Defining parameters
| Level: | \( N \) | \(=\) | \( 1881 = 3^{2} \cdot 11 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1881.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 18 \) | ||
| Sturm bound: | \(480\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1881))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 248 | 74 | 174 |
| Cusp forms | 233 | 74 | 159 |
| Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(11\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(24\) | \(7\) | \(17\) | \(23\) | \(7\) | \(16\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(38\) | \(7\) | \(31\) | \(36\) | \(7\) | \(29\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(34\) | \(7\) | \(27\) | \(32\) | \(7\) | \(25\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(28\) | \(7\) | \(21\) | \(26\) | \(7\) | \(19\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(33\) | \(13\) | \(20\) | \(31\) | \(13\) | \(18\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(29\) | \(8\) | \(21\) | \(27\) | \(8\) | \(19\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(33\) | \(10\) | \(23\) | \(31\) | \(10\) | \(21\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(29\) | \(15\) | \(14\) | \(27\) | \(15\) | \(12\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(114\) | \(32\) | \(82\) | \(107\) | \(32\) | \(75\) | \(7\) | \(0\) | \(7\) | |||||
| Minus space | \(-\) | \(134\) | \(42\) | \(92\) | \(126\) | \(42\) | \(84\) | \(8\) | \(0\) | \(8\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1881))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1881))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1881)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(209))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(627))\)\(^{\oplus 2}\)