Properties

Label 1870.4.a.m.1.9
Level $1870$
Weight $4$
Character 1870.1
Self dual yes
Analytic conductor $110.334$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1870,4,Mod(1,1870)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1870, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1870.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1870 = 2 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1870.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,20,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.333571711\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} - 184 x^{8} + 198 x^{7} + 11125 x^{6} - 13769 x^{5} - 258561 x^{4} + 275849 x^{3} + \cdots - 2234586 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(5.92899\) of defining polynomial
Character \(\chi\) \(=\) 1870.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +5.92899 q^{3} +4.00000 q^{4} -5.00000 q^{5} +11.8580 q^{6} -1.15801 q^{7} +8.00000 q^{8} +8.15298 q^{9} -10.0000 q^{10} -11.0000 q^{11} +23.7160 q^{12} -7.82871 q^{13} -2.31602 q^{14} -29.6450 q^{15} +16.0000 q^{16} -17.0000 q^{17} +16.3060 q^{18} -55.7905 q^{19} -20.0000 q^{20} -6.86584 q^{21} -22.0000 q^{22} +71.8560 q^{23} +47.4320 q^{24} +25.0000 q^{25} -15.6574 q^{26} -111.744 q^{27} -4.63205 q^{28} -194.261 q^{29} -59.2899 q^{30} -122.871 q^{31} +32.0000 q^{32} -65.2189 q^{33} -34.0000 q^{34} +5.79006 q^{35} +32.6119 q^{36} -445.903 q^{37} -111.581 q^{38} -46.4164 q^{39} -40.0000 q^{40} +63.0266 q^{41} -13.7317 q^{42} +407.371 q^{43} -44.0000 q^{44} -40.7649 q^{45} +143.712 q^{46} +265.217 q^{47} +94.8639 q^{48} -341.659 q^{49} +50.0000 q^{50} -100.793 q^{51} -31.3148 q^{52} -449.487 q^{53} -223.488 q^{54} +55.0000 q^{55} -9.26409 q^{56} -330.782 q^{57} -388.521 q^{58} +630.469 q^{59} -118.580 q^{60} -288.244 q^{61} -245.741 q^{62} -9.44124 q^{63} +64.0000 q^{64} +39.1435 q^{65} -130.438 q^{66} -840.935 q^{67} -68.0000 q^{68} +426.034 q^{69} +11.5801 q^{70} +805.895 q^{71} +65.2238 q^{72} +193.318 q^{73} -891.807 q^{74} +148.225 q^{75} -223.162 q^{76} +12.7381 q^{77} -92.8327 q^{78} -729.926 q^{79} -80.0000 q^{80} -882.659 q^{81} +126.053 q^{82} -1033.32 q^{83} -27.4634 q^{84} +85.0000 q^{85} +814.742 q^{86} -1151.77 q^{87} -88.0000 q^{88} -1173.46 q^{89} -81.5298 q^{90} +9.06573 q^{91} +287.424 q^{92} -728.499 q^{93} +530.435 q^{94} +278.953 q^{95} +189.728 q^{96} +201.563 q^{97} -683.318 q^{98} -89.6828 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 20 q^{2} + q^{3} + 40 q^{4} - 50 q^{5} + 2 q^{6} + 19 q^{7} + 80 q^{8} + 99 q^{9} - 100 q^{10} - 110 q^{11} + 4 q^{12} - 41 q^{13} + 38 q^{14} - 5 q^{15} + 160 q^{16} - 170 q^{17} + 198 q^{18} - 157 q^{19}+ \cdots - 1089 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 5.92899 1.14104 0.570518 0.821285i \(-0.306743\pi\)
0.570518 + 0.821285i \(0.306743\pi\)
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) 11.8580 0.806834
\(7\) −1.15801 −0.0625268 −0.0312634 0.999511i \(-0.509953\pi\)
−0.0312634 + 0.999511i \(0.509953\pi\)
\(8\) 8.00000 0.353553
\(9\) 8.15298 0.301962
\(10\) −10.0000 −0.316228
\(11\) −11.0000 −0.301511
\(12\) 23.7160 0.570518
\(13\) −7.82871 −0.167023 −0.0835113 0.996507i \(-0.526613\pi\)
−0.0835113 + 0.996507i \(0.526613\pi\)
\(14\) −2.31602 −0.0442131
\(15\) −29.6450 −0.510287
\(16\) 16.0000 0.250000
\(17\) −17.0000 −0.242536
\(18\) 16.3060 0.213520
\(19\) −55.7905 −0.673644 −0.336822 0.941568i \(-0.609352\pi\)
−0.336822 + 0.941568i \(0.609352\pi\)
\(20\) −20.0000 −0.223607
\(21\) −6.86584 −0.0713452
\(22\) −22.0000 −0.213201
\(23\) 71.8560 0.651436 0.325718 0.945467i \(-0.394394\pi\)
0.325718 + 0.945467i \(0.394394\pi\)
\(24\) 47.4320 0.403417
\(25\) 25.0000 0.200000
\(26\) −15.6574 −0.118103
\(27\) −111.744 −0.796486
\(28\) −4.63205 −0.0312634
\(29\) −194.261 −1.24391 −0.621954 0.783054i \(-0.713661\pi\)
−0.621954 + 0.783054i \(0.713661\pi\)
\(30\) −59.2899 −0.360827
\(31\) −122.871 −0.711877 −0.355939 0.934509i \(-0.615839\pi\)
−0.355939 + 0.934509i \(0.615839\pi\)
\(32\) 32.0000 0.176777
\(33\) −65.2189 −0.344035
\(34\) −34.0000 −0.171499
\(35\) 5.79006 0.0279628
\(36\) 32.6119 0.150981
\(37\) −445.903 −1.98125 −0.990623 0.136626i \(-0.956374\pi\)
−0.990623 + 0.136626i \(0.956374\pi\)
\(38\) −111.581 −0.476338
\(39\) −46.4164 −0.190579
\(40\) −40.0000 −0.158114
\(41\) 63.0266 0.240076 0.120038 0.992769i \(-0.461698\pi\)
0.120038 + 0.992769i \(0.461698\pi\)
\(42\) −13.7317 −0.0504487
\(43\) 407.371 1.44473 0.722366 0.691511i \(-0.243055\pi\)
0.722366 + 0.691511i \(0.243055\pi\)
\(44\) −44.0000 −0.150756
\(45\) −40.7649 −0.135042
\(46\) 143.712 0.460635
\(47\) 265.217 0.823105 0.411552 0.911386i \(-0.364987\pi\)
0.411552 + 0.911386i \(0.364987\pi\)
\(48\) 94.8639 0.285259
\(49\) −341.659 −0.996090
\(50\) 50.0000 0.141421
\(51\) −100.793 −0.276742
\(52\) −31.3148 −0.0835113
\(53\) −449.487 −1.16494 −0.582469 0.812853i \(-0.697913\pi\)
−0.582469 + 0.812853i \(0.697913\pi\)
\(54\) −223.488 −0.563201
\(55\) 55.0000 0.134840
\(56\) −9.26409 −0.0221065
\(57\) −330.782 −0.768651
\(58\) −388.521 −0.879575
\(59\) 630.469 1.39119 0.695594 0.718435i \(-0.255141\pi\)
0.695594 + 0.718435i \(0.255141\pi\)
