Properties

Label 1870.4.a.m.1.5
Level $1870$
Weight $4$
Character 1870.1
Self dual yes
Analytic conductor $110.334$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1870,4,Mod(1,1870)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1870, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1870.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1870 = 2 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1870.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,20,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.333571711\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} - 184 x^{8} + 198 x^{7} + 11125 x^{6} - 13769 x^{5} - 258561 x^{4} + 275849 x^{3} + \cdots - 2234586 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.834326\) of defining polynomial
Character \(\chi\) \(=\) 1870.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -0.834326 q^{3} +4.00000 q^{4} -5.00000 q^{5} -1.66865 q^{6} +34.7753 q^{7} +8.00000 q^{8} -26.3039 q^{9} -10.0000 q^{10} -11.0000 q^{11} -3.33730 q^{12} +50.4166 q^{13} +69.5507 q^{14} +4.17163 q^{15} +16.0000 q^{16} -17.0000 q^{17} -52.6078 q^{18} -160.203 q^{19} -20.0000 q^{20} -29.0140 q^{21} -22.0000 q^{22} -71.0598 q^{23} -6.67461 q^{24} +25.0000 q^{25} +100.833 q^{26} +44.4728 q^{27} +139.101 q^{28} -135.320 q^{29} +8.34326 q^{30} -228.473 q^{31} +32.0000 q^{32} +9.17758 q^{33} -34.0000 q^{34} -173.877 q^{35} -105.216 q^{36} +144.165 q^{37} -320.406 q^{38} -42.0639 q^{39} -40.0000 q^{40} -29.9628 q^{41} -58.0279 q^{42} -295.320 q^{43} -44.0000 q^{44} +131.520 q^{45} -142.120 q^{46} -556.892 q^{47} -13.3492 q^{48} +866.324 q^{49} +50.0000 q^{50} +14.1835 q^{51} +201.667 q^{52} +474.221 q^{53} +88.9456 q^{54} +55.0000 q^{55} +278.203 q^{56} +133.661 q^{57} -270.640 q^{58} +377.714 q^{59} +16.6865 q^{60} -84.1747 q^{61} -456.946 q^{62} -914.727 q^{63} +64.0000 q^{64} -252.083 q^{65} +18.3552 q^{66} -791.406 q^{67} -68.0000 q^{68} +59.2870 q^{69} -347.753 q^{70} +465.133 q^{71} -210.431 q^{72} +170.945 q^{73} +288.329 q^{74} -20.8581 q^{75} -640.811 q^{76} -382.529 q^{77} -84.1278 q^{78} -365.393 q^{79} -80.0000 q^{80} +673.101 q^{81} -59.9256 q^{82} -6.46028 q^{83} -116.056 q^{84} +85.0000 q^{85} -590.641 q^{86} +112.901 q^{87} -88.0000 q^{88} +238.154 q^{89} +263.039 q^{90} +1753.26 q^{91} -284.239 q^{92} +190.621 q^{93} -1113.78 q^{94} +801.014 q^{95} -26.6984 q^{96} -306.073 q^{97} +1732.65 q^{98} +289.343 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 20 q^{2} + q^{3} + 40 q^{4} - 50 q^{5} + 2 q^{6} + 19 q^{7} + 80 q^{8} + 99 q^{9} - 100 q^{10} - 110 q^{11} + 4 q^{12} - 41 q^{13} + 38 q^{14} - 5 q^{15} + 160 q^{16} - 170 q^{17} + 198 q^{18} - 157 q^{19}+ \cdots - 1089 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −0.834326 −0.160566 −0.0802830 0.996772i \(-0.525582\pi\)
−0.0802830 + 0.996772i \(0.525582\pi\)
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) −1.66865 −0.113537
\(7\) 34.7753 1.87769 0.938846 0.344337i \(-0.111896\pi\)
0.938846 + 0.344337i \(0.111896\pi\)
\(8\) 8.00000 0.353553
\(9\) −26.3039 −0.974219
\(10\) −10.0000 −0.316228
\(11\) −11.0000 −0.301511
\(12\) −3.33730 −0.0802830
\(13\) 50.4166 1.07562 0.537810 0.843066i \(-0.319252\pi\)
0.537810 + 0.843066i \(0.319252\pi\)
\(14\) 69.5507 1.32773
\(15\) 4.17163 0.0718073
\(16\) 16.0000 0.250000
\(17\) −17.0000 −0.242536
\(18\) −52.6078 −0.688877
\(19\) −160.203 −1.93437 −0.967186 0.254071i \(-0.918230\pi\)
−0.967186 + 0.254071i \(0.918230\pi\)
\(20\) −20.0000 −0.223607
\(21\) −29.0140 −0.301494
\(22\) −22.0000 −0.213201
\(23\) −71.0598 −0.644217 −0.322109 0.946703i \(-0.604392\pi\)
−0.322109 + 0.946703i \(0.604392\pi\)
\(24\) −6.67461 −0.0567687
\(25\) 25.0000 0.200000
\(26\) 100.833 0.760578
\(27\) 44.4728 0.316992
\(28\) 139.101 0.938846
\(29\) −135.320 −0.866493 −0.433246 0.901275i \(-0.642632\pi\)
−0.433246 + 0.901275i \(0.642632\pi\)
\(30\) 8.34326 0.0507754
\(31\) −228.473 −1.32371 −0.661854 0.749632i \(-0.730230\pi\)
−0.661854 + 0.749632i \(0.730230\pi\)
\(32\) 32.0000 0.176777
\(33\) 9.17758 0.0484125
\(34\) −34.0000 −0.171499
\(35\) −173.877 −0.839729
\(36\) −105.216 −0.487109
\(37\) 144.165 0.640555 0.320277 0.947324i \(-0.396224\pi\)
0.320277 + 0.947324i \(0.396224\pi\)
\(38\) −320.406 −1.36781
\(39\) −42.0639 −0.172708
\(40\) −40.0000 −0.158114
\(41\) −29.9628 −0.114132 −0.0570659 0.998370i \(-0.518175\pi\)
−0.0570659 + 0.998370i \(0.518175\pi\)
\(42\) −58.0279 −0.213188
\(43\) −295.320 −1.04735 −0.523674 0.851919i \(-0.675439\pi\)
−0.523674 + 0.851919i \(0.675439\pi\)
\(44\) −44.0000 −0.150756
\(45\) 131.520 0.435684
\(46\) −142.120 −0.455530
\(47\) −556.892 −1.72832 −0.864160 0.503218i \(-0.832149\pi\)
−0.864160 + 0.503218i \(0.832149\pi\)
\(48\) −13.3492 −0.0401415
\(49\) 866.324 2.52573
\(50\) 50.0000 0.141421
\(51\) 14.1835 0.0389430
\(52\) 201.667 0.537810
\(53\) 474.221 1.22904 0.614522 0.788900i \(-0.289349\pi\)
0.614522 + 0.788900i \(0.289349\pi\)
\(54\) 88.9456 0.224148
\(55\) 55.0000 0.134840
\(56\) 278.203 0.663864
\(57\) 133.661 0.310594
\(58\) −270.640 −0.612703
\(59\) 377.714 0.833461 0.416730 0.909030i \(-0.363176\pi\)
0.416730 + 0.909030i \(0.363176\pi\)
