Properties

Label 1881.2.a.g
Level $1881$
Weight $2$
Character orbit 1881.a
Self dual yes
Analytic conductor $15.020$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,2,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.0198606202\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 627)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + (\beta_{2} - 2 \beta_1 + 1) q^{4} + ( - \beta_{2} + 2) q^{5} + ( - 3 \beta_{2} + \beta_1 - 1) q^{7} + (2 \beta_{2} - \beta_1 + 2) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_1 + 1) q^{2} + (\beta_{2} - 2 \beta_1 + 1) q^{4} + ( - \beta_{2} + 2) q^{5} + ( - 3 \beta_{2} + \beta_1 - 1) q^{7} + (2 \beta_{2} - \beta_1 + 2) q^{8} + ( - 2 \beta_1 + 3) q^{10} + q^{11} + (2 \beta_{2} - 3 \beta_1) q^{13} + ( - \beta_{2} + 2 \beta_1) q^{14} + ( - \beta_{2} + \beta_1) q^{16} + ( - 2 \beta_{2} + 3 \beta_1 + 1) q^{17} + q^{19} + (4 \beta_{2} - 5 \beta_1 + 3) q^{20} + ( - \beta_1 + 1) q^{22} + ( - 2 \beta_1 + 5) q^{23} + ( - 5 \beta_{2} + \beta_1) q^{25} + (3 \beta_{2} - 3 \beta_1 + 4) q^{26} + (4 \beta_{2} - 1) q^{28} + (\beta_{2} - 5 \beta_1 + 4) q^{29} + (\beta_{2} - 5 \beta_1 - 2) q^{31} + ( - 5 \beta_{2} + 3 \beta_1 - 5) q^{32} + ( - 3 \beta_{2} + 2 \beta_1 - 3) q^{34} + ( - 9 \beta_{2} + 5 \beta_1) q^{35} + (2 \beta_{2} + 2 \beta_1 - 5) q^{37} + ( - \beta_1 + 1) q^{38} + (5 \beta_{2} - 4 \beta_1 + 3) q^{40} + ( - 4 \beta_{2} + 3 \beta_1 - 4) q^{41} + (9 \beta_{2} - 2 \beta_1 + 5) q^{43} + (\beta_{2} - 2 \beta_1 + 1) q^{44} + (2 \beta_{2} - 7 \beta_1 + 9) q^{46} + (6 \beta_{2} - \beta_1 + 5) q^{47} + ( - 8 \beta_{2} + 7 \beta_1 - 1) q^{49} + ( - \beta_{2} + \beta_1 + 3) q^{50} + ( - \beta_{2} - \beta_1 + 7) q^{52} + (5 \beta_{2} - 2 \beta_1 + 9) q^{53} + ( - \beta_{2} + 2) q^{55} + (2 \beta_{2} - 3 \beta_1 - 5) q^{56} + (5 \beta_{2} - 9 \beta_1 + 13) q^{58} + ( - 5 \beta_{2} + \beta_1 - 3) q^{59} + (5 \beta_{2} + 4 \beta_1) q^{61} + (5 \beta_{2} - 3 \beta_1 + 7) q^{62} + ( - \beta_{2} + 6 \beta_1 - 6) q^{64} + (9 \beta_{2} - 8 \beta_1 + 1) q^{65} + ( - 2 \beta_{2} + 9 \beta_1 - 4) q^{67} + (2 \beta_{2} - \beta_1 - 6) q^{68} + ( - 5 \beta_{2} + 5 \beta_1 - 1) q^{70} + ( - 6 \beta_{2} + 7 \beta_1 - 3) q^{71} + ( - 6 \beta_{2} - \beta_1 - 3) q^{73} + ( - 2 \beta_{2} + 7 \beta_1 - 11) q^{74} + (\beta_{2} - 2 \beta_1 + 1) q^{76} + ( - 3 \beta_{2} + \beta_1 - 1) q^{77} + ( - 4 \beta_{2} + 7 \beta_1 - 7) q^{79} + ( - 4 \beta_{2} + 3 \beta_1) q^{80} + ( - 3 \beta_{2} + 7 \beta_1 - 6) q^{82} + (\beta_{2} - 4 \beta_1 + 6) q^{83} + ( - 10 \beta_{2} + 8 \beta_1 + 1) q^{85} + (2 \beta_{2} - 7 \beta_1) q^{86} + (2 \beta_{2} - \beta_1 + 2) q^{88} + (5 \beta_{2} - 5 \beta_1) q^{89} + (12 \beta_{2} - 3 \beta_1 - 1) q^{91} + (7 \beta_{2} - 12 \beta_1 + 11) q^{92} + (\beta_{2} - 6 \beta_1 + 1) q^{94} + ( - \beta_{2} + 2) q^{95} + (3 \beta_{2} - 3 \beta_1 + 2) q^{97} + ( - 7 \beta_{2} + 8 \beta_1 - 7) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{2} + 7 q^{5} + q^{7} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 2 q^{2} + 7 q^{5} + q^{7} + 3 q^{8} + 7 