 0.948712i \(0.602388\pi\)
\(978\) 0 0
\(979\) 4.00969 0.128150
\(980\) −45.9847 −1.46893
\(981\) 0 0
\(982\) 73.2223 2.33662
\(983\) −61.2471 −1.95348 −0.976740 0.214429i \(-0.931211\pi\)
−0.976740 + 0.214429i \(0.931211\pi\)
\(984\) 0 0
\(985\) −37.8538 −1.20612
\(986\) −40.7144 −1.29661
\(987\) 0 0
\(988\) 8.69202 0.276530
\(989\) 26.1433 0.831308
\(990\) 0 0
\(991\) 7.33167 0.232898 0.116449 0.993197i \(-0.462849\pi\)
0.116449 + 0.993197i \(0.462849\pi\)
\(992\) −24.6937 −0.784025
\(993\) 0 0
\(994\) 18.5603 0.588698
\(995\) 28.2228 0.894723
\(996\) 0 0
\(997\) −9.39911 −0.297673 −0.148836 0.988862i \(-0.547553\pi\)
−0.148836 + 0.988862i \(0.547553\pi\)
\(998\) 88.4341 2.79933
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1881.2.a.g.1.3 3
3.2 odd 2 627.2.a.d.1.1 3
33.32 even 2 6897.2.a.o.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
627.2.a.d.1.1 3 3.2 odd 2
1881.2.a.g.1.3 3 1.1 even 1 trivial
6897.2.a.o.1.3 3 33.32 even 2