\(60\) −118.580 −0.255143
\(61\) −288.244 −0.605013 −0.302507 0.953147i \(-0.597823\pi\)
−0.302507 + 0.953147i \(0.597823\pi\)
\(62\) −245.741 −0.503373
\(63\) −9.44124 −0.0188807
\(64\) 64.0000 0.125000
\(65\) 39.1435 0.0746947
\(66\) −130.438 −0.243270
\(67\) −840.935 −1.53338 −0.766691 0.642017i \(-0.778098\pi\)
−0.766691 + 0.642017i \(0.778098\pi\)
\(68\) −68.0000 −0.121268
\(69\) 426.034 0.743311
\(70\) 11.5801 0.0197727
\(71\) 805.895 1.34707 0.673536 0.739154i \(-0.264774\pi\)
0.673536 + 0.739154i \(0.264774\pi\)
\(72\) 65.2238 0.106760
\(73\) 193.318 0.309948 0.154974 0.987919i \(-0.450471\pi\)
0.154974 + 0.987919i \(0.450471\pi\)
\(74\) −891.807 −1.40095
\(75\) 148.225 0.228207
\(76\) −223.162 −0.336822
\(77\) 12.7381 0.0188525
\(78\) −92.8327 −0.134759
\(79\) −729.926 −1.03953 −0.519766 0.854309i \(-0.673981\pi\)
−0.519766 + 0.854309i \(0.673981\pi\)
\(80\) −80.0000 −0.111803
\(81\) −882.659 −1.21078
\(82\) 126.053 0.169759
\(83\) −1033.32 −1.36652 −0.683262 0.730173i \(-0.739440\pi\)
−0.683262 + 0.730173i \(0.739440\pi\)
\(84\) −27.4634 −0.0356726
\(85\) 85.0000 0.108465
\(86\) 814.742 1.02158
\(87\) −1151.77 −1.41934
\(88\) −88.0000 −0.106600
\(89\) −1173.46 −1.39760 −0.698801 0.715316i \(-0.746283\pi\)
−0.698801 + 0.715316i \(0.746283\pi\)
\(90\) −81.5298 −0.0954888
\(91\) 9.06573 0.0104434
\(92\) 287.424 0.325718
\(93\) −728.499 −0.812277
\(94\) 530.435 0.582023
\(95\) 278.953 0.301263
\(96\) 189.728 0.201708
\(97\) 201.563 0.210986 0.105493 0.994420i \(-0.466358\pi\)
0.105493 + 0.994420i \(0.466358\pi\)
\(98\) −683.318 −0.704342
\(99\) −89.6828 −0.0910450
\(100\) 100.000 0.100000
\(101\) −211.505 −0.208371 −0.104186 0.994558i \(-0.533224\pi\)
−0.104186 + 0.994558i \(0.533224\pi\)
\(102\) −201.586 −0.195686
\(103\) −380.743 −0.364231 −0.182115 0.983277i \(-0.558294\pi\)
−0.182115 + 0.983277i \(0.558294\pi\)
\(104\) −62.6297 −0.0590514
\(105\) 34.3292 0.0319066
\(106\) −898.973 −0.823736
\(107\) 1208.98 1.09231 0.546153 0.837686i \(-0.316092\pi\)
0.546153 + 0.837686i \(0.316092\pi\)
\(108\) −446.976 −0.398243
\(109\) 1593.78 1.40052 0.700260 0.713887i \(-0.253067\pi\)
0.700260 + 0.713887i \(0.253067\pi\)
\(110\) 110.000 0.0953463
\(111\) −2643.76 −2.26067
\(112\) −18.5282 −0.0156317
\(113\) 1478.04 1.23046 0.615230 0.788348i \(-0.289063\pi\)
0.615230 + 0.788348i \(0.289063\pi\)
\(114\) −661.564 −0.543519
\(115\) −359.280 −0.291331
\(116\) −777.043 −0.621954
\(117\) −63.8273 −0.0504345
\(118\) 1260.94 0.983719
\(119\) 19.6862 0.0151650
\(120\) −237.160 −0.180414
\(121\) 121.000 0.0909091
\(122\) −576.487 −0.427809
\(123\) 373.684 0.273935
\(124\) −491.482 −0.355939
\(125\) −125.000 −0.0894427
\(126\) −18.8825 −0.0133507
\(127\) −254.497 −0.177819 −0.0889094 0.996040i \(-0.528338\pi\)
−0.0889094 + 0.996040i \(0.528338\pi\)
\(128\) 128.000 0.0883883
\(129\) 2415.30 1.64849
\(130\) 78.2871 0.0528172
\(131\) −350.098 −0.233497 −0.116749 0.993161i \(-0.537247\pi\)
−0.116749 + 0.993161i \(0.537247\pi\)
\(132\) −260.876 −0.172018
\(133\) 64.6061 0.0421207
\(134\) −1681.87 −1.08426
\(135\) 558.719 0.356199
\(136\) −136.000 −0.0857493
\(137\) −1032.20 −0.643702 −0.321851 0.946790i \(-0.604305\pi\)
−0.321851 + 0.946790i \(0.604305\pi\)
\(138\) 852.068 0.525600
\(139\) −277.019 −0.169039 −0.0845195 0.996422i \(-0.526936\pi\)
−0.0845195 + 0.996422i \(0.526936\pi\)
\(140\) 23.1602 0.0139814
\(141\) 1572.47 0.939192
\(142\) 1611.79 0.952524
\(143\) 86.1158 0.0503592
\(144\) 130.448 0.0754905
\(145\) 971.303 0.556292
\(146\) 386.637 0.219166
\(147\) −2025.69 −1.13657
\(148\) −1783.61 −0.990623
\(149\) −3014.29 −1.65732 −0.828658 0.559755i \(-0.810895\pi\)
−0.828658 + 0.559755i \(0.810895\pi\)
\(150\) 296.450 0.161367
\(151\) −73.1652 −0.0394311 −0.0197156 0.999806i \(-0.506276\pi\)
−0.0197156 + 0.999806i \(0.506276\pi\)
\(152\) −446.324 −0.238169
\(153\) −138.601 −0.0732366
\(154\) 25.4763 0.0133307
\(155\) 614.353 0.318361
\(156\) −185.665 −0.0952893
\(157\) −1365.34 −0.694051 −0.347026 0.937856i \(-0.612808\pi\)
−0.347026 + 0.937856i \(0.612808\pi\)
\(158\) −1459.85 −0.735060
\(159\) −2665.00 −1.32924
\(160\) −160.000 −0.0790569
\(161\) −83.2101 −0.0407322
\(162\) −1765.32 −0.856151
\(163\) −3301.62 −1.58652 −0.793261 0.608881i \(-0.791619\pi\)
−0.793261 + 0.608881i \(0.791619\pi\)
\(164\) 252.106 0.120038
\(165\) 326.095 0.153857
\(166\) −2066.64 −0.966279
\(167\) −409.563 −0.189778 −0.0948889 0.995488i \(-0.530250\pi\)
−0.0948889 + 0.995488i \(0.530250\pi\)
\(168\) −54.9268 −0.0252244
\(169\) −2135.71 −0.972103
\(170\) 170.000 0.0766965
\(171\) −454.859 −0.203415
\(172\) 1629.48 0.722366
\(173\) −2932.42 −1.28872 −0.644358 0.764724i \(-0.722875\pi\)
−0.644358 + 0.764724i \(0.722875\pi\)
\(174\) −2303.54 −1.00363
\(175\) −28.9503 −0.0125054
\(176\) −176.000 −0.0753778
\(177\) 3738.05 1.58740
\(178\) −2346.92 −0.988254
\(179\) 1113.27 0.464861 0.232430 0.972613i \(-0.425332\pi\)
0.232430 + 0.972613i \(0.425332\pi\)
\(180\) −163.060 −0.0675208
\(181\) 2691.56 1.10531 0.552657 0.833409i \(-0.313614\pi\)
0.552657 + 0.833409i \(0.313614\pi\)
\(182\) 18.1315 0.00738458
\(183\) −1708.99 −0.690342
\(184\) 574.848 0.230317
\(185\) 2229.52 0.886040
