Properties

Label 1870.4.a.l.1.6
Level $1870$
Weight $4$
Character 1870.1
Self dual yes
Analytic conductor $110.334$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1870,4,Mod(1,1870)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1870, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1870.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1870 = 2 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1870.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.333571711\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 188 x^{8} - 48 x^{7} + 11155 x^{6} + 5616 x^{5} - 235675 x^{4} - 52830 x^{3} + 1553057 x^{2} + \cdots + 133376 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.315034\) of defining polynomial
Character \(\chi\) \(=\) 1870.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +0.315034 q^{3} +4.00000 q^{4} +5.00000 q^{5} +0.630069 q^{6} -30.9763 q^{7} +8.00000 q^{8} -26.9008 q^{9} +10.0000 q^{10} -11.0000 q^{11} +1.26014 q^{12} -11.6376 q^{13} -61.9526 q^{14} +1.57517 q^{15} +16.0000 q^{16} -17.0000 q^{17} -53.8015 q^{18} -160.502 q^{19} +20.0000 q^{20} -9.75860 q^{21} -22.0000 q^{22} +149.490 q^{23} +2.52028 q^{24} +25.0000 q^{25} -23.2752 q^{26} -16.9806 q^{27} -123.905 q^{28} +183.648 q^{29} +3.15034 q^{30} +56.7691 q^{31} +32.0000 q^{32} -3.46538 q^{33} -34.0000 q^{34} -154.881 q^{35} -107.603 q^{36} -134.463 q^{37} -321.004 q^{38} -3.66625 q^{39} +40.0000 q^{40} +162.505 q^{41} -19.5172 q^{42} +515.901 q^{43} -44.0000 q^{44} -134.504 q^{45} +298.979 q^{46} -12.2499 q^{47} +5.04055 q^{48} +616.531 q^{49} +50.0000 q^{50} -5.35558 q^{51} -46.5505 q^{52} -2.55486 q^{53} -33.9612 q^{54} -55.0000 q^{55} -247.810 q^{56} -50.5637 q^{57} +367.296 q^{58} +52.3867 q^{59} +6.30069 q^{60} -219.657 q^{61} +113.538 q^{62} +833.286 q^{63} +64.0000 q^{64} -58.1881 q^{65} -6.93076 q^{66} +42.0953 q^{67} -68.0000 q^{68} +47.0944 q^{69} -309.763 q^{70} +580.333 q^{71} -215.206 q^{72} +387.175 q^{73} -268.927 q^{74} +7.87586 q^{75} -642.009 q^{76} +340.739 q^{77} -7.33250 q^{78} +667.753 q^{79} +80.0000 q^{80} +720.971 q^{81} +325.011 q^{82} +1065.70 q^{83} -39.0344 q^{84} -85.0000 q^{85} +1031.80 q^{86} +57.8554 q^{87} -88.0000 q^{88} +1134.74 q^{89} -269.008 q^{90} +360.490 q^{91} +597.958 q^{92} +17.8842 q^{93} -24.4998 q^{94} -802.511 q^{95} +10.0811 q^{96} -1294.74 q^{97} +1233.06 q^{98} +295.908 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 20 q^{2} + 40 q^{4} + 50 q^{5} + 17 q^{7} + 80 q^{8} + 106 q^{9} + 100 q^{10} - 110 q^{11} + 118 q^{13} + 34 q^{14} + 160 q^{16} - 170 q^{17} + 212 q^{18} + 146 q^{19} + 200 q^{20} + 136 q^{21} - 220 q^{22}+ \cdots - 1166 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 0.315034 0.0606284 0.0303142 0.999540i \(-0.490349\pi\)
0.0303142 + 0.999540i \(0.490349\pi\)
\(4\) 4.00000 0.500000
\(5\) 5.00000 0.447214
\(6\) 0.630069 0.0428707
\(7\) −30.9763 −1.67256 −0.836281 0.548301i \(-0.815275\pi\)
−0.836281 + 0.548301i \(0.815275\pi\)
\(8\) 8.00000 0.353553
\(9\) −26.9008 −0.996324
\(10\) 10.0000 0.316228
\(11\) −11.0000 −0.301511
\(12\) 1.26014 0.0303142
\(13\) −11.6376 −0.248284 −0.124142 0.992264i \(-0.539618\pi\)
−0.124142 + 0.992264i \(0.539618\pi\)
\(14\) −61.9526 −1.18268
\(15\) 1.57517 0.0271138
\(16\) 16.0000 0.250000
\(17\) −17.0000 −0.242536
\(18\) −53.8015 −0.704508
\(19\) −160.502 −1.93799 −0.968993 0.247089i \(-0.920526\pi\)
−0.968993 + 0.247089i \(0.920526\pi\)
\(20\) 20.0000 0.223607
\(21\) −9.75860 −0.101405
\(22\) −22.0000 −0.213201
\(23\) 149.490 1.35525 0.677625 0.735408i \(-0.263009\pi\)
0.677625 + 0.735408i \(0.263009\pi\)