\(60\) 16.6865 0.0359037
\(61\) −84.1747 −0.176680 −0.0883399 0.996090i \(-0.528156\pi\)
−0.0883399 + 0.996090i \(0.528156\pi\)
\(62\) −456.946 −0.936003
\(63\) −914.727 −1.82928
\(64\) 64.0000 0.125000
\(65\) −252.083 −0.481032
\(66\) 18.3552 0.0342328
\(67\) −791.406 −1.44307 −0.721534 0.692379i \(-0.756563\pi\)
−0.721534 + 0.692379i \(0.756563\pi\)
\(68\) −68.0000 −0.121268
\(69\) 59.2870 0.103439
\(70\) −347.753 −0.593778
\(71\) 465.133 0.777481 0.388741 0.921347i \(-0.372910\pi\)
0.388741 + 0.921347i \(0.372910\pi\)
\(72\) −210.431 −0.344438
\(73\) 170.945 0.274076 0.137038 0.990566i \(-0.456242\pi\)
0.137038 + 0.990566i \(0.456242\pi\)
\(74\) 288.329 0.452941
\(75\) −20.8581 −0.0321132
\(76\) −640.811 −0.967186
\(77\) −382.529 −0.566145
\(78\) −84.1278 −0.122123
\(79\) −365.393 −0.520379 −0.260189 0.965558i \(-0.583785\pi\)
−0.260189 + 0.965558i \(0.583785\pi\)
\(80\) −80.0000 −0.111803
\(81\) 673.101 0.923320
\(82\) −59.9256 −0.0807034
\(83\) −6.46028 −0.00854347 −0.00427174 0.999991i \(-0.501360\pi\)
−0.00427174 + 0.999991i \(0.501360\pi\)
\(84\) −116.056 −0.150747
\(85\) 85.0000 0.108465
\(86\) −590.641 −0.740587
\(87\) 112.901 0.139129
\(88\) −88.0000 −0.106600
\(89\) 238.154 0.283643 0.141822 0.989892i \(-0.454704\pi\)
0.141822 + 0.989892i \(0.454704\pi\)
\(90\) 263.039 0.308075
\(91\) 1753.26 2.01968
\(92\) −284.239 −0.322109
\(93\) 190.621 0.212543
\(94\) −1113.78 −1.22211
\(95\) 801.014 0.865077
\(96\) −26.6984 −0.0283843
\(97\) −306.073 −0.320381 −0.160191 0.987086i \(-0.551211\pi\)
−0.160191 + 0.987086i \(0.551211\pi\)
\(98\) 1732.65 1.78596
\(99\) 289.343 0.293738
\(100\) 100.000 0.100000
\(101\) −1776.58 −1.75026 −0.875130 0.483888i \(-0.839224\pi\)
−0.875130 + 0.483888i \(0.839224\pi\)
\(102\) 28.3671 0.0275369
\(103\) 158.581 0.151703 0.0758517 0.997119i \(-0.475832\pi\)
0.0758517 + 0.997119i \(0.475832\pi\)
\(104\) 403.333 0.380289
\(105\) 145.070 0.134832
\(106\) 948.442 0.869065
\(107\) −1532.98 −1.38504 −0.692518 0.721400i \(-0.743499\pi\)
−0.692518 + 0.721400i \(0.743499\pi\)
\(108\) 177.891 0.158496
\(109\) 1701.50 1.49518 0.747589 0.664161i \(-0.231211\pi\)
0.747589 + 0.664161i \(0.231211\pi\)
\(110\) 110.000 0.0953463
\(111\) −120.280 −0.102851
\(112\) 556.405 0.469423
\(113\) −2008.17 −1.67180 −0.835899 0.548884i \(-0.815053\pi\)
−0.835899 + 0.548884i \(0.815053\pi\)
\(114\) 267.323 0.219623
\(115\) 355.299 0.288103
\(116\) −541.280 −0.433246
\(117\) −1326.15 −1.04789
\(118\) 755.428 0.589346
\(119\) −591.181 −0.455407
\(120\) 33.3730 0.0253877
\(121\) 121.000 0.0909091
\(122\) −168.349 −0.124931
\(123\) 24.9987 0.0183257
\(124\) −913.892 −0.661854
\(125\) −125.000 −0.0894427
\(126\) −1829.45 −1.29350
\(127\) 462.696 0.323289 0.161644 0.986849i \(-0.448320\pi\)
0.161644 + 0.986849i \(0.448320\pi\)
\(128\) 128.000 0.0883883
\(129\) 246.393 0.168168
\(130\) −504.166 −0.340141
\(131\) −992.079 −0.661666 −0.330833 0.943689i \(-0.607330\pi\)
−0.330833 + 0.943689i \(0.607330\pi\)
\(132\) 36.7103 0.0242062
\(133\) −5571.11 −3.63215
\(134\) −1582.81 −1.02040
\(135\) −222.364 −0.141763
\(136\) −136.000 −0.0857493
\(137\) 901.936 0.562464 0.281232 0.959640i \(-0.409257\pi\)
0.281232 + 0.959640i \(0.409257\pi\)
\(138\) 118.574 0.0731427
\(139\) −1732.43 −1.05714 −0.528572 0.848888i \(-0.677272\pi\)
−0.528572 + 0.848888i \(0.677272\pi\)
\(140\) −695.507 −0.419865
\(141\) 464.629 0.277509
\(142\) 930.267 0.549762
\(143\) −554.583 −0.324312
\(144\) −420.862 −0.243555
\(145\) 676.600 0.387507
\(146\) 341.890 0.193801
\(147\) −722.797 −0.405546
\(148\) 576.659 0.320277
\(149\) −14.4687 −0.00795519 −0.00397760 0.999992i \(-0.501266\pi\)
−0.00397760 + 0.999992i \(0.501266\pi\)
\(150\) −41.7163 −0.0227075
\(151\) −1833.48 −0.988124 −0.494062 0.869427i \(-0.664488\pi\)
−0.494062 + 0.869427i \(0.664488\pi\)
\(152\) −1281.62 −0.683904
\(153\) 447.166 0.236283
\(154\) −765.058 −0.400325
\(155\) 1142.37 0.591981
\(156\) −168.256 −0.0863540
\(157\) −1136.52 −0.577734 −0.288867 0.957369i \(-0.593278\pi\)
−0.288867 + 0.957369i \(0.593278\pi\)
\(158\) −730.786 −0.367964
\(159\) −395.655 −0.197343
\(160\) −160.000 −0.0790569
\(161\) −2471.13 −1.20964
\(162\) 1346.20 0.652886
\(163\) 2135.29 1.02607 0.513033 0.858369i \(-0.328522\pi\)
0.513033 + 0.858369i \(0.328522\pi\)
\(164\) −119.851 −0.0570659
\(165\) −45.8879 −0.0216507
\(166\) −12.9206 −0.00604115
\(167\) 3551.10 1.64546 0.822731 0.568431i \(-0.192449\pi\)
0.822731 + 0.568431i \(0.192449\pi\)
\(168\) −232.112 −0.106594
\(169\) 344.836 0.156958
\(170\) 170.000 0.0766965
\(171\) 4213.96 1.88450
\(172\) −1181.28 −0.523674
\(173\) −2798.87 −1.23002 −0.615012 0.788518i \(-0.710849\pi\)
−0.615012 + 0.788518i \(0.710849\pi\)
\(174\) 225.802 0.0983793
\(175\) 869.384 0.375538
\(176\) −176.000 −0.0753778
\(177\) −315.137 −0.133826
\(178\) 476.308 0.200566
\(179\) 4020.79 1.67893 0.839464 0.543415i \(-0.182869\pi\)
0.839464 + 0.543415i \(0.182869\pi\)
\(180\) 526.078 0.217842
\(181\) 302.833 0.124362 0.0621808 0.998065i \(-0.480194\pi\)
0.0621808 + 0.998065i \(0.480194\pi\)
\(182\) 3506.51 1.42813
\(183\) 70.2291 0.0283688
\(184\) −568.479 −0.227765
\(185\) −720.823 −0.286465