\(186\) −1457.00 −0.574367
\(187\) 187.000 0.0731272
\(188\) 1060.87 0.411552
\(189\) 129.401 0.0498017
\(190\) 557.905 0.213025
\(191\) 4448.80 1.68536 0.842679 0.538416i \(-0.180977\pi\)
0.842679 + 0.538416i \(0.180977\pi\)
\(192\) 379.456 0.142629
\(193\) 1802.85 0.672393 0.336197 0.941792i \(-0.390859\pi\)
0.336197 + 0.941792i \(0.390859\pi\)
\(194\) 403.125 0.149189
\(195\) 232.082 0.0852294
\(196\) −1366.64 −0.498045
\(197\) −3562.79 −1.28852 −0.644259 0.764808i \(-0.722834\pi\)
−0.644259 + 0.764808i \(0.722834\pi\)
\(198\) −179.366 −0.0643786
\(199\) 3719.03 1.32480 0.662399 0.749151i \(-0.269538\pi\)
0.662399 + 0.749151i \(0.269538\pi\)
\(200\) 200.000 0.0707107
\(201\) −4985.90 −1.74964
\(202\) −423.009 −0.147341
\(203\) 224.956 0.0777775
\(204\) −403.172 −0.138371
\(205\) −315.133 −0.107365
\(206\) −761.486 −0.257550
\(207\) 585.841 0.196709
\(208\) −125.259 −0.0417556
\(209\) 613.696 0.203111
\(210\) 68.6584 0.0225613
\(211\) −4168.11 −1.35993 −0.679964 0.733245i \(-0.738005\pi\)
−0.679964 + 0.733245i \(0.738005\pi\)
\(212\) −1797.95 −0.582469
\(213\) 4778.15 1.53706
\(214\) 2417.96 0.772377
\(215\) −2036.85 −0.646104
\(216\) −893.951 −0.281600
\(217\) 142.285 0.0445114
\(218\) 3187.57 0.990318
\(219\) 1146.18 0.353662
\(220\) 220.000 0.0674200
\(221\) 133.088 0.0405089
\(222\) −5287.52 −1.59854
\(223\) 1552.60 0.466233 0.233117 0.972449i \(-0.425108\pi\)
0.233117 + 0.972449i \(0.425108\pi\)
\(224\) −37.0564 −0.0110533
\(225\) 203.824 0.0603924
\(226\) 2956.07 0.870066
\(227\) 5523.16 1.61491 0.807456 0.589928i \(-0.200844\pi\)
0.807456 + 0.589928i \(0.200844\pi\)
\(228\) −1323.13 −0.384326
\(229\) 4648.86 1.34151 0.670754 0.741680i \(-0.265971\pi\)
0.670754 + 0.741680i \(0.265971\pi\)
\(230\) −718.560 −0.206002
\(231\) 75.5243 0.0215114
\(232\) −1554.09 −0.439788
\(233\) 800.923 0.225194 0.112597 0.993641i \(-0.464083\pi\)
0.112597 + 0.993641i \(0.464083\pi\)
\(234\) −127.655 −0.0356626
\(235\) −1326.09 −0.368104
\(236\) 2521.88 0.695594
\(237\) −4327.73 −1.18614
\(238\) 39.3724 0.0107232
\(239\) −5941.13 −1.60795 −0.803975 0.594663i \(-0.797285\pi\)
−0.803975 + 0.594663i \(0.797285\pi\)
\(240\) −474.320 −0.127572
\(241\) −5081.37 −1.35817 −0.679087 0.734058i \(-0.737624\pi\)
−0.679087 + 0.734058i \(0.737624\pi\)
\(242\) 242.000 0.0642824
\(243\) −2216.20 −0.585058
\(244\) −1152.97 −0.302507
\(245\) 1708.30 0.445465
\(246\) 747.368 0.193701
\(247\) 436.768 0.112514
\(248\) −982.964 −0.251687
\(249\) −6126.55 −1.55925
\(250\) −250.000 −0.0632456
\(251\) 1108.98 0.278877 0.139439 0.990231i \(-0.455470\pi\)
0.139439 + 0.990231i \(0.455470\pi\)
\(252\) −37.7650 −0.00944036
\(253\) −790.416 −0.196415
\(254\) −508.995 −0.125737
\(255\) 503.965 0.123763
\(256\) 256.000 0.0625000
\(257\) 312.961 0.0759610 0.0379805 0.999278i \(-0.487908\pi\)
0.0379805 + 0.999278i \(0.487908\pi\)
\(258\) 4830.60 1.16566
\(259\) 516.361 0.123881
\(260\) 156.574 0.0373474
\(261\) −1583.80 −0.375613
\(262\) −700.195 −0.165108
\(263\) 6588.23 1.54467 0.772334 0.635216i \(-0.219089\pi\)
0.772334 + 0.635216i \(0.219089\pi\)
\(264\) −521.752 −0.121635
\(265\) 2247.43 0.520976
\(266\) 129.212 0.0297839
\(267\) −6957.44 −1.59471
\(268\) −3363.74 −0.766691
\(269\) −5668.89 −1.28490 −0.642451 0.766327i \(-0.722082\pi\)
−0.642451 + 0.766327i \(0.722082\pi\)
\(270\) 1117.44 0.251871
\(271\) 5925.39 1.32820 0.664099 0.747644i \(-0.268815\pi\)
0.664099 + 0.747644i \(0.268815\pi\)
\(272\) −272.000 −0.0606339
\(273\) 53.7507 0.0119163
\(274\) −2064.41 −0.455166
\(275\) −275.000 −0.0603023
\(276\) 1704.14 0.371656
\(277\) 373.511 0.0810185 0.0405092 0.999179i \(-0.487102\pi\)
0.0405092 + 0.999179i \(0.487102\pi\)
\(278\) −554.037 −0.119529
\(279\) −1001.76 −0.214960
\(280\) 46.3205 0.00988635
\(281\) 4107.97 0.872103 0.436052 0.899922i \(-0.356377\pi\)
0.436052 + 0.899922i \(0.356377\pi\)
\(282\) 3144.94 0.664109
\(283\) 3410.81 0.716437 0.358219 0.933638i \(-0.383384\pi\)
0.358219 + 0.933638i \(0.383384\pi\)
\(284\) 3223.58 0.673536
\(285\) 1653.91 0.343751
\(286\) 172.232 0.0356093
\(287\) −72.9855 −0.0150111
\(288\) 260.895 0.0533799
\(289\) 289.000 0.0588235
\(290\) 1942.61 0.393358
\(291\) 1195.06 0.240742
\(292\) 773.274 0.154974
\(293\) −5314.81 −1.05971 −0.529854 0.848089i \(-0.677753\pi\)
−0.529854 + 0.848089i \(0.677753\pi\)
\(294\) −4051.39 −0.803680
\(295\) −3152.35 −0.622158
\(296\) −3567.23 −0.700476
\(297\) 1229.18 0.240150
\(298\) −6028.58 −1.17190
\(299\) −562.540 −0.108804
\(300\) 592.899 0.114104
\(301\) −471.740 −0.0903344
\(302\) −146.330 −0.0278820
\(303\) −1254.01 −0.237759
\(304\) −892.649 −0.168411
\(305\) 1441.22 0.270570
\(306\) −277.201 −0.0517861
\(307\) 4385.66 0.815318 0.407659 0.913134i \(-0.366345\pi\)
0.407659 + 0.913134i \(0.366345\pi\)
\(308\) 50.9525 0.00942626
\(309\) −2257.42 −0.415600
\(310\) 1228.71 0.225115
\(311\) 5856.61 1.06784 0.533919 0.845536i \(-0.320719\pi\)
0.533919 + 0.845536i \(0.320719\pi\)
\(312\) −371.331 −0.0673797
\(313\) 3998.92 0.722149 0.361074 0.932537i \(-0.382410\pi\)
0.361074 + 0.932537i \(0.382410\pi\)
\(314\) −2730.68 −0.490768
\(315\) 47.2062 0.00844371
\(316\) −2919.70 −0.519766