\(24\) 2.52028 0.0214354
\(25\) 25.0000 0.200000
\(26\) −23.2752 −0.175564
\(27\) −16.9806 −0.121034
\(28\) −123.905 −0.836281
\(29\) 183.648 1.17595 0.587975 0.808879i \(-0.299925\pi\)
0.587975 + 0.808879i \(0.299925\pi\)
\(30\) 3.15034 0.0191724
\(31\) 56.7691 0.328904 0.164452 0.986385i \(-0.447414\pi\)
0.164452 + 0.986385i \(0.447414\pi\)
\(32\) 32.0000 0.176777
\(33\) −3.46538 −0.0182801
\(34\) −34.0000 −0.171499
\(35\) −154.881 −0.747993
\(36\) −107.603 −0.498162
\(37\) −134.463 −0.597450 −0.298725 0.954339i \(-0.596561\pi\)
−0.298725 + 0.954339i \(0.596561\pi\)
\(38\) −321.004 −1.37036
\(39\) −3.66625 −0.0150531
\(40\) 40.0000 0.158114
\(41\) 162.505 0.619002 0.309501 0.950899i \(-0.399838\pi\)
0.309501 + 0.950899i \(0.399838\pi\)
\(42\) −19.5172 −0.0717040
\(43\) 515.901 1.82963 0.914816 0.403872i \(-0.132336\pi\)
0.914816 + 0.403872i \(0.132336\pi\)
\(44\) −44.0000 −0.150756
\(45\) −134.504 −0.445570
\(46\) 298.979 0.958306
\(47\) −12.2499 −0.0380176 −0.0190088 0.999819i \(-0.506051\pi\)
−0.0190088 + 0.999819i \(0.506051\pi\)
\(48\) 5.04055 0.0151571
\(49\) 616.531 1.79747
\(50\) 50.0000 0.141421
\(51\) −5.35558 −0.0147045
\(52\) −46.5505 −0.124142
\(53\) −2.55486 −0.00662144 −0.00331072 0.999995i \(-0.501054\pi\)
−0.00331072 + 0.999995i \(0.501054\pi\)
\(54\) −33.9612 −0.0855839
\(55\) −55.0000 −0.134840
\(56\) −247.810 −0.591340
\(57\) −50.5637 −0.117497
\(58\) 367.296 0.831522
\(59\) 52.3867 0.115596 0.0577980 0.998328i \(-0.481592\pi\)
0.0577980 + 0.998328i \(0.481592\pi\)
\(60\) 6.30069 0.0135569
\(61\) −219.657 −0.461052 −0.230526 0.973066i \(-0.574045\pi\)
−0.230526 + 0.973066i \(0.574045\pi\)
\(62\) 113.538 0.232571
\(63\) 833.286 1.66641
\(64\) 64.0000 0.125000
\(65\) −58.1881 −0.111036
\(66\) −6.93076 −0.0129260
\(67\) 42.0953 0.0767576 0.0383788 0.999263i \(-0.487781\pi\)
0.0383788 + 0.999263i \(0.487781\pi\)
\(68\) −68.0000 −0.121268
\(69\) 47.0944 0.0821666
\(70\) −309.763 −0.528911
\(71\) 580.333 0.970041 0.485020 0.874503i \(-0.338812\pi\)
0.485020 + 0.874503i \(0.338812\pi\)
\(72\) −215.206 −0.352254
\(73\) 387.175 0.620759 0.310379 0.950613i \(-0.399544\pi\)
0.310379 + 0.950613i \(0.399544\pi\)
\(74\) −268.927 −0.422461
\(75\) 7.87586 0.0121257
\(76\) −642.009 −0.968993
\(77\) 340.739 0.504297
\(78\) −7.33250 −0.0106441
\(79\) 667.753 0.950989 0.475494 0.879719i \(-0.342269\pi\)
0.475494 + 0.879719i \(0.342269\pi\)
\(80\) 80.0000 0.111803
\(81\) 720.971 0.988986
\(82\) 325.011 0.437700
\(83\) 1065.70 1.40935 0.704673 0.709532i \(-0.251094\pi\)
0.704673 + 0.709532i \(0.251094\pi\)
\(84\) −39.0344 −0.0507024
\(85\) −85.0000 −0.108465
\(86\) 1031.80 1.29374
\(87\) 57.8554 0.0712960
\(88\) −88.0000 −0.106600
\(89\) 1134.74 1.35149 0.675744 0.737137i \(-0.263823\pi\)
0.675744 + 0.737137i \(0.263823\pi\)
\(90\) −269.008 −0.315065
\(91\) 360.490 0.415271
\(92\) 597.958 0.677625
\(93\) 17.8842 0.0199409
\(94\) −24.4998 −0.0268825
\(95\) −802.511 −0.866694
\(96\) 10.0811 0.0107177
\(97\) −1294.74 −1.35527 −0.677635 0.735398i \(-0.736995\pi\)
−0.677635 + 0.735398i \(0.736995\pi\)
\(98\) 1233.06 1.27100
\(99\) 295.908 0.300403
\(100\) 100.000 0.100000
\(101\) −951.961 −0.937858 −0.468929 0.883236i \(-0.655360\pi\)
−0.468929 + 0.883236i \(0.655360\pi\)
\(102\) −10.7112 −0.0103977
\(103\) −1026.11 −0.981606 −0.490803 0.871270i \(-0.663297\pi\)
−0.490803 + 0.871270i \(0.663297\pi\)
\(104\) −93.1010 −0.0877818
\(105\) −48.7930 −0.0453496
\(106\) −5.10971 −0.00468207
\(107\) −1632.80 −1.47523 −0.737613 0.675224i \(-0.764047\pi\)
−0.737613 + 0.675224i \(0.764047\pi\)
\(108\) −67.9224 −0.0605170