q^{10} + 3 q^{11} - 5 q^{13} + 3 q^{14} + 2 q^{16} + 8 q^{17} + 3 q^{19} + 2 q^{22} + 13 q^{23} + 6 q^{25} + 6 q^{26} - 7 q^{28} + 6 q^{29} - 12 q^{31} - 7 q^{32} - 4 q^{34} + 14 q^{35} - 15 q^{37} + 2 q^{38} - 5 q^{41} + 4 q^{43} + 18 q^{46} + 8 q^{47} + 12 q^{49} + 11 q^{50} + 21 q^{52} + 20 q^{53} + 7 q^{55} - 20 q^{56} + 25 q^{58} - 3 q^{59} - q^{61} + 13 q^{62} - 11 q^{64} - 14 q^{65} - q^{67} - 21 q^{68} + 7 q^{70} + 4 q^{71} - 4 q^{73} - 24 q^{74} + q^{77} - 10 q^{79} + 7 q^{80} - 8 q^{82} + 13 q^{83} + 21 q^{85} - 9 q^{86} + 3 q^{88} - 10 q^{89} - 18 q^{91} + 14 q^{92} - 4 q^{94} + 7 q^{95} - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
−0.801938 0 −1.35690 0.753020 0 −2.93900 2.69202 0 −0.603875
1.2 0.554958 0 −1.69202 3.80194 0 4.85086 −2.04892 0 2.10992
1.3 2.24698 0 3.04892 2.44504 0 −0.911854 2.35690 0 5.49396
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(11\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1881.2.a.g 3
3.b odd 2 1 627.2.a.d 3
33.d even 2 1 6897.2.a.o 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
627.2.a.d 3 3.b odd 2 1
1881.2.a.g 3 1.a even 1 1 trivial
6897.2.a.o 3 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1881))\):

\( T_{2}^{3} - 2T_{2}^{2} - T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{3} - 7T_{5}^{2} + 14T_{5} - 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 2T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 7 T^{2} + \cdots - 7 \) Copy content Toggle raw display
$7$ \( T^{3} - T^{2} + \cdots - 13 \) Copy content Toggle raw display
$11$ \( (T - 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 5 T^{2} + \cdots - 41 \) Copy content Toggle raw display
$17$ \( T^{3} - 8 T^{2} + \cdots + 43 \) Copy content Toggle raw display
$19$ \( (T - 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 13 T^{2} + \cdots - 43 \) Copy content Toggle raw display
$29$ \( T^{3} - 6 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$31$ \( T^{3} + 12 T^{2} + \cdots - 223 \) Copy content Toggle raw display
$37$ \( T^{3} + 15 T^{2} + \cdots - 71 \) Copy content Toggle raw display
$41$ \( T^{3} + 5 T^{2} + \cdots - 97 \) Copy content Toggle raw display
$43$ \( T^{3} - 4 T^{2} + \cdots + 533 \) Copy content Toggle raw display
$47$ \( T^{3} - 8 T^{2} + \cdots + 239 \) Copy content Toggle raw display
$53$ \( T^{3} - 20 T^{2} + \cdots + 97 \) Copy content Toggle raw display
$59$ \( T^{3} + 3 T^{2} + \cdots - 97 \) Copy content Toggle raw display
$61$ \( T^{3} + T^{2} + \cdots - 701 \) Copy content Toggle raw display
$67$ \( T^{3} + T^{2} + \cdots + 503 \) Copy content Toggle raw display
$71$ \( T^{3} - 4 T^{2} + \cdots + 211 \) Copy content Toggle raw display
$73$ \( T^{3} + 4 T^{2} + \cdots + 83 \) Copy content Toggle raw display
$79$ \( T^{3} + 10 T^{2} + \cdots + 29 \) Copy content Toggle raw display
$83$ \( T^{3} - 13 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$89$ \( T^{3} + 10 T^{2} + \cdots - 125 \) Copy content Toggle raw display
$97$ \( T^{3} - 21T + 7 \) Copy content Toggle raw display
show more
show less