\(317\) −5654.25 −1.00181 −0.500905 0.865502i \(-0.667000\pi\)
−0.500905 + 0.865502i \(0.667000\pi\)
\(318\) −5330.01 −0.939912
\(319\) 2136.87 0.375052
\(320\) −320.000 −0.0559017
\(321\) 7168.05 1.24636
\(322\) −166.420 −0.0288020
\(323\) 948.439 0.163383
\(324\) −3530.64 −0.605391
\(325\) −195.718 −0.0334045
\(326\) −6603.25 −1.12184
\(327\) 9449.53 1.59804
\(328\) 504.213 0.0848795
\(329\) −307.125 −0.0514661
\(330\) 652.189 0.108793
\(331\) 4594.26 0.762911 0.381455 0.924387i \(-0.375423\pi\)
0.381455 + 0.924387i \(0.375423\pi\)
\(332\) −4133.28 −0.683262
\(333\) −3635.44 −0.598261
\(334\) −819.125 −0.134193
\(335\) 4204.67 0.685749
\(336\) −109.854 −0.0178363
\(337\) 6864.25 1.10955 0.554777 0.831999i \(-0.312804\pi\)
0.554777 + 0.831999i \(0.312804\pi\)
\(338\) −4271.42 −0.687381
\(339\) 8763.27 1.40400
\(340\) 340.000 0.0542326
\(341\) 1351.58 0.214639
\(342\) −909.718 −0.143836
\(343\) 792.843 0.124809
\(344\) 3258.97 0.510790
\(345\) −2130.17 −0.332419
\(346\) −5864.84 −0.911260
\(347\) −6571.61 −1.01666 −0.508332 0.861161i \(-0.669738\pi\)
−0.508332 + 0.861161i \(0.669738\pi\)
\(348\) −4607.08 −0.709671
\(349\) −6888.12 −1.05648 −0.528242 0.849094i \(-0.677149\pi\)
−0.528242 + 0.849094i \(0.677149\pi\)
\(350\) −57.9006 −0.00884262
\(351\) 874.810 0.133031
\(352\) −352.000 −0.0533002
\(353\) 9736.91 1.46811 0.734056 0.679089i \(-0.237625\pi\)
0.734056 + 0.679089i \(0.237625\pi\)
\(354\) 7476.10 1.12246
\(355\) −4029.48 −0.602429
\(356\) −4693.84 −0.698801
\(357\) 116.719 0.0173038
\(358\) 2226.55 0.328706
\(359\) −1556.98 −0.228897 −0.114449 0.993429i \(-0.536510\pi\)
−0.114449 + 0.993429i \(0.536510\pi\)
\(360\) −326.119 −0.0477444
\(361\) −3746.41 −0.546204
\(362\) 5383.11 0.781575
\(363\) 717.408 0.103731
\(364\) 36.2629 0.00522169
\(365\) −966.592 −0.138613
\(366\) −3417.99 −0.488145
\(367\) −7514.94 −1.06887 −0.534437 0.845208i \(-0.679476\pi\)
−0.534437 + 0.845208i \(0.679476\pi\)
\(368\) 1149.70 0.162859
\(369\) 513.854 0.0724937
\(370\) 4459.03 0.626525
\(371\) 520.511 0.0728398
\(372\) −2913.99 −0.406139
\(373\) 3971.18 0.551260 0.275630 0.961264i \(-0.411114\pi\)
0.275630 + 0.961264i \(0.411114\pi\)
\(374\) 374.000 0.0517088
\(375\) −741.124 −0.102057
\(376\) 2121.74 0.291011
\(377\) 1520.81 0.207761
\(378\) 258.801 0.0352151
\(379\) 9480.09 1.28485 0.642427 0.766347i \(-0.277928\pi\)
0.642427 + 0.766347i \(0.277928\pi\)
\(380\) 1115.81 0.150631
\(381\) −1508.91 −0.202898
\(382\) 8897.59 1.19173
\(383\) −7681.83 −1.02486 −0.512432 0.858728i \(-0.671256\pi\)
−0.512432 + 0.858728i \(0.671256\pi\)
\(384\) 758.911 0.100854
\(385\) −63.6906 −0.00843111
\(386\) 3605.70 0.475454
\(387\) 3321.29 0.436255
\(388\) 806.251 0.105493
\(389\) −3398.73 −0.442988 −0.221494 0.975162i \(-0.571093\pi\)
−0.221494 + 0.975162i \(0.571093\pi\)
\(390\) 464.164 0.0602663
\(391\) −1221.55 −0.157996
\(392\) −2733.27 −0.352171
\(393\) −2075.73 −0.266429
\(394\) −7125.57 −0.911120
\(395\) 3649.63 0.464893
\(396\) −358.731 −0.0455225
\(397\) −9859.27 −1.24640 −0.623202 0.782061i \(-0.714169\pi\)
−0.623202 + 0.782061i \(0.714169\pi\)
\(398\) 7438.06 0.936774
\(399\) 383.049 0.0480613
\(400\) 400.000 0.0500000
\(401\) 9533.96 1.18729 0.593645 0.804727i \(-0.297688\pi\)
0.593645 + 0.804727i \(0.297688\pi\)
\(402\) −9971.80 −1.23718
\(403\) 961.917 0.118900
\(404\) −846.019 −0.104186
\(405\) 4413.30 0.541478
\(406\) 449.912 0.0549970
\(407\) 4904.94 0.597368
\(408\) −806.343 −0.0978430
\(409\) −5256.40 −0.635483 −0.317741 0.948177i \(-0.602924\pi\)
−0.317741 + 0.948177i \(0.602924\pi\)
\(410\) −630.266 −0.0759185
\(411\) −6119.93 −0.734486
\(412\) −1522.97 −0.182115
\(413\) −730.091 −0.0869865
\(414\) 1171.68 0.139094
\(415\) 5166.60 0.611129
\(416\) −250.519 −0.0295257
\(417\) −1642.44 −0.192880
\(418\) 1227.39 0.143621
\(419\) 2823.33 0.329186 0.164593 0.986362i \(-0.447369\pi\)
0.164593 + 0.986362i \(0.447369\pi\)
\(420\) 137.317 0.0159533
\(421\) 5137.79 0.594776 0.297388 0.954757i \(-0.403885\pi\)
0.297388 + 0.954757i \(0.403885\pi\)
\(422\) −8336.23 −0.961614
\(423\) 2162.31 0.248547
\(424\) −3595.89 −0.411868
\(425\) −425.000 −0.0485071
\(426\) 9556.30 1.08686
\(427\) 333.789 0.0378295
\(428\) 4835.93 0.546153
\(429\) 510.580 0.0574616
\(430\) −4073.71 −0.456864
\(431\) −7402.54 −0.827304 −0.413652 0.910435i \(-0.635747\pi\)
−0.413652 + 0.910435i \(0.635747\pi\)
\(432\) −1787.90 −0.199121
\(433\) 11618.2 1.28946 0.644731 0.764409i \(-0.276969\pi\)
0.644731 + 0.764409i \(0.276969\pi\)
\(434\) 284.571 0.0314743
\(435\) 5758.85 0.634749
\(436\) 6375.13 0.700260
\(437\) −4008.89 −0.438836
\(438\) 2292.37 0.250077
\(439\) 17218.8 1.87200 0.936000 0.352000i \(-0.114498\pi\)
0.936000 + 0.352000i \(0.114498\pi\)
\(440\) 440.000 0.0476731
\(441\) −2785.54 −0.300782
\(442\) 266.176 0.0286441
\(443\) −7165.81 −0.768527 −0.384264 0.923223i \(-0.625545\pi\)
−0.384264 + 0.923223i \(0.625545\pi\)
\(444\) −10575.0 −1.13034
\(445\) 5867.30 0.625027
\(446\) 3105.21 0.329677
\(447\) −17871.7 −1.89106
\(448\) −74.1127 −0.00781584
\(449\) 7860.80 0.826223 0.413112 0.910680i \(-0.364442\pi\)
0.413112 + 0.910680i \(0.364442\pi\)
\(450\) 407.649 0.0427039
