Properties

Label 1870.cb
Modulus $1870$
Conductor $935$
Order $20$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1870, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([10,8,5])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(489,1870)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1870\)
Conductor: \(935\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 935.bt
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(13\) \(19\) \(21\) \(23\) \(27\) \(29\) \(31\)
\(\chi_{1870}(489,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(1\) \(i\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{1870}(599,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(1\) \(-i\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{1870}(829,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(1\) \(i\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{1870}(939,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(1\) \(-i\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{1870}(999,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(1\) \(i\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{1870}(1109,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(1\) \(-i\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{1870}(1169,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(1\) \(i\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{1870}(1279,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(1\) \(-i\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{11}{20}\right)\)