\(109\) 724.237 0.636416 0.318208 0.948021i \(-0.396919\pi\)
0.318208 + 0.948021i \(0.396919\pi\)
\(110\) −110.000 −0.0953463
\(111\) −42.3606 −0.0362224
\(112\) −495.621 −0.418141
\(113\) −1315.49 −1.09514 −0.547570 0.836760i \(-0.684447\pi\)
−0.547570 + 0.836760i \(0.684447\pi\)
\(114\) −101.127 −0.0830829
\(115\) 747.448 0.606086
\(116\) 734.591 0.587975
\(117\) 313.061 0.247372
\(118\) 104.773 0.0817388
\(119\) 526.597 0.405656
\(120\) 12.6014 0.00958619
\(121\) 121.000 0.0909091
\(122\) −439.313 −0.326013
\(123\) 51.1948 0.0375291
\(124\) 227.077 0.164452
\(125\) 125.000 0.0894427
\(126\) 1666.57 1.17833
\(127\) 411.661 0.287630 0.143815 0.989605i \(-0.454063\pi\)
0.143815 + 0.989605i \(0.454063\pi\)
\(128\) 128.000 0.0883883
\(129\) 162.527 0.110928
\(130\) −116.376 −0.0785144
\(131\) 2584.86 1.72397 0.861984 0.506935i \(-0.169222\pi\)
0.861984 + 0.506935i \(0.169222\pi\)
\(132\) −13.8615 −0.00914007
\(133\) 4971.76 3.24140
\(134\) 84.1906 0.0542758
\(135\) −84.9030 −0.0541280
\(136\) −136.000 −0.0857493
\(137\) −2212.71 −1.37989 −0.689943 0.723864i \(-0.742364\pi\)
−0.689943 + 0.723864i \(0.742364\pi\)
\(138\) 94.1887 0.0581006
\(139\) 2622.24 1.60011 0.800055 0.599926i \(-0.204803\pi\)
0.800055 + 0.599926i \(0.204803\pi\)
\(140\) −619.526 −0.373996
\(141\) −3.85913 −0.00230495
\(142\) 1160.67 0.685922
\(143\) 128.014 0.0748605
\(144\) −430.412 −0.249081
\(145\) 918.239 0.525901
\(146\) 774.350 0.438943
\(147\) 194.228 0.108977
\(148\) −537.854 −0.298725
\(149\) −2247.66 −1.23581 −0.617904 0.786254i \(-0.712018\pi\)
−0.617904 + 0.786254i \(0.712018\pi\)
\(150\) 15.7517 0.00857415
\(151\) 1850.83 0.997475 0.498737 0.866753i \(-0.333797\pi\)
0.498737 + 0.866753i \(0.333797\pi\)
\(152\) −1284.02 −0.685181
\(153\) 457.313 0.241644
\(154\) 681.478 0.356592
\(155\) 283.846 0.147091
\(156\) −14.6650 −0.00752654
\(157\) 1535.65 0.780626 0.390313 0.920682i \(-0.372367\pi\)
0.390313 + 0.920682i \(0.372367\pi\)
\(158\) 1335.51 0.672451
\(159\) −0.804867 −0.000401447 0
\(160\) 160.000 0.0790569
\(161\) −4630.63 −2.26674
\(162\) 1441.94 0.699319
\(163\) −19.2882 −0.00926853 −0.00463426 0.999989i \(-0.501475\pi\)
−0.00463426 + 0.999989i \(0.501475\pi\)
\(164\) 650.022 0.309501
\(165\) −17.3269 −0.00817513
\(166\) 2131.40 0.996558
\(167\) 1389.99 0.644076 0.322038 0.946727i \(-0.395632\pi\)
0.322038 + 0.946727i \(0.395632\pi\)
\(168\) −78.0688 −0.0358520
\(169\) −2061.57 −0.938355
\(170\) −170.000 −0.0766965
\(171\) 4317.63 1.93086
\(172\) 2063.60 0.914816
\(173\) 851.871 0.374373 0.187187 0.982324i \(-0.440063\pi\)
0.187187 + 0.982324i \(0.440063\pi\)
\(174\) 115.711 0.0504139
\(175\) −774.407 −0.334513
\(176\) −176.000 −0.0753778
\(177\) 16.5036 0.00700840
\(178\) 2269.48 0.955646
\(179\) −3819.85 −1.59502 −0.797511 0.603305i \(-0.793850\pi\)
−0.797511 + 0.603305i \(0.793850\pi\)
\(180\) −538.015 −0.222785
\(181\) −371.610 −0.152605 −0.0763027 0.997085i \(-0.524312\pi\)
−0.0763027 + 0.997085i \(0.524312\pi\)
\(182\) 720.981 0.293641
\(183\) −69.1994 −0.0279528
\(184\) 1195.92 0.479153
\(185\) −672.317 −0.267188
\(186\) 35.7685 0.0141004
\(187\) 187.000 0.0731272
\(188\) −48.9995 −0.0190088
\(189\) 525.996 0.202437
\(190\) −1605.02 −0.612845
\(191\) −4600.78 −1.74294 −0.871468 0.490452i \(-0.836832\pi\)
−0.871468 + 0.490452i \(0.836832\pi\)
\(192\) 20.1622 0.00757855
\(193\) 462.626 0.172542 0.0862709 0.996272i \(-0.472505\pi\)
0.0862709 + 0.996272i \(0.472505\pi\)
\(194\) −2589.49 −0.958321
\(195\) −18.3313 −0.00673194
\(196\) 2466.12 0.898733
\(197\) 3863.67 1.39733 0.698667 0.715447i \(-0.253777\pi\)