\(451\) −693.292 −0.0723855
\(452\) 5912.14 0.615230
\(453\) −433.796 −0.0449923
\(454\) 11046.3 1.14192
\(455\) −45.3287 −0.00467042
\(456\) −2646.25 −0.271759
\(457\) −8263.60 −0.845853 −0.422927 0.906164i \(-0.638997\pi\)
−0.422927 + 0.906164i \(0.638997\pi\)
\(458\) 9297.72 0.948589
\(459\) 1899.65 0.193176
\(460\) −1437.12 −0.145665
\(461\) −11902.5 −1.20250 −0.601251 0.799061i \(-0.705331\pi\)
−0.601251 + 0.799061i \(0.705331\pi\)
\(462\) 151.049 0.0152109
\(463\) −3042.98 −0.305441 −0.152721 0.988269i \(-0.548803\pi\)
−0.152721 + 0.988269i \(0.548803\pi\)
\(464\) −3108.17 −0.310977
\(465\) 3642.49 0.363261
\(466\) 1601.85 0.159236
\(467\) −13433.5 −1.33111 −0.665556 0.746348i \(-0.731805\pi\)
−0.665556 + 0.746348i \(0.731805\pi\)
\(468\) −255.309 −0.0252172
\(469\) 973.812 0.0958773
\(470\) −2652.17 −0.260289
\(471\) −8095.10 −0.791937
\(472\) 5043.75 0.491859
\(473\) −4481.08 −0.435603
\(474\) −8655.45 −0.838730
\(475\) −1394.76 −0.134729
\(476\) 78.7448 0.00758248
\(477\) −3664.65 −0.351767
\(478\) −11882.3 −1.13699
\(479\) 12311.5 1.17438 0.587190 0.809449i \(-0.300234\pi\)
0.587190 + 0.809449i \(0.300234\pi\)
\(480\) −948.639 −0.0902068
\(481\) 3490.85 0.330913
\(482\) −10162.7 −0.960374
\(483\) −493.352 −0.0464768
\(484\) 484.000 0.0454545
\(485\) −1007.81 −0.0943556
\(486\) −4432.40 −0.413699
\(487\) 5107.52 0.475244 0.237622 0.971358i \(-0.423632\pi\)
0.237622 + 0.971358i \(0.423632\pi\)
\(488\) −2305.95 −0.213905
\(489\) −19575.3 −1.81028
\(490\) 3416.59 0.314991
\(491\) 14947.2 1.37384 0.686922 0.726731i \(-0.258961\pi\)
0.686922 + 0.726731i \(0.258961\pi\)
\(492\) 1494.74 0.136967
\(493\) 3302.43 0.301692
\(494\) 873.536 0.0795592
\(495\) 448.414 0.0407166
\(496\) −1965.93 −0.177969
\(497\) −933.236 −0.0842281
\(498\) −12253.1 −1.10256
\(499\) −11868.1 −1.06471 −0.532356 0.846521i \(-0.678693\pi\)
−0.532356 + 0.846521i \(0.678693\pi\)
\(500\) −500.000 −0.0447214
\(501\) −2428.29 −0.216543
\(502\) 2217.96 0.197196
\(503\) −8541.77 −0.757174 −0.378587 0.925566i \(-0.623590\pi\)
−0.378587 + 0.925566i \(0.623590\pi\)
\(504\) −75.5300 −0.00667534
\(505\) 1057.52 0.0931865
\(506\) −1580.83 −0.138887
\(507\) −12662.6 −1.10920
\(508\) −1017.99 −0.0889094
\(509\) 12587.4 1.09612 0.548060 0.836439i \(-0.315366\pi\)
0.548060 + 0.836439i \(0.315366\pi\)
\(510\) 1007.93 0.0875134
\(511\) −223.865 −0.0193800
\(512\) 512.000 0.0441942
\(513\) 6234.25 0.536548
\(514\) 625.922 0.0537125
\(515\) 1903.72 0.162889
\(516\) 9661.20 0.824245
\(517\) −2917.39 −0.248175
\(518\) 1032.72 0.0875970
\(519\) −17386.3 −1.47047
\(520\) 313.148 0.0264086
\(521\) −15334.8 −1.28950 −0.644751 0.764393i \(-0.723039\pi\)
−0.644751 + 0.764393i \(0.723039\pi\)
\(522\) −3167.61 −0.265598
\(523\) −15309.7 −1.28001 −0.640006 0.768370i \(-0.721068\pi\)
−0.640006 + 0.768370i \(0.721068\pi\)
\(524\) −1400.39 −0.116749
\(525\) −171.646 −0.0142690
\(526\) 13176.5 1.09225
\(527\) 2088.80 0.172656
\(528\) −1043.50 −0.0860088
\(529\) −7003.71 −0.575632
\(530\) 4494.87 0.368386
\(531\) 5140.20 0.420086
\(532\) 258.424 0.0210604
\(533\) −493.417 −0.0400980
\(534\) −13914.9 −1.12763
\(535\) −6044.91 −0.488494
\(536\) −6727.48 −0.542132
\(537\) 6600.60 0.530423
\(538\) −11337.8 −0.908562
\(539\) 3758.25 0.300333
\(540\) 2234.88 0.178100
\(541\) −3902.40 −0.310124 −0.155062 0.987905i \(-0.549558\pi\)
−0.155062 + 0.987905i \(0.549558\pi\)
\(542\) 11850.8 0.939178
\(543\) 15958.2 1.26120
\(544\) −544.000 −0.0428746
\(545\) −7968.92 −0.626332
\(546\) 107.501 0.00842607
\(547\) 3896.76 0.304595 0.152298 0.988335i \(-0.451333\pi\)
0.152298 + 0.988335i \(0.451333\pi\)
\(548\) −4128.81 −0.321851
\(549\) −2350.04 −0.182691
\(550\) −550.000 −0.0426401
\(551\) 10837.9 0.837950
\(552\) 3408.27 0.262800
\(553\) 845.262 0.0649986
\(554\) 747.023 0.0572887
\(555\) 13218.8 1.01100
\(556\) −1108.07 −0.0845195
\(557\) −3459.67 −0.263179 −0.131590 0.991304i \(-0.542008\pi\)
−0.131590 + 0.991304i \(0.542008\pi\)
\(558\) −2003.52 −0.152000
\(559\) −3189.19 −0.241303
\(560\) 92.6409 0.00699070
\(561\) 1108.72 0.0834408
\(562\) 8215.94 0.616670
\(563\) 7899.95 0.591373 0.295687 0.955285i \(-0.404452\pi\)
0.295687 + 0.955285i \(0.404452\pi\)
\(564\) 6289.89 0.469596
\(565\) −7390.18 −0.550278
\(566\) 6821.62 0.506597
\(567\) 1022.13 0.0757062
\(568\) 6447.16 0.476262
\(569\) −7252.36 −0.534332 −0.267166 0.963651i \(-0.586087\pi\)
−0.267166 + 0.963651i \(0.586087\pi\)
\(570\) 3307.82 0.243069
\(571\) 12104.0 0.887103 0.443552 0.896249i \(-0.353718\pi\)
0.443552 + 0.896249i \(0.353718\pi\)
\(572\) 344.463 0.0251796
\(573\) 26376.9 1.92305
\(574\) −145.971 −0.0106145
\(575\) 1796.40 0.130287
\(576\) 521.791 0.0377453
\(577\) −10124.5 −0.730483 −0.365242 0.930913i \(-0.619014\pi\)
−0.365242 + 0.930913i \(0.619014\pi\)
\(578\) 578.000 0.0415945
\(579\) 10689.1 0.767225
\(580\) 3885.21 0.278146
\(581\) 1196.60 0.0854444
\(582\) 2390.13 0.170230
\(583\) 4944.35 0.351242
\(584\) 1546.55 0.109583
\(585\) 319.136 0.0225550
\(586\) −10629.6 −0.749327
\(587\) 8996.14 0.632556 0.316278 0.948666i \(-0.397567\pi\)
0.316278 + 0.948666i \(0.397567\pi\)
\(588\) −8102.78 −0.568287
\(589\) 6855.01 0.479552
\(590\) −6304.69 −0.439932
