Properties

Label 1881.2.a
Level $1881$
Weight $2$
Character orbit 1881.a
Rep. character $\chi_{1881}(1,\cdot)$
Character field $\Q$
Dimension $74$
Newform subspaces $18$
Sturm bound $480$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1881.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 18 \)
Sturm bound: \(480\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1881))\).

Total New Old
Modular forms 248 74 174
Cusp forms 233 74 159
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(11\)\(19\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(7\)
\(+\)\(+\)\(-\)\(-\)\(7\)
\(+\)\(-\)\(+\)\(-\)\(7\)
\(+\)\(-\)\(-\)\(+\)\(7\)
\(-\)\(+\)\(+\)\(-\)\(13\)
\(-\)\(+\)\(-\)\(+\)\(8\)
\(-\)\(-\)\(+\)\(+\)\(10\)
\(-\)\(-\)\(-\)\(-\)\(15\)
Plus space\(+\)\(32\)
Minus space\(-\)\(42\)

Trace form

\( 74 q - 2 q^{2} + 72 q^{4} - 2 q^{5} + 6 q^{8} + O(q^{10}) \) \( 74 q - 2 q^{2} + 72 q^{4} - 2 q^{5} + 6 q^{8} - 4 q^{10} + 4 q^{11} - 8 q^{13} + 20 q^{14} + 60 q^{16} - 16 q^{17} - 8 q^{20} + 14 q^{23} + 48 q^{25} + 4 q^{26} + 32 q^{28} - 14 q^{31} + 70 q^{32} + 12 q^{34} + 16 q^{35} - 14 q^{37} + 6 q^{38} + 60 q^{40} - 28 q^{41} + 12 q^{43} + 2 q^{44} + 32 q^{46} + 32 q^{47} + 30 q^{49} + 26 q^{50} - 52 q^{52} - 12 q^{53} - 14 q^{55} + 4 q^{56} - 12 q^{58} - 18 q^{59} - 52 q^{61} - 20 q^{62} - 4 q^{64} - 44 q^{65} + 22 q^{67} + 24 q^{68} + 20 q^{70} - 26 q^{71} - 8 q^{73} - 36 q^{74} + 4 q^{77} + 16 q^{79} + 28 q^{80} - 28 q^{82} + 48 q^{83} - 24 q^{85} + 40 q^{86} + 14 q^{89} + 24 q^{91} - 52 q^{92} - 88 q^{94} - 2 q^{97} + 6 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1881))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 11 19
1881.2.a.a 1881.a 1.a $1$ $15.020$ \(\Q\) None 627.2.a.b \(0\) \(0\) \(-4\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{4}-4q^{5}+2q^{7}+q^{11}+q^{13}+\cdots\)
1881.2.a.b 1881.a 1.a $1$ $15.020$ \(\Q\) None 627.2.a.a \(0\) \(0\) \(0\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{4}+2q^{7}-q^{11}-q^{13}+4q^{16}+\cdots\)
1881.2.a.c 1881.a 1.a $1$ $15.020$ \(\Q\) None 209.2.a.a \(0\) \(0\) \(3\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{4}+3q^{5}-4q^{7}-q^{11}+2q^{13}+\cdots\)
1881.2.a.d 1881.a 1.a $2$ $15.020$ \(\Q(\sqrt{2}) \) None 209.2.a.b \(0\) \(0\) \(2\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{5}+(-2+\beta )q^{7}-2\beta q^{8}+\cdots\)
1881.2.a.e 1881.a 1.a $3$ $15.020$ \(\Q(\zeta_{14})^+\) None 627.2.a.f \(-2\) \(0\) \(3\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{2}+(\beta _{1}+\beta _{2})q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots\)
1881.2.a.f 1881.a 1.a $3$ $15.020$ 3.3.169.1 None 627.2.a.g \(-2\) \(0\) \(-5\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(2-\beta _{1}+\beta _{2})q^{4}+\cdots\)
1881.2.a.g 1881.a 1.a $3$ $15.020$ \(\Q(\zeta_{14})^+\) None 627.2.a.d \(2\) \(0\) \(7\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1-2\beta _{1}+\beta _{2})q^{4}+(2+\cdots)q^{5}+\cdots\)
1881.2.a.h 1881.a 1.a $3$ $15.020$ 3.3.169.1 None 627.2.a.c \(2\) \(0\) \(-1\) \(-5\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(2-\beta _{1}+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)
1881.2.a.i 1881.a 1.a $3$ $15.020$ 3.3.321.1 None 627.2.a.e \(2\) \(0\) \(3\) \(-7\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(2-\beta _{1}+\beta _{2})q^{4}+(1+\cdots)q^{5}+\cdots\)
1881.2.a.j 1881.a 1.a $4$ $15.020$ 4.4.23377.1 None 627.2.a.h \(-1\) \(0\) \(-3\) \(-5\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2+\beta _{2})q^{4}+(-1-\beta _{2})q^{5}+\cdots\)
1881.2.a.k 1881.a 1.a $5$ $15.020$ 5.5.246832.1 None 209.2.a.c \(-2\) \(0\) \(5\) \(6\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}+(\beta _{1}+\beta _{2}+\beta _{3}+\beta _{4})q^{4}+\cdots\)
1881.2.a.l 1881.a 1.a $5$ $15.020$ 5.5.2179633.1 None 627.2.a.i \(-1\) \(0\) \(-3\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(-1+\beta _{4})q^{5}+\cdots\)
1881.2.a.m 1881.a 1.a $5$ $15.020$ 5.5.1920025.1 None 627.2.a.j \(-1\) \(0\) \(-7\) \(7\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2+\beta _{2})q^{4}+(-1+\beta _{4})q^{5}+\cdots\)
1881.2.a.n 1881.a 1.a $7$ $15.020$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 1881.2.a.n \(-2\) \(0\) \(-8\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{6}q^{2}+(1-\beta _{3})q^{4}+(-1+\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
1881.2.a.o 1881.a 1.a $7$ $15.020$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 1881.2.a.o \(-2\) \(0\) \(0\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}-\beta _{6}q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots\)
1881.2.a.p 1881.a 1.a $7$ $15.020$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 209.2.a.d \(1\) \(0\) \(-2\) \(10\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{2}+\beta _{3})q^{4}+\beta _{4}q^{5}+\cdots\)
1881.2.a.q 1881.a 1.a $7$ $15.020$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 1881.2.a.o \(2\) \(0\) \(0\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+\beta _{6}q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots\)
1881.2.a.r 1881.a 1.a $7$ $15.020$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 1881.2.a.n \(2\) \(0\) \(8\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{6}q^{2}+(1-\beta _{3})q^{4}+(1-\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1881))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1881)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(209))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(627))\)\(^{\oplus 2}\)