0.698667 + 0.715447i \(0.253777\pi\)
\(198\) 591.817 0.212417
\(199\) −151.938 −0.0541236 −0.0270618 0.999634i \(-0.508615\pi\)
−0.0270618 + 0.999634i \(0.508615\pi\)
\(200\) 200.000 0.0707107
\(201\) 13.2615 0.00465369
\(202\) −1903.92 −0.663166
\(203\) −5688.73 −1.96685
\(204\) −21.4223 −0.00735227
\(205\) 812.527 0.276826
\(206\) −2052.22 −0.694101
\(207\) −4021.38 −1.35027
\(208\) −186.202 −0.0620711
\(209\) 1765.52 0.584325
\(210\) −97.5860 −0.0320670
\(211\) −1971.87 −0.643362 −0.321681 0.946848i \(-0.604248\pi\)
−0.321681 + 0.946848i \(0.604248\pi\)
\(212\) −10.2194 −0.00331072
\(213\) 182.825 0.0588120
\(214\) −3265.61 −1.04314
\(215\) 2579.50 0.818236
\(216\) −135.845 −0.0427920
\(217\) −1758.50 −0.550113
\(218\) 1448.47 0.450014
\(219\) 121.973 0.0376356
\(220\) −220.000 −0.0674200
\(221\) 197.840 0.0602178
\(222\) −84.7212 −0.0256131
\(223\) 509.282 0.152933 0.0764665 0.997072i \(-0.475636\pi\)
0.0764665 + 0.997072i \(0.475636\pi\)
\(224\) −991.241 −0.295670
\(225\) −672.519 −0.199265
\(226\) −2630.98 −0.774381
\(227\) 2247.82 0.657239 0.328619 0.944462i \(-0.393417\pi\)
0.328619 + 0.944462i \(0.393417\pi\)
\(228\) −202.255 −0.0587485
\(229\) −466.583 −0.134640 −0.0673202 0.997731i \(-0.521445\pi\)
−0.0673202 + 0.997731i \(0.521445\pi\)
\(230\) 1494.90 0.428568
\(231\) 107.345 0.0305747
\(232\) 1469.18 0.415761
\(233\) 3007.52 0.845620 0.422810 0.906218i \(-0.361044\pi\)
0.422810 + 0.906218i \(0.361044\pi\)
\(234\) 626.122 0.174918
\(235\) −61.2494 −0.0170020
\(236\) 209.547 0.0577980
\(237\) 210.365 0.0576569
\(238\) 1053.19 0.286842
\(239\) −2597.59 −0.703029 −0.351514 0.936182i \(-0.614333\pi\)
−0.351514 + 0.936182i \(0.614333\pi\)
\(240\) 25.2028 0.00677846
\(241\) −6393.76 −1.70896 −0.854478 0.519488i \(-0.826123\pi\)
−0.854478 + 0.519488i \(0.826123\pi\)
\(242\) 242.000 0.0642824
\(243\) 685.607 0.180995
\(244\) −878.627 −0.230526
\(245\) 3082.65 0.803851
\(246\) 102.390 0.0265371
\(247\) 1867.86 0.481171
\(248\) 454.153 0.116285
\(249\) 335.732 0.0854464
\(250\) 250.000 0.0632456
\(251\) 7265.20 1.82699 0.913497 0.406846i \(-0.133371\pi\)
0.913497 + 0.406846i \(0.133371\pi\)
\(252\) 3333.14 0.833207
\(253\) −1644.39 −0.408623
\(254\) 823.323 0.203385
\(255\) −26.7779 −0.00657607
\(256\) 256.000 0.0625000
\(257\) 1768.79 0.429316 0.214658 0.976689i \(-0.431136\pi\)
0.214658 + 0.976689i \(0.431136\pi\)
\(258\) 325.053 0.0784377
\(259\) 4165.18 0.999273
\(260\) −232.752 −0.0555181
\(261\) −4940.27 −1.17163
\(262\) 5169.71 1.21903
\(263\) −5609.43 −1.31518 −0.657590 0.753376i \(-0.728424\pi\)
−0.657590 + 0.753376i \(0.728424\pi\)
\(264\) −27.7230 −0.00646301
\(265\) −12.7743 −0.00296120
\(266\) 9943.53 2.29202
\(267\) 357.483 0.0819385
\(268\) 168.381 0.0383788
\(269\) −4947.62 −1.12142 −0.560709 0.828013i \(-0.689471\pi\)
−0.560709 + 0.828013i \(0.689471\pi\)
\(270\) −169.806 −0.0382743
\(271\) 7160.19 1.60498 0.802492 0.596662i \(-0.203507\pi\)
0.802492 + 0.596662i \(0.203507\pi\)
\(272\) −272.000 −0.0606339
\(273\) 113.567 0.0251772
\(274\) −4425.41 −0.975726
\(275\) −275.000 −0.0603023
\(276\) 188.377 0.0410833
\(277\) −874.235 −0.189631 −0.0948153 0.995495i \(-0.530226\pi\)
−0.0948153 + 0.995495i \(0.530226\pi\)
\(278\) 5244.48 1.13145
\(279\) −1527.13 −0.327695
\(280\) −1239.05 −0.264455
\(281\) 2387.19 0.506790 0.253395 0.967363i \(-0.418453\pi\)
0.253395 + 0.967363i \(0.418453\pi\)
\(282\) −7.71827 −0.00162984
\(283\) 1916.75 0.402611 0.201305 0.979529i \(-0.435482\pi\)
0.201305 + 0.979529i \(0.435482\pi\)
\(284\) 2321.33 0.485020
\(285\) −252.819 −0.0525462
\(286\) 256.028 0.0529344