\(591\) −21123.7 −1.47024
\(592\) −7134.46 −0.495311
\(593\) 283.298 0.0196183 0.00980916 0.999952i \(-0.496878\pi\)
0.00980916 + 0.999952i \(0.496878\pi\)
\(594\) 2458.37 0.169811
\(595\) −98.4310 −0.00678198
\(596\) −12057.2 −0.828658
\(597\) 22050.1 1.51164
\(598\) −1125.08 −0.0769364
\(599\) 20598.4 1.40506 0.702529 0.711655i \(-0.252054\pi\)
0.702529 + 0.711655i \(0.252054\pi\)
\(600\) 1185.80 0.0806834
\(601\) −16680.6 −1.13214 −0.566069 0.824358i \(-0.691536\pi\)
−0.566069 + 0.824358i \(0.691536\pi\)
\(602\) −943.481 −0.0638761
\(603\) −6856.12 −0.463023
\(604\) −292.661 −0.0197156
\(605\) −605.000 −0.0406558
\(606\) −2508.02 −0.168121
\(607\) 6921.57 0.462830 0.231415 0.972855i \(-0.425664\pi\)
0.231415 + 0.972855i \(0.425664\pi\)
\(608\) −1785.30 −0.119085
\(609\) 1333.76 0.0887469
\(610\) 2882.44 0.191322
\(611\) −2076.31 −0.137477
\(612\) −554.403 −0.0366183
\(613\) 13460.6 0.886897 0.443448 0.896300i \(-0.353755\pi\)
0.443448 + 0.896300i \(0.353755\pi\)
\(614\) 8771.31 0.576517
\(615\) −1868.42 −0.122507
\(616\) 101.905 0.00666537
\(617\) 1050.68 0.0685554 0.0342777 0.999412i \(-0.489087\pi\)
0.0342777 + 0.999412i \(0.489087\pi\)
\(618\) −4514.85 −0.293874
\(619\) −11037.6 −0.716704 −0.358352 0.933587i \(-0.616661\pi\)
−0.358352 + 0.933587i \(0.616661\pi\)
\(620\) 2457.41 0.159181
\(621\) −8029.47 −0.518859
\(622\) 11713.2 0.755076
\(623\) 1358.88 0.0873875
\(624\) −742.662 −0.0476447
\(625\) 625.000 0.0400000
\(626\) 7997.85 0.510636
\(627\) 3638.60 0.231757
\(628\) −5461.36 −0.347026
\(629\) 7580.36 0.480523
\(630\) 94.4124 0.00597061
\(631\) 7528.02 0.474938 0.237469 0.971395i \(-0.423682\pi\)
0.237469 + 0.971395i \(0.423682\pi\)
\(632\) −5839.41 −0.367530
\(633\) −24712.7 −1.55173
\(634\) −11308.5 −0.708387
\(635\) 1272.49 0.0795230
\(636\) −10660.0 −0.664618
\(637\) 2674.75 0.166370
\(638\) 4273.74 0.265202
\(639\) 6570.45 0.406765
\(640\) −640.000 −0.0395285
\(641\) −15162.8 −0.934315 −0.467158 0.884174i \(-0.654722\pi\)
−0.467158 + 0.884174i \(0.654722\pi\)
\(642\) 14336.1 0.881309
\(643\) 24324.0 1.49182 0.745912 0.666044i \(-0.232014\pi\)
0.745912 + 0.666044i \(0.232014\pi\)
\(644\) −332.841 −0.0203661
\(645\) −12076.5 −0.737228
\(646\) 1896.88 0.115529
\(647\) −31378.8 −1.90669 −0.953345 0.301884i \(-0.902385\pi\)
−0.953345 + 0.301884i \(0.902385\pi\)
\(648\) −7061.27 −0.428076
\(649\) −6935.16 −0.419459
\(650\) −391.435 −0.0236206
\(651\) 843.610 0.0507891
\(652\) −13206.5 −0.793261
\(653\) −31627.3 −1.89536 −0.947681 0.319219i \(-0.896580\pi\)
−0.947681 + 0.319219i \(0.896580\pi\)
\(654\) 18899.1 1.12999
\(655\) 1750.49 0.104423
\(656\) 1008.43 0.0600189
\(657\) 1576.12 0.0935926
\(658\) −614.250 −0.0363920
\(659\) 4581.08 0.270795 0.135397 0.990791i \(-0.456769\pi\)
0.135397 + 0.990791i \(0.456769\pi\)
\(660\) 1304.38 0.0769286
\(661\) −28954.6 −1.70379 −0.851894 0.523714i \(-0.824546\pi\)
−0.851894 + 0.523714i \(0.824546\pi\)
\(662\) 9188.52 0.539459
\(663\) 789.078 0.0462221
\(664\) −8266.56 −0.483140
\(665\) −323.031 −0.0188370
\(666\) −7270.88 −0.423035
\(667\) −13958.8 −0.810325
\(668\) −1638.25 −0.0948889
\(669\) 9205.37 0.531989
\(670\) 8409.35 0.484898
\(671\) 3170.68 0.182418
\(672\) −219.707 −0.0126122
\(673\) −13148.7 −0.753112 −0.376556 0.926394i \(-0.622892\pi\)
−0.376556 + 0.926394i \(0.622892\pi\)
\(674\) 13728.5 0.784572
\(675\) −2793.60 −0.159297
\(676\) −8542.85 −0.486052
\(677\) −9829.58 −0.558023 −0.279011 0.960288i \(-0.590007\pi\)
−0.279011 + 0.960288i \(0.590007\pi\)
\(678\) 17526.5 0.992776
\(679\) −233.412 −0.0131922
\(680\) 680.000 0.0383482
\(681\) 32746.8 1.84267
\(682\) 2703.15 0.151773
\(683\) −29002.6 −1.62482 −0.812410 0.583086i \(-0.801845\pi\)
−0.812410 + 0.583086i \(0.801845\pi\)
\(684\) −1819.44 −0.101707
\(685\) 5161.02 0.287872
\(686\) 1585.69 0.0882533
\(687\) 27563.1 1.53071
\(688\) 6517.93 0.361183
\(689\) 3518.90 0.194571
\(690\) −4260.34 −0.235056
\(691\) 17124.8 0.942776 0.471388 0.881926i \(-0.343753\pi\)
0.471388 + 0.881926i \(0.343753\pi\)
\(692\) −11729.7 −0.644358
\(693\) 103.854 0.00569275
\(694\) −13143.2 −0.718890
\(695\) 1385.09 0.0755965
\(696\) −9214.17 −0.501813
\(697\) −1071.45 −0.0582269
\(698\) −13776.2 −0.747047
\(699\) 4748.67 0.256954
\(700\) −115.801 −0.00625268
\(701\) 19976.2 1.07631 0.538153 0.842847i \(-0.319122\pi\)
0.538153 + 0.842847i \(0.319122\pi\)
\(702\) 1749.62 0.0940672
\(703\) 24877.2 1.33465
\(704\) −704.000 −0.0376889
\(705\) −7862.36 −0.420019
\(706\) 19473.8 1.03811
\(707\) 244.925 0.0130288
\(708\) 14952.2 0.793698
\(709\) 28055.1 1.48608 0.743040 0.669246i \(-0.233383\pi\)
0.743040 + 0.669246i \(0.233383\pi\)
\(710\) −8058.95 −0.425982
\(711\) −5951.07 −0.313899
\(712\) −9387.68 −0.494127
\(713\) −8828.99 −0.463742
\(714\) 233.439 0.0122356
\(715\) −430.579 −0.0225213
\(716\) 4453.10 0.232430
\(717\) −35225.0 −1.83473
\(718\) −3113.95 −0.161855
\(719\) 22496.4 1.16686 0.583430 0.812163i \(-0.301710\pi\)
0.583430 + 0.812163i \(0.301710\pi\)
\(720\) −652.238 −0.0337604
\(721\) 440.905 0.0227742
\(722\) −7492.83 −0.386225
\(723\) −30127.4 −1.54972
\(724\) 10766.2 0.552657
\(725\) −4856.52 −0.248781
\(726\) 1434.82 0.0733485