\(186\) 381.242 0.150290
\(187\) 187.000 0.0731272
\(188\) −2227.57 −0.864160
\(189\) 1546.56 0.595214
\(190\) 1602.03 0.611702
\(191\) −2095.63 −0.793897 −0.396949 0.917841i \(-0.629931\pi\)
−0.396949 + 0.917841i \(0.629931\pi\)
\(192\) −53.3968 −0.0200708
\(193\) −3824.03 −1.42622 −0.713109 0.701054i \(-0.752713\pi\)
−0.713109 + 0.701054i \(0.752713\pi\)
\(194\) −612.145 −0.226544
\(195\) 210.319 0.0772374
\(196\) 3465.30 1.26286
\(197\) 3063.51 1.10795 0.553975 0.832533i \(-0.313110\pi\)
0.553975 + 0.832533i \(0.313110\pi\)
\(198\) 578.686 0.207704
\(199\) −234.094 −0.0833895 −0.0416947 0.999130i \(-0.513276\pi\)
−0.0416947 + 0.999130i \(0.513276\pi\)
\(200\) 200.000 0.0707107
\(201\) 660.290 0.231708
\(202\) −3553.16 −1.23762
\(203\) −4705.80 −1.62701
\(204\) 56.7341 0.0194715
\(205\) 149.814 0.0510413
\(206\) 317.162 0.107270
\(207\) 1869.15 0.627608
\(208\) 806.666 0.268905
\(209\) 1762.23 0.583235
\(210\) 290.140 0.0953406
\(211\) −4632.62 −1.51148 −0.755741 0.654870i \(-0.772723\pi\)
−0.755741 + 0.654870i \(0.772723\pi\)
\(212\) 1896.88 0.614522
\(213\) −388.073 −0.124837
\(214\) −3065.96 −0.979369
\(215\) 1476.60 0.468388
\(216\) 355.783 0.112074
\(217\) −7945.23 −2.48552
\(218\) 3403.01 1.05725
\(219\) −142.624 −0.0440073
\(220\) 220.000 0.0674200
\(221\) −857.083 −0.260876
\(222\) −240.561 −0.0727269
\(223\) −1797.35 −0.539728 −0.269864 0.962899i \(-0.586979\pi\)
−0.269864 + 0.962899i \(0.586979\pi\)
\(224\) 1112.81 0.331932
\(225\) −657.598 −0.194844
\(226\) −4016.35 −1.18214
\(227\) −3281.44 −0.959459 −0.479729 0.877416i \(-0.659265\pi\)
−0.479729 + 0.877416i \(0.659265\pi\)
\(228\) 534.645 0.155297
\(229\) 6377.08 1.84021 0.920107 0.391667i \(-0.128101\pi\)
0.920107 + 0.391667i \(0.128101\pi\)
\(230\) 710.598 0.203719
\(231\) 319.154 0.0909037
\(232\) −1082.56 −0.306352
\(233\) −5803.96 −1.63189 −0.815944 0.578131i \(-0.803782\pi\)
−0.815944 + 0.578131i \(0.803782\pi\)
\(234\) −2652.31 −0.740969
\(235\) 2784.46 0.772928
\(236\) 1510.86 0.416730
\(237\) 304.857 0.0835552
\(238\) −1182.36 −0.322022
\(239\) −332.323 −0.0899422 −0.0449711 0.998988i \(-0.514320\pi\)
−0.0449711 + 0.998988i \(0.514320\pi\)
\(240\) 66.7461 0.0179518
\(241\) 5988.37 1.60060 0.800300 0.599600i \(-0.204673\pi\)
0.800300 + 0.599600i \(0.204673\pi\)
\(242\) 242.000 0.0642824
\(243\) −1762.35 −0.465246
\(244\) −336.699 −0.0883399
\(245\) −4331.62 −1.12954
\(246\) 49.9975 0.0129582
\(247\) −8076.89 −2.08065
\(248\) −1827.78 −0.468002
\(249\) 5.38998 0.00137179
\(250\) −250.000 −0.0632456
\(251\) −5937.33 −1.49307 −0.746536 0.665345i \(-0.768284\pi\)
−0.746536 + 0.665345i \(0.768284\pi\)
\(252\) −3658.91 −0.914641
\(253\) 781.658 0.194239
\(254\) 925.393 0.228600
\(255\) −70.9177 −0.0174158
\(256\) 256.000 0.0625000
\(257\) 805.375 0.195478 0.0977392 0.995212i \(-0.468839\pi\)
0.0977392 + 0.995212i \(0.468839\pi\)
\(258\) 492.787 0.118913
\(259\) 5013.38 1.20276
\(260\) −1008.33 −0.240516
\(261\) 3559.44 0.844153
\(262\) −1984.16 −0.467869
\(263\) 2523.16 0.591576 0.295788 0.955254i \(-0.404418\pi\)
0.295788 + 0.955254i \(0.404418\pi\)
\(264\) 73.4207 0.0171164
\(265\) −2371.11 −0.549645
\(266\) −11142.2 −2.56832
\(267\) −198.698 −0.0455435
\(268\) −3165.62 −0.721534
\(269\) −2048.97 −0.464417 −0.232209 0.972666i \(-0.574595\pi\)
−0.232209 + 0.972666i \(0.574595\pi\)
\(270\) −444.728 −0.100242
\(271\) −2717.34 −0.609101 −0.304551 0.952496i \(-0.598506\pi\)
−0.304551 + 0.952496i \(0.598506\pi\)
\(272\) −272.000 −0.0606339
\(273\) −1462.79 −0.324292
\(274\) 1803.87 0.397722
\(275\) −275.000 −0.0603023
\(276\) 237.148 0.0517197
\(277\) 1405.91 0.304955 0.152478 0.988307i \(-0.451275\pi\)
0.152478 + 0.988307i \(0.451275\pi\)
\(278\) −3464.87 −0.747514
\(279\) 6009.73 1.28958
\(280\) −1391.01 −0.296889
\(281\) −5461.36 −1.15942 −0.579711 0.814822i \(-0.696834\pi\)
−0.579711 + 0.814822i \(0.696834\pi\)
\(282\) 929.258 0.196229
\(283\) −6324.81 −1.32852 −0.664260 0.747502i \(-0.731253\pi\)
−0.664260 + 0.747502i \(0.731253\pi\)
\(284\) 1860.53 0.388741
\(285\) −668.307 −0.138902
\(286\) −1109.17 −0.229323
\(287\) −1041.97 −0.214304
\(288\) −841.725 −0.172219
\(289\) 289.000 0.0588235
\(290\) 1353.20 0.274009
\(291\) 255.364 0.0514423
\(292\) 683.779 0.137038
\(293\) −5658.38 −1.12821 −0.564106 0.825702i \(-0.690779\pi\)
−0.564106 + 0.825702i \(0.690779\pi\)
\(294\) −1445.59 −0.286764
\(295\) −1888.57 −0.372735
\(296\) 1153.32 0.226470
\(297\) −489.201 −0.0955768
\(298\) −28.9374 −0.00562517
\(299\) −3582.60 −0.692933
\(300\) −83.4326 −0.0160566
\(301\) −10269.9 −1.96660
\(302\) −3666.97 −0.698709
\(303\) 1482.25 0.281032
\(304\) −2563.25 −0.483593
\(305\) 420.873 0.0790136
\(306\) 894.333 0.167077
\(307\) 6588.64 1.22486 0.612432 0.790523i \(-0.290191\pi\)
0.612432 + 0.790523i \(0.290191\pi\)
\(308\) −1530.12 −0.283073
\(309\) −132.308 −0.0243584
\(310\) 2284.73 0.418593
\(311\) −8479.54 −1.54608 −0.773039 0.634358i \(-0.781264\pi\)
−0.773039 + 0.634358i \(0.781264\pi\)
\(312\) −336.511 −0.0610615
\(313\) −632.026 −0.114135 −0.0570674 0.998370i \(-0.518175\pi\)
−0.0570674 + 0.998370i \(0.518175\pi\)
\(314\) −2273.04 −0.408519
\(315\) 4573.64 0.818080