\(287\) −5033.81 −1.03532
\(288\) −860.824 −0.176127
\(289\) 289.000 0.0588235
\(290\) 1836.48 0.371868
\(291\) −407.889 −0.0821679
\(292\) 1548.70 0.310379
\(293\) 5948.64 1.18609 0.593043 0.805171i \(-0.297927\pi\)
0.593043 + 0.805171i \(0.297927\pi\)
\(294\) 388.457 0.0770587
\(295\) 261.934 0.0516961
\(296\) −1075.71 −0.211231
\(297\) 186.786 0.0364931
\(298\) −4495.32 −0.873848
\(299\) −1739.70 −0.336487
\(300\) 31.5034 0.00606284
\(301\) −15980.7 −3.06017
\(302\) 3701.67 0.705321
\(303\) −299.900 −0.0568608
\(304\) −2568.04 −0.484496
\(305\) −1098.28 −0.206189
\(306\) 914.626 0.170868
\(307\) 5335.01 0.991808 0.495904 0.868377i \(-0.334837\pi\)
0.495904 + 0.868377i \(0.334837\pi\)
\(308\) 1362.96 0.252148
\(309\) −323.259 −0.0595132
\(310\) 567.691 0.104009
\(311\) 144.451 0.0263378 0.0131689 0.999913i \(-0.495808\pi\)
0.0131689 + 0.999913i \(0.495808\pi\)
\(312\) −29.3300 −0.00532207
\(313\) −3950.15 −0.713341 −0.356670 0.934230i \(-0.616088\pi\)
−0.356670 + 0.934230i \(0.616088\pi\)
\(314\) 3071.30 0.551986
\(315\) 4166.43 0.745243
\(316\) 2671.01 0.475494
\(317\) −3622.12 −0.641761 −0.320881 0.947120i \(-0.603979\pi\)
−0.320881 + 0.947120i \(0.603979\pi\)
\(318\) −1.60973 −0.000283866 0
\(319\) −2020.13 −0.354562
\(320\) 320.000 0.0559017
\(321\) −514.390 −0.0894406
\(322\) −9261.27 −1.60283
\(323\) 2728.54 0.470031
\(324\) 2883.88 0.494493
\(325\) −290.941 −0.0496569
\(326\) −38.5764 −0.00655384
\(327\) 228.160 0.0385849
\(328\) 1300.04 0.218850
\(329\) 379.456 0.0635869
\(330\) −34.6538 −0.00578069
\(331\) 6790.42 1.12760 0.563799 0.825912i \(-0.309339\pi\)
0.563799 + 0.825912i \(0.309339\pi\)
\(332\) 4262.80 0.704673
\(333\) 3617.17 0.595254
\(334\) 2779.98 0.455430
\(335\) 210.476 0.0343270
\(336\) −156.138 −0.0253512
\(337\) 11300.7 1.82668 0.913339 0.407201i \(-0.133495\pi\)
0.913339 + 0.407201i \(0.133495\pi\)
\(338\) −4123.13 −0.663517
\(339\) −414.424 −0.0663966
\(340\) −340.000 −0.0542326
\(341\) −624.460 −0.0991684
\(342\) 8635.26 1.36533
\(343\) −8472.97 −1.33381
\(344\) 4127.21 0.646872
\(345\) 235.472 0.0367460
\(346\) 1703.74 0.264722
\(347\) 4692.42 0.725943 0.362972 0.931800i \(-0.381762\pi\)
0.362972 + 0.931800i \(0.381762\pi\)
\(348\) 231.422 0.0356480
\(349\) 2518.10 0.386221 0.193110 0.981177i \(-0.438142\pi\)
0.193110 + 0.981177i \(0.438142\pi\)
\(350\) −1548.81 −0.236536
\(351\) 197.614 0.0300508
\(352\) −352.000 −0.0533002
\(353\) −2790.36 −0.420725 −0.210362 0.977624i \(-0.567464\pi\)
−0.210362 + 0.977624i \(0.567464\pi\)
\(354\) 33.0072 0.00495569
\(355\) 2901.67 0.433815
\(356\) 4538.97 0.675744
\(357\) 165.896 0.0245943
\(358\) −7639.69 −1.12785
\(359\) 4181.16 0.614689 0.307345 0.951598i \(-0.400560\pi\)
0.307345 + 0.951598i \(0.400560\pi\)
\(360\) −1076.03 −0.157533
\(361\) 18902.0 2.75579
\(362\) −743.221 −0.107908
\(363\) 38.1192 0.00551167
\(364\) 1441.96 0.207636
\(365\) 1935.87 0.277612
\(366\) −138.399 −0.0197656
\(367\) 5305.14 0.754566 0.377283 0.926098i \(-0.376858\pi\)
0.377283 + 0.926098i \(0.376858\pi\)
\(368\) 2391.83 0.338812
\(369\) −4371.52 −0.616727
\(370\) −1344.63 −0.188930
\(371\) 79.1399 0.0110748
\(372\) 71.5369 0.00997047
\(373\) 8940.59 1.24109 0.620544 0.784171i \(-0.286912\pi\)
0.620544 + 0.784171i \(0.286912\pi\)
\(374\) 374.000 0.0517088
\(375\) 39.3793 0.00542277
\(376\) −97.9990 −0.0134413
\(377\) −2137.22 −0.291970
\(378\) 1051.99 0.143144
\(379\) −7970.48 −1.08025 −0.540127 0.841584i \(-0.681624\pi\)
−0.540127 + 0.841584i \(0.681624\pi\)
\(380\) −3210.04 −0.433347
\(381\) 129.687 0.0174386
\(382\) −9201.56 −1.23244
