Properties

Label 1870.4.a
Level $1870$
Weight $4$
Character orbit 1870.a
Rep. character $\chi_{1870}(1,\cdot)$
Character field $\Q$
Dimension $160$
Newform subspaces $18$
Sturm bound $1296$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1870 = 2 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1870.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 18 \)
Sturm bound: \(1296\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1870))\).

Total New Old
Modular forms 980 160 820
Cusp forms 964 160 804
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(11\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(69\)\(10\)\(59\)\(68\)\(10\)\(58\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(57\)\(10\)\(47\)\(56\)\(10\)\(46\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(54\)\(8\)\(46\)\(53\)\(8\)\(45\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(65\)\(11\)\(54\)\(64\)\(11\)\(53\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(57\)\(11\)\(46\)\(56\)\(11\)\(45\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(62\)\(10\)\(52\)\(61\)\(10\)\(51\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(65\)\(11\)\(54\)\(64\)\(11\)\(53\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(61\)\(9\)\(52\)\(60\)\(9\)\(51\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(63\)\(10\)\(53\)\(62\)\(10\)\(52\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(60\)\(9\)\(51\)\(59\)\(9\)\(50\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(60\)\(11\)\(49\)\(59\)\(11\)\(48\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(62\)\(9\)\(53\)\(61\)\(9\)\(52\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(56\)\(10\)\(46\)\(55\)\(10\)\(45\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(66\)\(10\)\(56\)\(65\)\(10\)\(55\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(66\)\(9\)\(57\)\(65\)\(9\)\(56\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(57\)\(12\)\(45\)\(56\)\(12\)\(44\)\(1\)\(0\)\(1\)
Plus space\(+\)\(494\)\(84\)\(410\)\(486\)\(84\)\(402\)\(8\)\(0\)\(8\)
Minus space\(-\)\(486\)\(76\)\(410\)\(478\)\(76\)\(402\)\(8\)\(0\)\(8\)

Trace form

\( 160 q - 24 q^{3} + 640 q^{4} + 20 q^{5} + 16 q^{6} - 16 q^{7} + 1384 q^{9} - 96 q^{12} - 400 q^{13} - 176 q^{14} + 2560 q^{16} - 784 q^{19} + 80 q^{20} - 544 q^{21} + 88 q^{22} + 152 q^{23} + 64 q^{24}+ \cdots + 4096 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1870))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 11 17
1870.4.a.a 1870.a 1.a $1$ $110.334$ \(\Q\) None 1870.4.a.a \(-2\) \(1\) \(5\) \(26\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+q^{3}+4q^{4}+5q^{5}-2q^{6}+\cdots\)
1870.4.a.b 1870.a 1.a $1$ $110.334$ \(\Q\) None 1870.4.a.b \(2\) \(-8\) \(5\) \(-16\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-8q^{3}+4q^{4}+5q^{5}-2^{4}q^{6}+\cdots\)
1870.4.a.c 1870.a 1.a $8$ $110.334$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1870.4.a.c \(-16\) \(-4\) \(-40\) \(38\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1+\beta _{1})q^{3}+4q^{4}-5q^{5}+\cdots\)
1870.4.a.d 1870.a 1.a $8$ $110.334$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1870.4.a.d \(16\) \(-10\) \(40\) \(-20\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1-\beta _{1})q^{3}+4q^{4}+5q^{5}+\cdots\)
1870.4.a.e 1870.a 1.a $9$ $110.334$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 1870.4.a.e \(-18\) \(-6\) \(45\) \(-19\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1+\beta _{1})q^{3}+4q^{4}+5q^{5}+\cdots\)
1870.4.a.f 1870.a 1.a $9$ $110.334$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 1870.4.a.f \(-18\) \(-1\) \(45\) \(8\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-\beta _{1}q^{3}+4q^{4}+5q^{5}+2\beta _{1}q^{6}+\cdots\)
1870.4.a.g 1870.a 1.a $9$ $110.334$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 1870.4.a.g \(18\) \(-8\) \(-45\) \(-37\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1+\beta _{1})q^{3}+4q^{4}-5q^{5}+\cdots\)
1870.4.a.h 1870.a 1.a $9$ $110.334$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 1870.4.a.h \(18\) \(10\) \(-45\) \(16\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(1+\beta _{1})q^{3}+4q^{4}-5q^{5}+\cdots\)
1870.4.a.i 1870.a 1.a $10$ $110.334$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 1870.4.a.i \(-20\) \(-10\) \(-50\) \(-21\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1+\beta _{1})q^{3}+4q^{4}-5q^{5}+\cdots\)
1870.4.a.j 1870.a 1.a $10$ $110.334$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 1870.4.a.j \(-20\) \(-1\) \(-50\) \(4\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-\beta _{1}q^{3}+4q^{4}-5q^{5}+2\beta _{1}q^{6}+\cdots\)
1870.4.a.k 1870.a 1.a $10$ $110.334$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 1870.4.a.k \(20\) \(-15\) \(50\) \(-70\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-2+\beta _{1})q^{3}+4q^{4}+5q^{5}+\cdots\)
1870.4.a.l 1870.a 1.a $10$ $110.334$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 1870.4.a.l \(20\) \(0\) \(50\) \(17\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta _{1}q^{3}+4q^{4}+5q^{5}+2\beta _{1}q^{6}+\cdots\)
1870.4.a.m 1870.a 1.a $10$ $110.334$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 1870.4.a.m \(20\) \(1\) \(-50\) \(19\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta _{1}q^{3}+4q^{4}-5q^{5}+2\beta _{1}q^{6}+\cdots\)
1870.4.a.n 1870.a 1.a $11$ $110.334$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 1870.4.a.n \(-22\) \(-7\) \(-55\) \(-21\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1+\beta _{1})q^{3}+4q^{4}-5q^{5}+\cdots\)
1870.4.a.o 1870.a 1.a $11$ $110.334$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 1870.4.a.o \(-22\) \(3\) \(55\) \(9\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+\beta _{1}q^{3}+4q^{4}+5q^{5}-2\beta _{1}q^{6}+\cdots\)
1870.4.a.p 1870.a 1.a $11$ $110.334$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 1870.4.a.p \(-22\) \(9\) \(55\) \(12\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1-\beta _{1})q^{3}+4q^{4}+5q^{5}+\cdots\)
1870.4.a.q 1870.a 1.a $11$ $110.334$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 1870.4.a.q \(22\) \(7\) \(-55\) \(-6\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(1-\beta _{1})q^{3}+4q^{4}-5q^{5}+\cdots\)
1870.4.a.r 1870.a 1.a $12$ $110.334$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1870.4.a.r \(24\) \(15\) \(60\) \(45\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(1+\beta _{1})q^{3}+4q^{4}+5q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1870))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1870)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(187))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(374))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(935))\)\(^{\oplus 2}\)