\(316\) −1461.57 −0.260189
\(317\) −5298.73 −0.938821 −0.469410 0.882980i \(-0.655534\pi\)
−0.469410 + 0.882980i \(0.655534\pi\)
\(318\) −791.310 −0.139542
\(319\) 1488.52 0.261257
\(320\) −320.000 −0.0559017
\(321\) 1279.01 0.222390
\(322\) −4942.26 −0.855346
\(323\) 2723.45 0.469154
\(324\) 2692.40 0.461660
\(325\) 1260.42 0.215124
\(326\) 4270.58 0.725539
\(327\) −1419.61 −0.240075
\(328\) −239.702 −0.0403517
\(329\) −19366.1 −3.24525
\(330\) −91.7758 −0.0153094
\(331\) 1919.12 0.318684 0.159342 0.987223i \(-0.449063\pi\)
0.159342 + 0.987223i \(0.449063\pi\)
\(332\) −25.8411 −0.00427174
\(333\) −3792.09 −0.624040
\(334\) 7102.19 1.16352
\(335\) 3957.03 0.645360
\(336\) −464.223 −0.0753734
\(337\) 10795.6 1.74502 0.872509 0.488597i \(-0.162491\pi\)
0.872509 + 0.488597i \(0.162491\pi\)
\(338\) 689.672 0.110986
\(339\) 1675.47 0.268434
\(340\) 340.000 0.0542326
\(341\) 2513.20 0.399113
\(342\) 8427.92 1.33254
\(343\) 18198.8 2.86485
\(344\) −2362.56 −0.370293
\(345\) −296.435 −0.0462595
\(346\) −5597.74 −0.869758
\(347\) −2270.73 −0.351295 −0.175648 0.984453i \(-0.556202\pi\)
−0.175648 + 0.984453i \(0.556202\pi\)
\(348\) 451.604 0.0695647
\(349\) 8434.61 1.29368 0.646840 0.762626i \(-0.276090\pi\)
0.646840 + 0.762626i \(0.276090\pi\)
\(350\) 1738.77 0.265546
\(351\) 2242.17 0.340963
\(352\) −352.000 −0.0533002
\(353\) 2640.82 0.398177 0.199089 0.979981i \(-0.436202\pi\)
0.199089 + 0.979981i \(0.436202\pi\)
\(354\) −630.273 −0.0946289
\(355\) −2325.67 −0.347700
\(356\) 952.616 0.141822
\(357\) 493.237 0.0731229
\(358\) 8041.59 1.18718
\(359\) 5661.50 0.832319 0.416159 0.909292i \(-0.363376\pi\)
0.416159 + 0.909292i \(0.363376\pi\)
\(360\) 1052.16 0.154037
\(361\) 18806.0 2.74179
\(362\) 605.667 0.0879369
\(363\) −100.953 −0.0145969
\(364\) 7013.02 1.00984
\(365\) −854.724 −0.122571
\(366\) 140.458 0.0200598
\(367\) 3620.95 0.515019 0.257509 0.966276i \(-0.417098\pi\)
0.257509 + 0.966276i \(0.417098\pi\)
\(368\) −1136.96 −0.161054
\(369\) 788.139 0.111189
\(370\) −1441.65 −0.202561
\(371\) 16491.2 2.30776
\(372\) 762.484 0.106271
\(373\) 563.834 0.0782687 0.0391343 0.999234i \(-0.487540\pi\)
0.0391343 + 0.999234i \(0.487540\pi\)
\(374\) 374.000 0.0517088
\(375\) 104.291 0.0143615
\(376\) −4455.13 −0.611053
\(377\) −6822.38 −0.932017
\(378\) 3093.11 0.420880
\(379\) 1590.09 0.215507 0.107754 0.994178i \(-0.465634\pi\)
0.107754 + 0.994178i \(0.465634\pi\)
\(380\) 3204.06 0.432539
\(381\) −386.040 −0.0519092
\(382\) −4191.26 −0.561370
\(383\) 4891.81 0.652636 0.326318 0.945260i \(-0.394192\pi\)
0.326318 + 0.945260i \(0.394192\pi\)
\(384\) −106.794 −0.0141922
\(385\) 1912.64 0.253188
\(386\) −7648.07 −1.00849
\(387\) 7768.08 1.02035
\(388\) −1224.29 −0.160191
\(389\) −9076.53 −1.18303 −0.591514 0.806294i \(-0.701470\pi\)
−0.591514 + 0.806294i \(0.701470\pi\)
\(390\) 420.639 0.0546151
\(391\) 1208.02 0.156246
\(392\) 6930.60 0.892979
\(393\) 827.717 0.106241
\(394\) 6127.02 0.783439
\(395\) 1826.97 0.232721
\(396\) 1157.37 0.146869
\(397\) 7160.46 0.905222 0.452611 0.891708i \(-0.350493\pi\)
0.452611 + 0.891708i \(0.350493\pi\)
\(398\) −468.189 −0.0589653
\(399\) 4648.12 0.583201
\(400\) 400.000 0.0500000
\(401\) −14335.8 −1.78528 −0.892640 0.450771i \(-0.851149\pi\)
−0.892640 + 0.450771i \(0.851149\pi\)
\(402\) 1320.58 0.163842
\(403\) −11518.8 −1.42381
\(404\) −7106.32 −0.875130
\(405\) −3365.50 −0.412921
\(406\) −9411.60 −1.15047
\(407\) −1585.81 −0.193134
\(408\) 113.468 0.0137684
\(409\) 10733.6 1.29766 0.648828 0.760935i \(-0.275259\pi\)
0.648828 + 0.760935i \(0.275259\pi\)
\(410\) 299.628 0.0360916
\(411\) −752.508 −0.0903127
\(412\) 634.324 0.0758517
\(413\) 13135.1 1.56498
\(414\) 3738.30 0.443786
\(415\) 32.3014 0.00382076
\(416\) 1613.33 0.190144
\(417\) 1445.41 0.169741
\(418\) 3524.46 0.412409
\(419\) −3886.78 −0.453179 −0.226589 0.973990i \(-0.572758\pi\)
−0.226589 + 0.973990i \(0.572758\pi\)
\(420\) 580.279 0.0674160
\(421\) −3070.71 −0.355480 −0.177740 0.984077i \(-0.556879\pi\)
−0.177740 + 0.984077i \(0.556879\pi\)
\(422\) −9265.24 −1.06878
\(423\) 14648.4 1.68376
\(424\) 3793.77 0.434532
\(425\) −425.000 −0.0485071
\(426\) −776.145 −0.0882732
\(427\) −2927.20 −0.331750
\(428\) −6131.93 −0.692518
\(429\) 462.703 0.0520734
\(430\) 2953.20 0.331200
\(431\) 26.2187 0.00293018 0.00146509 0.999999i \(-0.499534\pi\)
0.00146509 + 0.999999i \(0.499534\pi\)
\(432\) 711.565 0.0792481
\(433\) −5606.05 −0.622193 −0.311097 0.950378i \(-0.600696\pi\)
−0.311097 + 0.950378i \(0.600696\pi\)
\(434\) −15890.5 −1.75753
\(435\) −564.505 −0.0622205
\(436\) 6806.01 0.747589
\(437\) 11384.0 1.24616
\(438\) −285.247 −0.0311179
\(439\) 8258.70 0.897873 0.448937 0.893564i \(-0.351803\pi\)
0.448937 + 0.893564i \(0.351803\pi\)
\(440\) 440.000 0.0476731
\(441\) −22787.7 −2.46061
\(442\) −1714.17 −0.184467
\(443\) −10405.2 −1.11595 −0.557975 0.829857i \(-0.688422\pi\)
−0.557975 + 0.829857i \(0.688422\pi\)
\(444\) −481.121 −0.0514257
\(445\) −1190.77 −0.126849
\(446\) −3594.69 −0.381645
\(447\) 12.0716 0.00127733
\(448\) 2225.62 0.234711
\(449\) 14377.9 1.51121 0.755605 0.655027i \(-0.227343\pi\)
0.755605 + 0.655027i \(0.227343\pi\)
\(450\) −1315.20 −0.137775