\(383\) 13425.5 1.79115 0.895577 0.444907i \(-0.146763\pi\)
0.895577 + 0.444907i \(0.146763\pi\)
\(384\) 40.3244 0.00535884
\(385\) 1703.70 0.225528
\(386\) 925.253 0.122006
\(387\) −13878.1 −1.82291
\(388\) −5178.97 −0.677635
\(389\) −12675.4 −1.65211 −0.826053 0.563593i \(-0.809419\pi\)
−0.826053 + 0.563593i \(0.809419\pi\)
\(390\) −36.6625 −0.00476020
\(391\) −2541.32 −0.328696
\(392\) 4932.25 0.635500
\(393\) 814.318 0.104521
\(394\) 7727.34 0.988065
\(395\) 3338.77 0.425295
\(396\) 1183.63 0.150202
\(397\) 9726.18 1.22958 0.614790 0.788691i \(-0.289241\pi\)
0.614790 + 0.788691i \(0.289241\pi\)
\(398\) −303.876 −0.0382712
\(399\) 1566.28 0.196521
\(400\) 400.000 0.0500000
\(401\) 73.6351 0.00916998 0.00458499 0.999989i \(-0.498541\pi\)
0.00458499 + 0.999989i \(0.498541\pi\)
\(402\) 26.5229 0.00329065
\(403\) −660.658 −0.0816618
\(404\) −3807.84 −0.468929
\(405\) 3604.85 0.442288
\(406\) −11377.5 −1.39077
\(407\) 1479.10 0.180138
\(408\) −42.8447 −0.00519884
\(409\) 4333.28 0.523880 0.261940 0.965084i \(-0.415638\pi\)
0.261940 + 0.965084i \(0.415638\pi\)
\(410\) 1625.05 0.195746
\(411\) −697.079 −0.0836602
\(412\) −4104.43 −0.490803
\(413\) −1622.75 −0.193342
\(414\) −8042.77 −0.954784
\(415\) 5328.50 0.630279
\(416\) −372.404 −0.0438909
\(417\) 826.095 0.0970121
\(418\) 3531.05 0.413180
\(419\) 8948.86 1.04339 0.521695 0.853132i \(-0.325300\pi\)
0.521695 + 0.853132i \(0.325300\pi\)
\(420\) −195.172 −0.0226748
\(421\) −13480.5 −1.56057 −0.780284 0.625426i \(-0.784925\pi\)
−0.780284 + 0.625426i \(0.784925\pi\)
\(422\) −3943.75 −0.454926
\(423\) 329.531 0.0378779
\(424\) −20.4388 −0.00234103
\(425\) −425.000 −0.0485071
\(426\) 365.650 0.0415864
\(427\) 6804.15 0.771138
\(428\) −6531.22 −0.737613
\(429\) 40.3288 0.00453867
\(430\) 5159.01 0.578580
\(431\) −4480.02 −0.500684 −0.250342 0.968157i \(-0.580543\pi\)
−0.250342 + 0.968157i \(0.580543\pi\)
\(432\) −271.689 −0.0302585
\(433\) 7930.54 0.880179 0.440090 0.897954i \(-0.354947\pi\)
0.440090 + 0.897954i \(0.354947\pi\)
\(434\) −3516.99 −0.388989
\(435\) 289.277 0.0318845
\(436\) 2896.95 0.318208
\(437\) −23993.4 −2.62645
\(438\) 243.947 0.0266124
\(439\) −227.083 −0.0246881 −0.0123441 0.999924i \(-0.503929\pi\)
−0.0123441 + 0.999924i \(0.503929\pi\)
\(440\) −440.000 −0.0476731
\(441\) −16585.1 −1.79086
\(442\) 395.679 0.0425804
\(443\) 3205.93 0.343834 0.171917 0.985111i \(-0.445004\pi\)
0.171917 + 0.985111i \(0.445004\pi\)
\(444\) −169.442 −0.0181112
\(445\) 5673.71 0.604403
\(446\) 1018.56 0.108140
\(447\) −708.090 −0.0749251
\(448\) −1982.48 −0.209070
\(449\) 18856.3 1.98193 0.990963 0.134132i \(-0.0428247\pi\)
0.990963 + 0.134132i \(0.0428247\pi\)
\(450\) −1345.04 −0.140902
\(451\) −1787.56 −0.186636
\(452\) −5261.96 −0.547570
\(453\) 583.076 0.0604753
\(454\) 4495.65 0.464738
\(455\) 1802.45 0.185715
\(456\) −404.510 −0.0415414
\(457\) 11466.7 1.17372 0.586858 0.809690i \(-0.300365\pi\)
0.586858 + 0.809690i \(0.300365\pi\)
\(458\) −933.165 −0.0952052
\(459\) 288.670 0.0293550
\(460\) 2989.79 0.303043
\(461\) −8207.67 −0.829218 −0.414609 0.910000i \(-0.636082\pi\)
−0.414609 + 0.910000i \(0.636082\pi\)
\(462\) 214.689 0.0216196
\(463\) 7106.53 0.713322 0.356661 0.934234i \(-0.383915\pi\)
0.356661 + 0.934234i \(0.383915\pi\)
\(464\) 2938.37 0.293988
\(465\) 89.4211 0.00891786
\(466\) 6015.05 0.597943
\(467\) 1530.56 0.151661 0.0758307 0.997121i \(-0.475839\pi\)
0.0758307 + 0.997121i \(0.475839\pi\)
\(468\) 1252.24 0.123686
\(469\) −1303.96 −0.128382
\(470\) −122.499 −0.0120222
\(471\) 483.783 0.0473281
\(472\) 419.094 0.0408694
\(473\) −5674.91 −0.551655
