Defining parameters
Level: | \( N \) | \(=\) | \( 1881 = 3^{2} \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1881.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1881))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 248 | 74 | 174 |
Cusp forms | 233 | 74 | 159 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(11\) | \(19\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(7\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(7\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(7\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(7\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(13\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(8\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(10\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(15\) |
Plus space | \(+\) | \(32\) | ||
Minus space | \(-\) | \(42\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1881))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1881))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1881)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(209))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(627))\)\(^{\oplus 2}\)