\(451\) 329.591 0.0344120
\(452\) −8032.69 −0.835899
\(453\) 1529.72 0.158659
\(454\) −6562.89 −0.678440
\(455\) −8766.28 −0.903229
\(456\) 1069.29 0.109812
\(457\) 4037.75 0.413300 0.206650 0.978415i \(-0.433744\pi\)
0.206650 + 0.978415i \(0.433744\pi\)
\(458\) 12754.2 1.30123
\(459\) −756.038 −0.0768820
\(460\) 1421.20 0.144051
\(461\) −1655.24 −0.167228 −0.0836142 0.996498i \(-0.526646\pi\)
−0.0836142 + 0.996498i \(0.526646\pi\)
\(462\) 638.307 0.0642786
\(463\) −628.003 −0.0630362 −0.0315181 0.999503i \(-0.510034\pi\)
−0.0315181 + 0.999503i \(0.510034\pi\)
\(464\) −2165.12 −0.216623
\(465\) −953.105 −0.0950520
\(466\) −11607.9 −1.15392
\(467\) 18883.4 1.87114 0.935568 0.353147i \(-0.114889\pi\)
0.935568 + 0.353147i \(0.114889\pi\)
\(468\) −5304.62 −0.523944
\(469\) −27521.4 −2.70964
\(470\) 5568.92 0.546543
\(471\) 948.228 0.0927644
\(472\) 3021.71 0.294673
\(473\) 3248.53 0.315787
\(474\) 609.714 0.0590824
\(475\) −4005.07 −0.386874
\(476\) −2364.72 −0.227704
\(477\) −12473.9 −1.19736
\(478\) −664.646 −0.0635987
\(479\) 16757.8 1.59850 0.799251 0.600997i \(-0.205230\pi\)
0.799251 + 0.600997i \(0.205230\pi\)
\(480\) 133.492 0.0126939
\(481\) 7268.30 0.688993
\(482\) 11976.7 1.13180
\(483\) 2061.73 0.194227
\(484\) 484.000 0.0454545
\(485\) 1530.36 0.143279
\(486\) −3524.70 −0.328979
\(487\) 408.008 0.0379643 0.0189822 0.999820i \(-0.493957\pi\)
0.0189822 + 0.999820i \(0.493957\pi\)
\(488\) −673.398 −0.0624657
\(489\) −1781.53 −0.164752
\(490\) −8663.24 −0.798705
\(491\) −3817.39 −0.350868 −0.175434 0.984491i \(-0.556133\pi\)
−0.175434 + 0.984491i \(0.556133\pi\)
\(492\) 99.9949 0.00916285
\(493\) 2300.44 0.210155
\(494\) −16153.8 −1.47124
\(495\) −1446.71 −0.131364
\(496\) −3655.57 −0.330927
\(497\) 16175.2 1.45987
\(498\) 10.7800 0.000970003 0
\(499\) 9090.02 0.815482 0.407741 0.913098i \(-0.366317\pi\)
0.407741 + 0.913098i \(0.366317\pi\)
\(500\) −500.000 −0.0447214
\(501\) −2962.77 −0.264205
\(502\) −11874.7 −1.05576
\(503\) −2099.33 −0.186093 −0.0930464 0.995662i \(-0.529660\pi\)
−0.0930464 + 0.995662i \(0.529660\pi\)
\(504\) −7317.82 −0.646749
\(505\) 8882.90 0.782740
\(506\) 1563.32 0.137348
\(507\) −287.706 −0.0252021
\(508\) 1850.79 0.161644
\(509\) −22461.9 −1.95600 −0.978001 0.208599i \(-0.933110\pi\)
−0.978001 + 0.208599i \(0.933110\pi\)
\(510\) −141.835 −0.0123149
\(511\) 5944.66 0.514631
\(512\) 512.000 0.0441942
\(513\) −7124.67 −0.613181
\(514\) 1610.75 0.138224
\(515\) −792.905 −0.0678438
\(516\) 985.574 0.0840842
\(517\) 6125.81 0.521108
\(518\) 10026.8 0.850483
\(519\) 2335.17 0.197500
\(520\) −2016.67 −0.170070
\(521\) −21453.6 −1.80403 −0.902015 0.431704i \(-0.857912\pi\)
−0.902015 + 0.431704i \(0.857912\pi\)
\(522\) 7118.89 0.596907
\(523\) −9180.58 −0.767569 −0.383784 0.923423i \(-0.625379\pi\)
−0.383784 + 0.923423i \(0.625379\pi\)
\(524\) −3968.31 −0.330833
\(525\) −725.349 −0.0602987
\(526\) 5046.31 0.418307
\(527\) 3884.04 0.321047
\(528\) 146.841 0.0121031
\(529\) −7117.50 −0.584984
\(530\) −4742.21 −0.388658
\(531\) −9935.35 −0.811973
\(532\) −22284.4 −1.81608
\(533\) −1510.62 −0.122762
\(534\) −397.396 −0.0322041
\(535\) 7664.91 0.619407
\(536\) −6331.25 −0.510202
\(537\) −3354.65 −0.269579
\(538\) −4097.95 −0.328393
\(539\) −9529.57 −0.761535
\(540\) −889.456 −0.0708817
\(541\) 22252.5 1.76841 0.884205 0.467098i \(-0.154701\pi\)
0.884205 + 0.467098i \(0.154701\pi\)
\(542\) −5434.67 −0.430700
\(543\) −252.662 −0.0199682
\(544\) −544.000 −0.0428746
\(545\) −8507.52 −0.668664
\(546\) −2925.57 −0.229309
\(547\) −8091.00 −0.632443 −0.316221 0.948685i \(-0.602414\pi\)
−0.316221 + 0.948685i \(0.602414\pi\)
\(548\) 3607.74 0.281232
\(549\) 2214.12 0.172125
\(550\) −550.000 −0.0426401
\(551\) 21678.7 1.67612
\(552\) 474.296 0.0365714
\(553\) −12706.7 −0.977111
\(554\) 2811.81 0.215636
\(555\) 601.401 0.0459965
\(556\) −6929.73 −0.528572
\(557\) 23180.3 1.76334 0.881671 0.471864i \(-0.156419\pi\)
0.881671 + 0.471864i \(0.156419\pi\)
\(558\) 12019.5 0.911872
\(559\) −14889.1 −1.12655
\(560\) −2782.03 −0.209932
\(561\) −156.019 −0.0117418
\(562\) −10922.7 −0.819835
\(563\) −13655.3 −1.02221 −0.511103 0.859520i \(-0.670763\pi\)
−0.511103 + 0.859520i \(0.670763\pi\)
\(564\) 1858.52 0.138755
\(565\) 10040.9 0.747650
\(566\) −12649.6 −0.939405
\(567\) 23407.3 1.73371
\(568\) 3721.07 0.274881
\(569\) −20683.2 −1.52388 −0.761938 0.647650i \(-0.775752\pi\)
−0.761938 + 0.647650i \(0.775752\pi\)
\(570\) −1336.61 −0.0982186
\(571\) 15624.8 1.14514 0.572571 0.819855i \(-0.305946\pi\)
0.572571 + 0.819855i \(0.305946\pi\)
\(572\) −2218.33 −0.162156
\(573\) 1748.44 0.127473
\(574\) −2083.93 −0.151536
\(575\) −1776.50 −0.128843
\(576\) −1683.45 −0.121777
\(577\) −456.814 −0.0329591 −0.0164796 0.999864i \(-0.505246\pi\)
−0.0164796 + 0.999864i \(0.505246\pi\)
\(578\) 578.000 0.0415945
\(579\) 3190.49 0.229002
\(580\) 2706.40 0.193754
\(581\) −224.659 −0.0160420
\(582\) 510.729 0.0363752
\(583\) −5216.43 −0.370570
\(584\) 1367.56 0.0969006
\(585\) 6630.77 0.468630
\(586\) −11316.8 −0.797766
\(587\) −16687.8 −1.17339 −0.586695 0.809808i \(-0.699571\pi\)
−0.586695 + 0.809808i \(0.699571\pi\)
\(588\) −2891.19 −0.202773
