Properties

Label 1870.4
Level 1870
Weight 4
Dimension 92808
Nonzero newspaces 36
Sturm bound 829440
Trace bound 28

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1870 = 2 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 36 \)
Sturm bound: \(829440\)
Trace bound: \(28\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1870))\).

Total New Old
Modular forms 313600 92808 220792
Cusp forms 308480 92808 215672
Eisenstein series 5120 0 5120

Trace form

\( 92808 q + 8 q^{2} - 32 q^{3} - 16 q^{4} - 20 q^{5} + 168 q^{6} + 64 q^{7} + 32 q^{8} - 308 q^{9} + 208 q^{10} - 40 q^{11} - 320 q^{12} - 648 q^{13} - 1008 q^{14} - 844 q^{15} - 64 q^{16} - 272 q^{17} - 576 q^{18}+ \cdots - 50320 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1870))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1870.4.a \(\chi_{1870}(1, \cdot)\) 1870.4.a.a 1 1
1870.4.a.b 1
1870.4.a.c 8
1870.4.a.d 8
1870.4.a.e 9
1870.4.a.f 9
1870.4.a.g 9
1870.4.a.h 9
1870.4.a.i 10
1870.4.a.j 10
1870.4.a.k 10
1870.4.a.l 10
1870.4.a.m 10
1870.4.a.n 11
1870.4.a.o 11
1870.4.a.p 11
1870.4.a.q 11
1870.4.a.r 12
1870.4.b \(\chi_{1870}(749, \cdot)\) n/a 240 1
1870.4.c \(\chi_{1870}(441, \cdot)\) n/a 180 1
1870.4.h \(\chi_{1870}(1189, \cdot)\) n/a 268 1
1870.4.j \(\chi_{1870}(1033, \cdot)\) n/a 648 2
1870.4.k \(\chi_{1870}(89, \cdot)\) n/a 536 2
1870.4.o \(\chi_{1870}(373, \cdot)\) n/a 648 2
1870.4.p \(\chi_{1870}(307, \cdot)\) n/a 576 2
1870.4.q \(\chi_{1870}(1101, \cdot)\) n/a 360 2
1870.4.s \(\chi_{1870}(1143, \cdot)\) n/a 648 2
1870.4.u \(\chi_{1870}(511, \cdot)\) n/a 768 4
1870.4.v \(\chi_{1870}(111, \cdot)\) n/a 720 4
1870.4.z \(\chi_{1870}(417, \cdot)\) n/a 1296 4
1870.4.ba \(\chi_{1870}(43, \cdot)\) n/a 1296 4
1870.4.bb \(\chi_{1870}(529, \cdot)\) n/a 1088 4
1870.4.bd \(\chi_{1870}(169, \cdot)\) n/a 1296 4
1870.4.bi \(\chi_{1870}(951, \cdot)\) n/a 864 4
1870.4.bj \(\chi_{1870}(69, \cdot)\) n/a 1152 4
1870.4.bl \(\chi_{1870}(133, \cdot)\) n/a 2160 8
1870.4.bn \(\chi_{1870}(131, \cdot)\) n/a 1728 8
1870.4.bp \(\chi_{1870}(109, \cdot)\) n/a 2592 8
1870.4.bq \(\chi_{1870}(23, \cdot)\) n/a 2160 8
1870.4.bt \(\chi_{1870}(123, \cdot)\) n/a 2592 8
1870.4.bv \(\chi_{1870}(81, \cdot)\) n/a 1728 8
1870.4.bw \(\chi_{1870}(613, \cdot)\) n/a 2304 8
1870.4.bx \(\chi_{1870}(237, \cdot)\) n/a 2592 8
1870.4.cb \(\chi_{1870}(489, \cdot)\) n/a 2592 8
1870.4.cc \(\chi_{1870}(13, \cdot)\) n/a 2592 8
1870.4.ce \(\chi_{1870}(9, \cdot)\) n/a 5184 16
1870.4.ci \(\chi_{1870}(83, \cdot)\) n/a 5184 16
1870.4.cj \(\chi_{1870}(117, \cdot)\) n/a 5184 16
1870.4.ck \(\chi_{1870}(291, \cdot)\) n/a 3456 16
1870.4.cn \(\chi_{1870}(37, \cdot)\) n/a 10368 32
1870.4.co \(\chi_{1870}(41, \cdot)\) n/a 6912 32
1870.4.cq \(\chi_{1870}(29, \cdot)\) n/a 10368 32
1870.4.cs \(\chi_{1870}(3, \cdot)\) n/a 10368 32

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1870))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1870)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(110))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(170))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(187))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(374))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(935))\)\(^{\oplus 2}\)