\(727\) 3083.62 0.157311 0.0786556 0.996902i \(-0.474937\pi\)
0.0786556 + 0.996902i \(0.474937\pi\)
\(728\) 72.5259 0.00369229
\(729\) 10692.0 0.543209
\(730\) −1933.18 −0.0980142
\(731\) −6925.31 −0.350399
\(732\) −6835.98 −0.345171
\(733\) −780.281 −0.0393183 −0.0196592 0.999807i \(-0.506258\pi\)
−0.0196592 + 0.999807i \(0.506258\pi\)
\(734\) −15029.9 −0.755808
\(735\) 10128.5 0.508292
\(736\) 2299.39 0.115159
\(737\) 9250.28 0.462332
\(738\) 1027.71 0.0512608
\(739\) 24317.8 1.21048 0.605240 0.796043i \(-0.293077\pi\)
0.605240 + 0.796043i \(0.293077\pi\)
\(740\) 8918.07 0.443020
\(741\) 2589.59 0.128382
\(742\) 1041.02 0.0515055
\(743\) −14601.0 −0.720942 −0.360471 0.932770i \(-0.617384\pi\)
−0.360471 + 0.932770i \(0.617384\pi\)
\(744\) −5827.99 −0.287183
\(745\) 15071.4 0.741174
\(746\) 7942.36 0.389799
\(747\) −8424.63 −0.412639
\(748\) 748.000 0.0365636
\(749\) −1400.01 −0.0682983
\(750\) −1482.25 −0.0721654
\(751\) 35006.8 1.70095 0.850476 0.526013i \(-0.176314\pi\)
0.850476 + 0.526013i \(0.176314\pi\)
\(752\) 4243.48 0.205776
\(753\) 6575.14 0.318209
\(754\) 3041.62 0.146909
\(755\) 365.826 0.0176341
\(756\) 517.603 0.0249008
\(757\) 14659.2 0.703829 0.351914 0.936032i \(-0.385531\pi\)
0.351914 + 0.936032i \(0.385531\pi\)
\(758\) 18960.2 0.908529
\(759\) −4686.38 −0.224117
\(760\) 2231.62 0.106512
\(761\) 25337.4 1.20694 0.603470 0.797386i \(-0.293784\pi\)
0.603470 + 0.797386i \(0.293784\pi\)
\(762\) −3017.83 −0.143470
\(763\) −1845.62 −0.0875700
\(764\) 17795.2 0.842679
\(765\) 693.003 0.0327524
\(766\) −15363.7 −0.724689
\(767\) −4935.76 −0.232360
\(768\) 1517.82 0.0713147
\(769\) 38908.9 1.82457 0.912283 0.409560i \(-0.134318\pi\)
0.912283 + 0.409560i \(0.134318\pi\)
\(770\) −127.381 −0.00596169
\(771\) 1855.54 0.0866742
\(772\) 7211.40 0.336197
\(773\) −12509.0 −0.582040 −0.291020 0.956717i \(-0.593995\pi\)
−0.291020 + 0.956717i \(0.593995\pi\)
\(774\) 6642.57 0.308479
\(775\) −3071.76 −0.142375
\(776\) 1612.50 0.0745946
\(777\) 3061.50 0.141352
\(778\) −6797.45 −0.313240
\(779\) −3516.29 −0.161725
\(780\) 928.327 0.0426147
\(781\) −8864.85 −0.406158
\(782\) −2443.11 −0.111720
\(783\) 21707.4 0.990755
\(784\) −5466.54 −0.249023
\(785\) 6826.70 0.310389
\(786\) −4151.45 −0.188394
\(787\) 4335.15 0.196355 0.0981776 0.995169i \(-0.468699\pi\)
0.0981776 + 0.995169i \(0.468699\pi\)
\(788\) −14251.1 −0.644259
\(789\) 39061.6 1.76252
\(790\) 7299.26 0.328729
\(791\) −1711.58 −0.0769366
\(792\) −717.462 −0.0321893
\(793\) 2256.58 0.101051
\(794\) −19718.5 −0.881341
\(795\) 13325.0 0.594452
\(796\) 14876.1 0.662399
\(797\) 1492.37 0.0663268 0.0331634 0.999450i \(-0.489442\pi\)
0.0331634 + 0.999450i \(0.489442\pi\)
\(798\) 766.098 0.0339845
\(799\) −4508.69 −0.199632
\(800\) 800.000 0.0353553
\(801\) −9567.20 −0.422023
\(802\) 19067.9 0.839541
\(803\) −2126.50 −0.0934529
\(804\) −19943.6 −0.874821
\(805\) 416.051 0.0182160
\(806\) 1923.83 0.0840747
\(807\) −33610.8 −1.46612
\(808\) −1692.04 −0.0736704
\(809\) 1666.26 0.0724137 0.0362068 0.999344i \(-0.488472\pi\)
0.0362068 + 0.999344i \(0.488472\pi\)
\(810\) 8826.59 0.382883
\(811\) −37055.0 −1.60441 −0.802205 0.597048i \(-0.796340\pi\)
−0.802205 + 0.597048i \(0.796340\pi\)
\(812\) 899.825 0.0388887
\(813\) 35131.6 1.51552
\(814\) 9809.88 0.422403
\(815\) 16508.1 0.709514
\(816\) −1612.69 −0.0691854
\(817\) −22727.4 −0.973235
\(818\) −10512.8 −0.449354
\(819\) 73.9127 0.00315350
\(820\) −1260.53 −0.0536825
\(821\) 3896.08 0.165620 0.0828101 0.996565i \(-0.473610\pi\)
0.0828101 + 0.996565i \(0.473610\pi\)
\(822\) −12239.9 −0.519360
\(823\) 42796.1 1.81261 0.906306 0.422622i \(-0.138890\pi\)
0.906306 + 0.422622i \(0.138890\pi\)
\(824\) −3045.95 −0.128775
\(825\) −1630.47 −0.0688070
\(826\) −1460.18 −0.0615087
\(827\) 22217.3 0.934183 0.467092 0.884209i \(-0.345302\pi\)
0.467092 + 0.884209i \(0.345302\pi\)
\(828\) 2343.36 0.0983545
\(829\) 31584.6 1.32326 0.661628 0.749832i \(-0.269866\pi\)
0.661628 + 0.749832i \(0.269866\pi\)
\(830\) 10333.2 0.432133
\(831\) 2214.55 0.0924450
\(832\) −501.037 −0.0208778
\(833\) 5808.20 0.241587
\(834\) −3284.89 −0.136386
\(835\) 2047.81 0.0848712
\(836\) 2454.78 0.101556
\(837\) 13730.0 0.567000
\(838\) 5646.66 0.232769
\(839\) −7386.20 −0.303933 −0.151967 0.988386i \(-0.548561\pi\)
−0.151967 + 0.988386i \(0.548561\pi\)
\(840\) 274.634 0.0112807
\(841\) 13348.2 0.547305
\(842\) 10275.6 0.420570
\(843\) 24356.1 0.995101
\(844\) −16672.5 −0.679964
\(845\) 10678.6 0.434738
\(846\) 4324.62 0.175749
\(847\) −140.119 −0.00568425
\(848\) −7191.79 −0.291235
\(849\) 20222.7 0.817480
\(850\) −850.000 −0.0342997
\(851\) −32040.9 −1.29065
\(852\) 19112.6 0.768529
\(853\) −47663.5 −1.91321 −0.956603 0.291393i \(-0.905881\pi\)
−0.956603 + 0.291393i \(0.905881\pi\)
\(854\) 667.579 0.0267495
\(855\) 2274.30 0.0909699
\(856\) 9671.85 0.386188
\(857\) 1238.41 0.0493620 0.0246810 0.999695i \(-0.492143\pi\)
0.0246810 + 0.999695i \(0.492143\pi\)
\(858\) 1021.16 0.0406315
\(859\) −37316.7 −1.48222 −0.741111 0.671382i \(-0.765701\pi\)
−0.741111 + 0.671382i \(0.765701\pi\)
\(860\) −8147.42 −0.323052
\(861\) −432.731 −0.0171282
\(862\) −14805.1 −0.584992