\(589\) 36602.0 2.56054
\(590\) −3777.14 −0.263563
\(591\) −2555.97 −0.177899
\(592\) 2306.63 0.160139
\(593\) 6862.72 0.475241 0.237621 0.971358i \(-0.423632\pi\)
0.237621 + 0.971358i \(0.423632\pi\)
\(594\) −978.402 −0.0675830
\(595\) 2955.90 0.203664
\(596\) −57.8749 −0.00397760
\(597\) 195.311 0.0133895
\(598\) −7165.19 −0.489977
\(599\) 20502.6 1.39852 0.699261 0.714867i \(-0.253513\pi\)
0.699261 + 0.714867i \(0.253513\pi\)
\(600\) −166.865 −0.0113537
\(601\) −4174.00 −0.283296 −0.141648 0.989917i \(-0.545240\pi\)
−0.141648 + 0.989917i \(0.545240\pi\)
\(602\) −20539.7 −1.39059
\(603\) 20817.1 1.40586
\(604\) −7333.93 −0.494062
\(605\) −605.000 −0.0406558
\(606\) 2964.49 0.198720
\(607\) 25795.8 1.72491 0.862453 0.506137i \(-0.168927\pi\)
0.862453 + 0.506137i \(0.168927\pi\)
\(608\) −5126.49 −0.341952
\(609\) 3926.17 0.261242
\(610\) 841.747 0.0558710
\(611\) −28076.6 −1.85901
\(612\) 1788.67 0.118141
\(613\) 21268.2 1.40133 0.700665 0.713490i \(-0.252887\pi\)
0.700665 + 0.713490i \(0.252887\pi\)
\(614\) 13177.3 0.866110
\(615\) −124.994 −0.00819550
\(616\) −3060.23 −0.200163
\(617\) −21075.2 −1.37513 −0.687567 0.726121i \(-0.741321\pi\)
−0.687567 + 0.726121i \(0.741321\pi\)
\(618\) −264.616 −0.0172240
\(619\) −3954.81 −0.256797 −0.128398 0.991723i \(-0.540984\pi\)
−0.128398 + 0.991723i \(0.540984\pi\)
\(620\) 4569.46 0.295990
\(621\) −3160.23 −0.204212
\(622\) −16959.1 −1.09324
\(623\) 8281.89 0.532595
\(624\) −673.022 −0.0431770
\(625\) 625.000 0.0400000
\(626\) −1264.05 −0.0807055
\(627\) −1470.27 −0.0936477
\(628\) −4546.08 −0.288867
\(629\) −2450.80 −0.155357
\(630\) 9147.27 0.578470
\(631\) −156.043 −0.00984464 −0.00492232 0.999988i \(-0.501567\pi\)
−0.00492232 + 0.999988i \(0.501567\pi\)
\(632\) −2923.15 −0.183982
\(633\) 3865.12 0.242693
\(634\) −10597.5 −0.663847
\(635\) −2313.48 −0.144579
\(636\) −1582.62 −0.0986713
\(637\) 43677.2 2.71672
\(638\) 2977.04 0.184737
\(639\) −12234.8 −0.757437
\(640\) −640.000 −0.0395285
\(641\) 19554.1 1.20490 0.602450 0.798157i \(-0.294191\pi\)
0.602450 + 0.798157i \(0.294191\pi\)
\(642\) 2558.01 0.157253
\(643\) −3372.02 −0.206811 −0.103406 0.994639i \(-0.532974\pi\)
−0.103406 + 0.994639i \(0.532974\pi\)
\(644\) −9884.52 −0.604821
\(645\) −1231.97 −0.0752072
\(646\) 5446.90 0.331742
\(647\) −22142.1 −1.34543 −0.672717 0.739900i \(-0.734873\pi\)
−0.672717 + 0.739900i \(0.734873\pi\)
\(648\) 5384.80 0.326443
\(649\) −4154.86 −0.251298
\(650\) 2520.83 0.152116
\(651\) 6628.91 0.399090
\(652\) 8541.16 0.513033
\(653\) −10579.5 −0.634009 −0.317004 0.948424i \(-0.602677\pi\)
−0.317004 + 0.948424i \(0.602677\pi\)
\(654\) −2839.22 −0.169759
\(655\) 4960.39 0.295906
\(656\) −479.405 −0.0285330
\(657\) −4496.51 −0.267010
\(658\) −38732.2 −2.29474
\(659\) −15243.4 −0.901059 −0.450529 0.892762i \(-0.648765\pi\)
−0.450529 + 0.892762i \(0.648765\pi\)
\(660\) −183.552 −0.0108254
\(661\) 30605.3 1.80092 0.900460 0.434939i \(-0.143230\pi\)
0.900460 + 0.434939i \(0.143230\pi\)
\(662\) 3838.24 0.225344
\(663\) 715.086 0.0418878
\(664\) −51.6823 −0.00302057
\(665\) 27855.5 1.62435
\(666\) −7584.19 −0.441263
\(667\) 9615.81 0.558210
\(668\) 14204.4 0.822731
\(669\) 1499.57 0.0866619
\(670\) 7914.06 0.456338
\(671\) 925.922 0.0532710
\(672\) −928.447 −0.0532970
\(673\) 4393.77 0.251660 0.125830 0.992052i \(-0.459841\pi\)
0.125830 + 0.992052i \(0.459841\pi\)
\(674\) 21591.1 1.23391
\(675\) 1111.82 0.0633985
\(676\) 1379.34 0.0784789
\(677\) 26347.3 1.49573 0.747865 0.663851i \(-0.231079\pi\)
0.747865 + 0.663851i \(0.231079\pi\)
\(678\) 3350.94 0.189811
\(679\) −10643.8 −0.601577
\(680\) 680.000 0.0383482
\(681\) 2737.79 0.154057
\(682\) 5026.41 0.282216
\(683\) 9819.09 0.550098 0.275049 0.961430i \(-0.411306\pi\)
0.275049 + 0.961430i \(0.411306\pi\)
\(684\) 16855.8 0.942250
\(685\) −4509.68 −0.251542
\(686\) 36397.6 2.02575
\(687\) −5320.56 −0.295476
\(688\) −4725.13 −0.261837
\(689\) 23908.6 1.32198
\(690\) −592.870 −0.0327104
\(691\) 1894.17 0.104280 0.0521401 0.998640i \(-0.483396\pi\)
0.0521401 + 0.998640i \(0.483396\pi\)
\(692\) −11195.5 −0.615012
\(693\) 10062.0 0.551549
\(694\) −4541.47 −0.248403
\(695\) 8662.16 0.472769
\(696\) 903.208 0.0491897
\(697\) 509.368 0.0276810
\(698\) 16869.2 0.914770
\(699\) 4842.39 0.262026
\(700\) 3477.53 0.187769
\(701\) 2188.94 0.117939 0.0589695 0.998260i \(-0.481219\pi\)
0.0589695 + 0.998260i \(0.481219\pi\)
\(702\) 4484.34 0.241098
\(703\) −23095.6 −1.23907
\(704\) −704.000 −0.0376889
\(705\) −2323.15 −0.124106
\(706\) 5281.63 0.281554
\(707\) −61781.2 −3.28645
\(708\) −1260.55 −0.0669128
\(709\) −16246.4 −0.860572 −0.430286 0.902693i \(-0.641587\pi\)
−0.430286 + 0.902693i \(0.641587\pi\)
\(710\) −4651.33 −0.245861
\(711\) 9611.26 0.506963
\(712\) 1905.23 0.100283
\(713\) 16235.3 0.852756
\(714\) 986.475 0.0517057
\(715\) 2772.91 0.145037
\(716\) 16083.2 0.839464
\(717\) 277.266 0.0144417
\(718\) 11323.0 0.588538
\(719\) 9794.19 0.508013 0.254007 0.967202i \(-0.418252\pi\)
0.254007 + 0.967202i \(0.418252\pi\)
\(720\) 2104.31 0.108921
\(721\) 5514.71 0.284852
\(722\) 37611.9 1.93874
\(723\) −4996.25 −0.257002
\(724\) 1211.33 0.0621808
\(725\) −3383.00 −0.173299