\(474\) 420.731 0.0407696
\(475\) −4012.55 −0.387597
\(476\) 2106.39 0.202828
\(477\) 68.7275 0.00659710
\(478\) −5195.17 −0.497116
\(479\) 7523.95 0.717700 0.358850 0.933395i \(-0.383169\pi\)
0.358850 + 0.933395i \(0.383169\pi\)
\(480\) 50.4055 0.00479310
\(481\) 1564.83 0.148337
\(482\) −12787.5 −1.20841
\(483\) −1458.81 −0.137429
\(484\) 484.000 0.0454545
\(485\) −6473.71 −0.606095
\(486\) 1371.21 0.127982
\(487\) −2261.38 −0.210417 −0.105208 0.994450i \(-0.533551\pi\)
−0.105208 + 0.994450i \(0.533551\pi\)
\(488\) −1757.25 −0.163006
\(489\) −6.07645 −0.000561936 0
\(490\) 6165.31 0.568409
\(491\) 3674.41 0.337727 0.168863 0.985639i \(-0.445990\pi\)
0.168863 + 0.985639i \(0.445990\pi\)
\(492\) 204.779 0.0187645
\(493\) −3122.01 −0.285210
\(494\) 3735.73 0.340240
\(495\) 1479.54 0.134344
\(496\) 908.306 0.0822261
\(497\) −17976.6 −1.62245
\(498\) 671.464 0.0604197
\(499\) 6727.77 0.603560 0.301780 0.953378i \(-0.402419\pi\)
0.301780 + 0.953378i \(0.402419\pi\)
\(500\) 500.000 0.0447214
\(501\) 437.895 0.0390493
\(502\) 14530.4 1.29188
\(503\) 2999.27 0.265867 0.132933 0.991125i \(-0.457560\pi\)
0.132933 + 0.991125i \(0.457560\pi\)
\(504\) 6666.28 0.589167
\(505\) −4759.80 −0.419423
\(506\) −3288.77 −0.288940
\(507\) −649.464 −0.0568910
\(508\) 1646.65 0.143815
\(509\) −2121.92 −0.184779 −0.0923895 0.995723i \(-0.529450\pi\)
−0.0923895 + 0.995723i \(0.529450\pi\)
\(510\) −53.5558 −0.00464999
\(511\) −11993.2 −1.03826
\(512\) 512.000 0.0441942
\(513\) 2725.42 0.234562
\(514\) 3537.58 0.303572
\(515\) −5130.54 −0.438988
\(516\) 650.106 0.0554638
\(517\) 134.749 0.0114627
\(518\) 8330.36 0.706592
\(519\) 268.369 0.0226976
\(520\) −465.505 −0.0392572
\(521\) −20888.5 −1.75651 −0.878256 0.478190i \(-0.841293\pi\)
−0.878256 + 0.478190i \(0.841293\pi\)
\(522\) −9880.53 −0.828466
\(523\) 9983.79 0.834724 0.417362 0.908740i \(-0.362955\pi\)
0.417362 + 0.908740i \(0.362955\pi\)
\(524\) 10339.4 0.861984
\(525\) −243.965 −0.0202810
\(526\) −11218.9 −0.929973
\(527\) −965.075 −0.0797710
\(528\) −55.4461 −0.00457004
\(529\) 10180.1 0.836701
\(530\) −25.5486 −0.00209388
\(531\) −1409.24 −0.115171
\(532\) 19887.1 1.62070
\(533\) −1891.18 −0.153688
\(534\) 714.965 0.0579393
\(535\) −8164.02 −0.659741
\(536\) 336.762 0.0271379
\(537\) −1203.38 −0.0967036
\(538\) −9895.24 −0.792963
\(539\) −6781.84 −0.541956
\(540\) −339.612 −0.0270640
\(541\) 11697.1 0.929569 0.464785 0.885424i \(-0.346132\pi\)
0.464785 + 0.885424i \(0.346132\pi\)
\(542\) 14320.4 1.13490
\(543\) −117.070 −0.00925222
\(544\) −544.000 −0.0428746
\(545\) 3621.18 0.284614
\(546\) 227.134 0.0178030
\(547\) −8815.64 −0.689085 −0.344543 0.938771i \(-0.611966\pi\)
−0.344543 + 0.938771i \(0.611966\pi\)
\(548\) −8850.83 −0.689943
\(549\) 5908.93 0.459357
\(550\) −550.000 −0.0426401
\(551\) −29475.9 −2.27897
\(552\) 376.755 0.0290503
\(553\) −20684.5 −1.59059
\(554\) −1748.47 −0.134089
\(555\) −211.803 −0.0161992
\(556\) 10489.0 0.800055
\(557\) 6742.24 0.512887 0.256443 0.966559i \(-0.417449\pi\)
0.256443 + 0.966559i \(0.417449\pi\)
\(558\) −3054.26 −0.231716
\(559\) −6003.86 −0.454269
\(560\) −2478.10 −0.186998
\(561\) 58.9114 0.00443359
\(562\) 4774.39 0.358355
\(563\) −7629.93 −0.571160 −0.285580 0.958355i \(-0.592186\pi\)
−0.285580 + 0.958355i \(0.592186\pi\)
\(564\) −15.4365 −0.00115247
\(565\) −6577.45 −0.489762
\(566\) 3833.50 0.284689
\(567\) −22333.0 −1.65414
\(568\) 4642.67 0.342961
\(569\) 5375.50 0.396050 0.198025 0.980197i \(-0.436547\pi\)
0.198025 + 0.980197i \(0.436547\pi\)
\(570\) −505.637 −0.0371558
\(571\) −9019.06 −0.661009 −0.330504 0.943804i \(-0.607219\pi\)
