Defining parameters
Level: | \( N \) | \(=\) | \( 1870 = 2 \cdot 5 \cdot 11 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1870.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(1296\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1870))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 980 | 160 | 820 |
Cusp forms | 964 | 160 | 804 |
Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(11\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(69\) | \(10\) | \(59\) | \(68\) | \(10\) | \(58\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(57\) | \(10\) | \(47\) | \(56\) | \(10\) | \(46\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(54\) | \(8\) | \(46\) | \(53\) | \(8\) | \(45\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(65\) | \(11\) | \(54\) | \(64\) | \(11\) | \(53\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(57\) | \(11\) | \(46\) | \(56\) | \(11\) | \(45\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(62\) | \(10\) | \(52\) | \(61\) | \(10\) | \(51\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(65\) | \(11\) | \(54\) | \(64\) | \(11\) | \(53\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(61\) | \(9\) | \(52\) | \(60\) | \(9\) | \(51\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(63\) | \(10\) | \(53\) | \(62\) | \(10\) | \(52\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(60\) | \(9\) | \(51\) | \(59\) | \(9\) | \(50\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(60\) | \(11\) | \(49\) | \(59\) | \(11\) | \(48\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(62\) | \(9\) | \(53\) | \(61\) | \(9\) | \(52\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(56\) | \(10\) | \(46\) | \(55\) | \(10\) | \(45\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(66\) | \(10\) | \(56\) | \(65\) | \(10\) | \(55\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(66\) | \(9\) | \(57\) | \(65\) | \(9\) | \(56\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(57\) | \(12\) | \(45\) | \(56\) | \(12\) | \(44\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(494\) | \(84\) | \(410\) | \(486\) | \(84\) | \(402\) | \(8\) | \(0\) | \(8\) | ||||||
Minus space | \(-\) | \(486\) | \(76\) | \(410\) | \(478\) | \(76\) | \(402\) | \(8\) | \(0\) | \(8\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1870))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1870))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1870)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(170))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(187))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(374))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(935))\)\(^{\oplus 2}\)