\(726\) −201.907 −0.0103216
\(727\) −31041.2 −1.58357 −0.791785 0.610800i \(-0.790848\pi\)
−0.791785 + 0.610800i \(0.790848\pi\)
\(728\) 14026.0 0.714066
\(729\) −16703.3 −0.848618
\(730\) −1709.45 −0.0866705
\(731\) 5020.45 0.254019
\(732\) 280.916 0.0141844
\(733\) −21604.8 −1.08867 −0.544334 0.838869i \(-0.683217\pi\)
−0.544334 + 0.838869i \(0.683217\pi\)
\(734\) 7241.89 0.364173
\(735\) 3613.98 0.181366
\(736\) −2273.91 −0.113883
\(737\) 8705.46 0.435102
\(738\) 1576.28 0.0786227
\(739\) −26874.6 −1.33775 −0.668877 0.743373i \(-0.733225\pi\)
−0.668877 + 0.743373i \(0.733225\pi\)
\(740\) −2883.29 −0.143232
\(741\) 6738.75 0.334081
\(742\) 32982.4 1.63184
\(743\) 17642.1 0.871096 0.435548 0.900166i \(-0.356555\pi\)
0.435548 + 0.900166i \(0.356555\pi\)
\(744\) 1524.97 0.0751452
\(745\) 72.3436 0.00355767
\(746\) 1127.67 0.0553443
\(747\) 169.931 0.00832321
\(748\) 748.000 0.0365636
\(749\) −53310.0 −2.60067
\(750\) 208.581 0.0101551
\(751\) 12570.7 0.610799 0.305399 0.952224i \(-0.401210\pi\)
0.305399 + 0.952224i \(0.401210\pi\)
\(752\) −8910.27 −0.432080
\(753\) 4953.67 0.239737
\(754\) −13644.8 −0.659035
\(755\) 9167.42 0.441903
\(756\) 6186.23 0.297607
\(757\) 24029.8 1.15374 0.576869 0.816837i \(-0.304274\pi\)
0.576869 + 0.816837i \(0.304274\pi\)
\(758\) 3180.17 0.152387
\(759\) −652.157 −0.0311882
\(760\) 6408.11 0.305851
\(761\) 6132.09 0.292100 0.146050 0.989277i \(-0.453344\pi\)
0.146050 + 0.989277i \(0.453344\pi\)
\(762\) −772.079 −0.0367053
\(763\) 59170.4 2.80748
\(764\) −8382.51 −0.396949
\(765\) −2235.83 −0.105669
\(766\) 9783.62 0.461484
\(767\) 19043.1 0.896487
\(768\) −213.587 −0.0100354
\(769\) 26397.7 1.23787 0.618937 0.785441i \(-0.287564\pi\)
0.618937 + 0.785441i \(0.287564\pi\)
\(770\) 3825.29 0.179031
\(771\) −671.945 −0.0313872
\(772\) −15296.1 −0.713109
\(773\) 23011.3 1.07071 0.535356 0.844626i \(-0.320177\pi\)
0.535356 + 0.844626i \(0.320177\pi\)
\(774\) 15536.2 0.721493
\(775\) −5711.83 −0.264742
\(776\) −2448.58 −0.113272
\(777\) −4182.79 −0.193123
\(778\) −18153.1 −0.836528
\(779\) 4800.13 0.220773
\(780\) 841.278 0.0386187
\(781\) −5116.47 −0.234419
\(782\) 2416.03 0.110482
\(783\) −6018.06 −0.274672
\(784\) 13861.2 0.631432
\(785\) 5682.60 0.258370
\(786\) 1655.43 0.0751239
\(787\) −18753.2 −0.849402 −0.424701 0.905334i \(-0.639621\pi\)
−0.424701 + 0.905334i \(0.639621\pi\)
\(788\) 12254.0 0.553975
\(789\) −2105.13 −0.0949870
\(790\) 3653.93 0.164558
\(791\) −69834.9 −3.13912
\(792\) 2314.74 0.103852
\(793\) −4243.80 −0.190040
\(794\) 14320.9 0.640088
\(795\) 1978.27 0.0882543
\(796\) −936.377 −0.0416947
\(797\) 17996.2 0.799822 0.399911 0.916554i \(-0.369041\pi\)
0.399911 + 0.916554i \(0.369041\pi\)
\(798\) 9296.24 0.412385
\(799\) 9467.16 0.419179
\(800\) 800.000 0.0353553
\(801\) −6264.38 −0.276331
\(802\) −28671.7 −1.26238
\(803\) −1880.39 −0.0826371
\(804\) 2641.16 0.115854
\(805\) 12355.6 0.540968
\(806\) −23037.7 −1.00678
\(807\) 1709.51 0.0745696
\(808\) −14212.6 −0.618810
\(809\) 6568.05 0.285439 0.142720 0.989763i \(-0.454415\pi\)
0.142720 + 0.989763i \(0.454415\pi\)
\(810\) −6731.01 −0.291980
\(811\) 6572.05 0.284557 0.142279 0.989827i \(-0.454557\pi\)
0.142279 + 0.989827i \(0.454557\pi\)
\(812\) −18823.2 −0.813503
\(813\) 2267.14 0.0978010
\(814\) −3171.62 −0.136567
\(815\) −10676.5 −0.458871
\(816\) 226.937 0.00973575
\(817\) 47311.2 2.02596
\(818\) 21467.2 0.917582
\(819\) −46117.5 −1.96761
\(820\) 599.256 0.0255206
\(821\) −27186.3 −1.15567 −0.577837 0.816152i \(-0.696103\pi\)
−0.577837 + 0.816152i \(0.696103\pi\)
\(822\) −1505.02 −0.0638607
\(823\) 23162.2 0.981025 0.490512 0.871434i \(-0.336810\pi\)
0.490512 + 0.871434i \(0.336810\pi\)
\(824\) 1268.65 0.0536352
\(825\) 229.440 0.00968250
\(826\) 26270.3 1.10661
\(827\) −12560.6 −0.528143 −0.264072 0.964503i \(-0.585066\pi\)
−0.264072 + 0.964503i \(0.585066\pi\)
\(828\) 7476.60 0.313804
\(829\) 38328.7 1.60580 0.802902 0.596112i \(-0.203288\pi\)
0.802902 + 0.596112i \(0.203288\pi\)
\(830\) 64.6028 0.00270168
\(831\) −1172.98 −0.0489655
\(832\) 3226.66 0.134452
\(833\) −14727.5 −0.612579
\(834\) 2890.83 0.120025
\(835\) −17755.5 −0.735873
\(836\) 7048.93 0.291617
\(837\) −10160.8 −0.419606
\(838\) −7773.57 −0.320446
\(839\) 34396.1 1.41536 0.707679 0.706534i \(-0.249742\pi\)
0.707679 + 0.706534i \(0.249742\pi\)
\(840\) 1160.56 0.0476703
\(841\) −6077.50 −0.249190
\(842\) −6141.42 −0.251363
\(843\) 4556.55 0.186164
\(844\) −18530.5 −0.755741
\(845\) −1724.18 −0.0701937
\(846\) 29296.8 1.19060
\(847\) 4207.82 0.170699
\(848\) 7587.54 0.307261
\(849\) 5276.95 0.213315
\(850\) −850.000 −0.0342997
\(851\) −10244.3 −0.412656
\(852\) −1552.29 −0.0624185
\(853\) −27513.4 −1.10439 −0.552193 0.833717i \(-0.686209\pi\)
−0.552193 + 0.833717i \(0.686209\pi\)
\(854\) −5854.41 −0.234583
\(855\) −21069.8 −0.842774
\(856\) −12263.9 −0.489684
\(857\) −42515.1 −1.69462 −0.847309 0.531100i \(-0.821779\pi\)
−0.847309 + 0.531100i \(0.821779\pi\)
\(858\) 925.406 0.0368215
\(859\) 22736.2 0.903083 0.451542 0.892250i \(-0.350874\pi\)
0.451542 + 0.892250i \(0.350874\pi\)
\(860\) 5906.41 0.234194
\(861\) 869.340 0.0344100
\(862\) 52.4374 0.00207195
