sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1870, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([10,12,15]))
pari:[g,chi] = znchar(Mod(1109,1870))
\(\chi_{1870}(489,\cdot)\)
\(\chi_{1870}(599,\cdot)\)
\(\chi_{1870}(829,\cdot)\)
\(\chi_{1870}(939,\cdot)\)
\(\chi_{1870}(999,\cdot)\)
\(\chi_{1870}(1109,\cdot)\)
\(\chi_{1870}(1169,\cdot)\)
\(\chi_{1870}(1279,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1497,1531,1431)\) → \((-1,e\left(\frac{3}{5}\right),-i)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) | \(31\) |
\( \chi_{ 1870 }(1109, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(1\) | \(-i\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) |
sage:chi.jacobi_sum(n)