\(863\) 6784.63 0.267615 0.133807 0.991007i \(-0.457280\pi\)
0.133807 + 0.991007i \(0.457280\pi\)
\(864\) −3575.80 −0.140800
\(865\) 14662.1 0.576331
\(866\) 23236.5 0.911788
\(867\) 1713.48 0.0671197
\(868\) 569.142 0.0222557
\(869\) 8029.18 0.313431
\(870\) 11517.7 0.448835
\(871\) 6583.43 0.256109
\(872\) 12750.3 0.495159
\(873\) 1643.34 0.0637097
\(874\) −8017.78 −0.310304
\(875\) 144.751 0.00559256
\(876\) 4584.74 0.176831
\(877\) −5712.36 −0.219946 −0.109973 0.993935i \(-0.535076\pi\)
−0.109973 + 0.993935i \(0.535076\pi\)
\(878\) 34437.6 1.32370
\(879\) −31511.5 −1.20916
\(880\) 880.000 0.0337100
\(881\) −31699.2 −1.21223 −0.606115 0.795377i \(-0.707273\pi\)
−0.606115 + 0.795377i \(0.707273\pi\)
\(882\) −5571.08 −0.212685
\(883\) 16074.3 0.612621 0.306311 0.951932i \(-0.400905\pi\)
0.306311 + 0.951932i \(0.400905\pi\)
\(884\) 532.352 0.0202545
\(885\) −18690.2 −0.709905
\(886\) −14331.6 −0.543431
\(887\) 8909.61 0.337267 0.168633 0.985679i \(-0.446065\pi\)
0.168633 + 0.985679i \(0.446065\pi\)
\(888\) −21150.1 −0.799268
\(889\) 294.711 0.0111184
\(890\) 11734.6 0.441961
\(891\) 9709.25 0.365064
\(892\) 6210.41 0.233117
\(893\) −14796.6 −0.554479
\(894\) −35743.4 −1.33718
\(895\) −5566.37 −0.207892
\(896\) −148.225 −0.00552664
\(897\) −3335.30 −0.124150
\(898\) 15721.6 0.584228
\(899\) 23868.9 0.885509
\(900\) 815.298 0.0301962
\(901\) 7641.27 0.282539
\(902\) −1386.58 −0.0511843
\(903\) −2796.95 −0.103075
\(904\) 11824.3 0.435033
\(905\) −13457.8 −0.494311
\(906\) −867.593 −0.0318144
\(907\) 37742.6 1.38172 0.690861 0.722987i \(-0.257232\pi\)
0.690861 + 0.722987i \(0.257232\pi\)
\(908\) 22092.6 0.807456
\(909\) −1724.39 −0.0629202
\(910\) −90.6573 −0.00330249
\(911\) 35422.8 1.28827 0.644133 0.764914i \(-0.277218\pi\)
0.644133 + 0.764914i \(0.277218\pi\)
\(912\) −5292.51 −0.192163
\(913\) 11366.5 0.412023
\(914\) −16527.2 −0.598109
\(915\) 8544.97 0.308730
\(916\) 18595.4 0.670754
\(917\) 405.417 0.0145998
\(918\) 3799.29 0.136596
\(919\) −37318.6 −1.33953 −0.669764 0.742574i \(-0.733605\pi\)
−0.669764 + 0.742574i \(0.733605\pi\)
\(920\) −2874.24 −0.103001
\(921\) 26002.5 0.930307
\(922\) −23804.9 −0.850297
\(923\) −6309.12 −0.224991
\(924\) 302.097 0.0107557
\(925\) −11147.6 −0.396249
\(926\) −6085.96 −0.215979
\(927\) −3104.19 −0.109984
\(928\) −6216.34 −0.219894
\(929\) −32677.7 −1.15406 −0.577030 0.816723i \(-0.695788\pi\)
−0.577030 + 0.816723i \(0.695788\pi\)
\(930\) 7284.99 0.256865
\(931\) 19061.3 0.671010
\(932\) 3203.69 0.112597
\(933\) 34723.8 1.21844
\(934\) −26867.0 −0.941238
\(935\) −935.000 −0.0327035
\(936\) −510.618 −0.0178313
\(937\) −46893.6 −1.63495 −0.817475 0.575964i \(-0.804627\pi\)
−0.817475 + 0.575964i \(0.804627\pi\)
\(938\) 1947.62 0.0677955
\(939\) 23709.6 0.823998
\(940\) −5304.35 −0.184052
\(941\) −30730.7 −1.06461 −0.532303 0.846554i \(-0.678673\pi\)
−0.532303 + 0.846554i \(0.678673\pi\)
\(942\) −16190.2 −0.559984
\(943\) 4528.84 0.156394
\(944\) 10087.5 0.347797
\(945\) −647.004 −0.0222720
\(946\) −8962.16 −0.308018
\(947\) 36559.1 1.25450 0.627251 0.778818i \(-0.284180\pi\)
0.627251 + 0.778818i \(0.284180\pi\)
\(948\) −17310.9 −0.593072
\(949\) −1513.43 −0.0517683
\(950\) −2789.53 −0.0952676
\(951\) −33524.0 −1.14310
\(952\) 157.490 0.00536162
\(953\) −22884.2 −0.777850 −0.388925 0.921269i \(-0.627153\pi\)
−0.388925 + 0.921269i \(0.627153\pi\)
\(954\) −7329.31 −0.248737
\(955\) −22244.0 −0.753715
\(956\) −23764.5 −0.803975
\(957\) 12669.5 0.427948
\(958\) 24623.1 0.830413
\(959\) 1195.30 0.0402486
\(960\) −1897.28 −0.0637858
\(961\) −14693.8 −0.493231
\(962\) 6981.70 0.233991
\(963\) 9856.80 0.329835
\(964\) −20325.5 −0.679087
\(965\) −9014.25 −0.300703
\(966\) −986.705 −0.0328641
\(967\) 34959.9 1.16260 0.581300 0.813689i \(-0.302544\pi\)
0.581300 + 0.813689i \(0.302544\pi\)
\(968\) 968.000 0.0321412
\(969\) 5623.29 0.186425
\(970\) −2015.63 −0.0667195
\(971\) 13433.1 0.443964 0.221982 0.975051i \(-0.428747\pi\)
0.221982 + 0.975051i \(0.428747\pi\)
\(972\) −8864.79 −0.292529
\(973\) 320.791 0.0105695
\(974\) 10215.0 0.336048
\(975\) −1160.41 −0.0381157
\(976\) −4611.90 −0.151253
\(977\) −10183.0 −0.333453 −0.166727 0.986003i \(-0.553320\pi\)
−0.166727 + 0.986003i \(0.553320\pi\)
\(978\) −39150.6 −1.28006
\(979\) 12908.1 0.421393
\(980\) 6833.18 0.222733
\(981\) 12994.1 0.422904
\(982\) 29894.4 0.971455
\(983\) 49938.8 1.62035 0.810173 0.586191i \(-0.199373\pi\)
0.810173 + 0.586191i \(0.199373\pi\)
\(984\) 2989.47 0.0968505
\(985\) 17813.9 0.576243
\(986\) 6604.86 0.213328
\(987\) −1820.94 −0.0587246
\(988\) 1747.07 0.0562568
\(989\) 29272.1 0.941150
\(990\) 896.828 0.0287910
\(991\) −31282.7 −1.00275 −0.501376 0.865230i \(-0.667173\pi\)
−0.501376 + 0.865230i \(0.667173\pi\)
\(992\) −3931.86 −0.125843
\(993\) 27239.3 0.870508
\(994\) −1866.47 −0.0595582
\(995\) −18595.1 −0.592468
\(996\) −24506.2 −0.779627
\(997\) −3039.31 −0.0965454 −0.0482727 0.998834i \(-0.515372\pi\)
−0.0482727 + 0.998834i \(0.515372\pi\)
\(998\) −23736.3 −0.752865
\(999\) 49827.0 1.57803
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1870.4.a.m.1.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1870.4.a.m.1.9 10 1.1 even 1 trivial