\(863\) 3811.90 0.150358 0.0751788 0.997170i \(-0.476047\pi\)
0.0751788 + 0.997170i \(0.476047\pi\)
\(864\) 1423.13 0.0560369
\(865\) 13994.3 0.550083
\(866\) −11212.1 −0.439957
\(867\) −241.120 −0.00944506
\(868\) −31780.9 −1.24276
\(869\) 4019.32 0.156900
\(870\) −1129.01 −0.0439966
\(871\) −39900.0 −1.55219
\(872\) 13612.0 0.528625
\(873\) 8050.91 0.312121
\(874\) 22768.0 0.881165
\(875\) −4346.92 −0.167946
\(876\) −570.494 −0.0220037
\(877\) 36927.0 1.42182 0.710910 0.703283i \(-0.248283\pi\)
0.710910 + 0.703283i \(0.248283\pi\)
\(878\) 16517.4 0.634892
\(879\) 4720.93 0.181153
\(880\) 880.000 0.0337100
\(881\) 25782.3 0.985958 0.492979 0.870041i \(-0.335908\pi\)
0.492979 + 0.870041i \(0.335908\pi\)
\(882\) −45575.4 −1.73991
\(883\) −16980.9 −0.647172 −0.323586 0.946199i \(-0.604889\pi\)
−0.323586 + 0.946199i \(0.604889\pi\)
\(884\) −3428.33 −0.130438
\(885\) 1575.68 0.0598486
\(886\) −20810.4 −0.789096
\(887\) 3881.01 0.146913 0.0734564 0.997298i \(-0.476597\pi\)
0.0734564 + 0.997298i \(0.476597\pi\)
\(888\) −962.242 −0.0363634
\(889\) 16090.4 0.607037
\(890\) −2381.54 −0.0896959
\(891\) −7404.11 −0.278392
\(892\) −7189.39 −0.269864
\(893\) 89215.6 3.34321
\(894\) 24.1432 0.000903211 0
\(895\) −20104.0 −0.750840
\(896\) 4451.24 0.165966
\(897\) 2989.05 0.111261
\(898\) 28755.7 1.06859
\(899\) 30917.0 1.14698
\(900\) −2630.39 −0.0974219
\(901\) −8061.76 −0.298087
\(902\) 659.182 0.0243330
\(903\) 8568.42 0.315769
\(904\) −16065.4 −0.591070
\(905\) −1514.17 −0.0556162
\(906\) 3059.44 0.112189
\(907\) −25533.4 −0.934754 −0.467377 0.884058i \(-0.654801\pi\)
−0.467377 + 0.884058i \(0.654801\pi\)
\(908\) −13125.8 −0.479729
\(909\) 46731.0 1.70514
\(910\) −17532.6 −0.638680
\(911\) −10448.6 −0.379997 −0.189998 0.981784i \(-0.560848\pi\)
−0.189998 + 0.981784i \(0.560848\pi\)
\(912\) 2138.58 0.0776486
\(913\) 71.0631 0.00257595
\(914\) 8075.51 0.292247
\(915\) −351.146 −0.0126869
\(916\) 25508.3 0.920107
\(917\) −34499.9 −1.24241
\(918\) −1512.08 −0.0543638
\(919\) 14549.9 0.522261 0.261130 0.965304i \(-0.415905\pi\)
0.261130 + 0.965304i \(0.415905\pi\)
\(920\) 2842.39 0.101860
\(921\) −5497.07 −0.196672
\(922\) −3310.48 −0.118248
\(923\) 23450.5 0.836274
\(924\) 1276.61 0.0454519
\(925\) 3604.12 0.128111
\(926\) −1256.01 −0.0445733
\(927\) −4171.30 −0.147792
\(928\) −4330.24 −0.153176
\(929\) −7738.07 −0.273281 −0.136640 0.990621i \(-0.543631\pi\)
−0.136640 + 0.990621i \(0.543631\pi\)
\(930\) −1906.21 −0.0672119
\(931\) −138788. −4.88569
\(932\) −23215.8 −0.815944
\(933\) 7074.70 0.248248
\(934\) 37766.8 1.32309
\(935\) −935.000 −0.0327035
\(936\) −10609.2 −0.370485
\(937\) −43885.7 −1.53008 −0.765040 0.643983i \(-0.777281\pi\)
−0.765040 + 0.643983i \(0.777281\pi\)
\(938\) −55042.8 −1.91600
\(939\) 527.315 0.0183262
\(940\) 11137.8 0.386464
\(941\) 241.029 0.00834996 0.00417498 0.999991i \(-0.498671\pi\)
0.00417498 + 0.999991i \(0.498671\pi\)
\(942\) 1896.46 0.0655943
\(943\) 2129.15 0.0735257
\(944\) 6043.43 0.208365
\(945\) −7732.79 −0.266188
\(946\) 6497.05 0.223295
\(947\) −37617.8 −1.29083 −0.645414 0.763833i \(-0.723315\pi\)
−0.645414 + 0.763833i \(0.723315\pi\)
\(948\) 1219.43 0.0417776
\(949\) 8618.46 0.294802
\(950\) −8010.14 −0.273561
\(951\) 4420.87 0.150743
\(952\) −4729.45 −0.161011
\(953\) −22141.8 −0.752617 −0.376309 0.926494i \(-0.622807\pi\)
−0.376309 + 0.926494i \(0.622807\pi\)
\(954\) −24947.7 −0.846659
\(955\) 10478.1 0.355042
\(956\) −1329.29 −0.0449711
\(957\) −1241.91 −0.0419491
\(958\) 33515.6 1.13031
\(959\) 31365.1 1.05613
\(960\) 266.984 0.00897592
\(961\) 22408.9 0.752205
\(962\) 14536.6 0.487192
\(963\) 40323.4 1.34933
\(964\) 23953.5 0.800300
\(965\) 19120.2 0.637824
\(966\) 4123.45 0.137339
\(967\) 42716.4 1.42055 0.710273 0.703926i \(-0.248571\pi\)
0.710273 + 0.703926i \(0.248571\pi\)
\(968\) 968.000 0.0321412
\(969\) −2272.24 −0.0753302
\(970\) 3060.73 0.101313
\(971\) −46636.5 −1.54134 −0.770668 0.637236i \(-0.780077\pi\)
−0.770668 + 0.637236i \(0.780077\pi\)
\(972\) −7049.40 −0.232623
\(973\) −60245.9 −1.98499
\(974\) 816.016 0.0268448
\(975\) −1051.60 −0.0345416
\(976\) −1346.80 −0.0441699
\(977\) 21274.1 0.696641 0.348320 0.937376i \(-0.386752\pi\)
0.348320 + 0.937376i \(0.386752\pi\)
\(978\) −3563.06 −0.116497
\(979\) −2619.69 −0.0855217
\(980\) −17326.5 −0.564770
\(981\) −44756.2 −1.45663
\(982\) −7634.78 −0.248101
\(983\) 41232.3 1.33785 0.668925 0.743330i \(-0.266755\pi\)
0.668925 + 0.743330i \(0.266755\pi\)
\(984\) 199.990 0.00647911
\(985\) −15317.6 −0.495490
\(986\) 4600.88 0.148602
\(987\) 16157.6 0.521077
\(988\) −32307.5 −1.04032
\(989\) 20985.4 0.674719
\(990\) −2893.43 −0.0928881
\(991\) 33902.3 1.08672 0.543362 0.839499i \(-0.317151\pi\)
0.543362 + 0.839499i \(0.317151\pi\)
\(992\) −7311.14 −0.234001
\(993\) −1601.17 −0.0511699
\(994\) 32350.3 1.03228
\(995\) 1170.47 0.0372929
\(996\) 21.5599 0.000685896 0
\(997\) 24532.6 0.779292 0.389646 0.920965i \(-0.372597\pi\)
0.389646 + 0.920965i \(0.372597\pi\)
\(998\) 18180.0 0.576633
\(999\) 6411.41 0.203051
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1870.4.a.m.1.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1870.4.a.m.1.5 10 1.1 even 1 trivial