−0.330504 + 0.943804i \(0.607219\pi\)
\(572\) 512.055 0.0374303
\(573\) −1449.40 −0.105671
\(574\) −10067.6 −0.732081
\(575\) 3737.24 0.271050
\(576\) −1721.65 −0.124541
\(577\) −4453.44 −0.321316 −0.160658 0.987010i \(-0.551362\pi\)
−0.160658 + 0.987010i \(0.551362\pi\)
\(578\) 578.000 0.0415945
\(579\) 145.743 0.0104609
\(580\) 3672.96 0.262950
\(581\) −33011.4 −2.35722
\(582\) −815.777 −0.0581015
\(583\) 28.1034 0.00199644
\(584\) 3097.40 0.219471
\(585\) 1565.30 0.110628
\(586\) 11897.3 0.838689
\(587\) 20944.9 1.47273 0.736363 0.676587i \(-0.236542\pi\)
0.736363 + 0.676587i \(0.236542\pi\)
\(588\) 776.913 0.0544887
\(589\) −9111.57 −0.637412
\(590\) 523.867 0.0365547
\(591\) 1217.19 0.0847182
\(592\) −2151.42 −0.149363
\(593\) −4545.66 −0.314786 −0.157393 0.987536i \(-0.550309\pi\)
−0.157393 + 0.987536i \(0.550309\pi\)
\(594\) 373.573 0.0258045
\(595\) 2632.98 0.181415
\(596\) −8990.64 −0.617904
\(597\) −47.8657 −0.00328143
\(598\) −3479.41 −0.237932
\(599\) 8512.13 0.580628 0.290314 0.956931i \(-0.406240\pi\)
0.290314 + 0.956931i \(0.406240\pi\)
\(600\) 63.0069 0.00428707
\(601\) −3664.04 −0.248685 −0.124342 0.992239i \(-0.539682\pi\)
−0.124342 + 0.992239i \(0.539682\pi\)
\(602\) −31961.4 −2.16387
\(603\) −1132.39 −0.0764754
\(604\) 7403.33 0.498737
\(605\) 605.000 0.0406558
\(606\) −599.801 −0.0402067
\(607\) −3049.97 −0.203944 −0.101972 0.994787i \(-0.532515\pi\)
−0.101972 + 0.994787i \(0.532515\pi\)
\(608\) −5136.07 −0.342591
\(609\) −1792.15 −0.119247
\(610\) −2196.57 −0.145797
\(611\) 142.559 0.00943918
\(612\) 1829.25 0.120822
\(613\) −15534.0 −1.02351 −0.511756 0.859131i \(-0.671005\pi\)
−0.511756 + 0.859131i \(0.671005\pi\)
\(614\) 10670.0 0.701314
\(615\) 255.974 0.0167835
\(616\) 2725.91 0.178296
\(617\) −10255.2 −0.669137 −0.334568 0.942371i \(-0.608590\pi\)
−0.334568 + 0.942371i \(0.608590\pi\)
\(618\) −646.519 −0.0420822
\(619\) −1647.51 −0.106978 −0.0534889 0.998568i \(-0.517034\pi\)
−0.0534889 + 0.998568i \(0.517034\pi\)
\(620\) 1135.38 0.0735453
\(621\) −2538.42 −0.164031
\(622\) 288.902 0.0186236
\(623\) −35150.1 −2.26045
\(624\) −58.6600 −0.00376327
\(625\) 625.000 0.0400000
\(626\) −7900.30 −0.504408
\(627\) 556.201 0.0354267
\(628\) 6142.60 0.390313
\(629\) 2285.88 0.144903
\(630\) 8332.86 0.526967
\(631\) 17100.9 1.07888 0.539441 0.842024i \(-0.318636\pi\)
0.539441 + 0.842024i \(0.318636\pi\)
\(632\) 5342.03 0.336225
\(633\) −621.208 −0.0390060
\(634\) −7244.23 −0.453794
\(635\) 2058.31 0.128632
\(636\) −3.21947 −0.000200724 0
\(637\) −7174.95 −0.446283
\(638\) −4040.25 −0.250713
\(639\) −15611.4 −0.966475
\(640\) 640.000 0.0395285
\(641\) −21957.6 −1.35300 −0.676499 0.736444i \(-0.736504\pi\)
−0.676499 + 0.736444i \(0.736504\pi\)
\(642\) −1028.78 −0.0632440
\(643\) −47.7394 −0.00292793 −0.00146396 0.999999i \(-0.500466\pi\)
−0.00146396 + 0.999999i \(0.500466\pi\)
\(644\) −18522.5 −1.13337
\(645\) 812.633 0.0496083
\(646\) 5457.07 0.332362
\(647\) −11033.9 −0.670460 −0.335230 0.942136i \(-0.608814\pi\)
−0.335230 + 0.942136i \(0.608814\pi\)
\(648\) 5767.77 0.349659
\(649\) −576.254 −0.0348535
\(650\) −581.881 −0.0351127
\(651\) −553.987 −0.0333525
\(652\) −77.1529 −0.00463426
\(653\) −20580.6 −1.23336 −0.616678 0.787216i \(-0.711522\pi\)
−0.616678 + 0.787216i \(0.711522\pi\)
\(654\) 456.319 0.0272836
\(655\) 12924.3 0.770982
\(656\) 2600.09 0.154750
\(657\) −10415.3 −0.618477
\(658\) 758.912 0.0449627
\(659\) −4507.99 −0.266474 −0.133237 0.991084i \(-0.542537\pi\)
−0.133237 + 0.991084i \(0.542537\pi\)
\(660\) −69.3076 −0.00408757
\(661\) −26121.5 −1.53708 −0.768538 0.639804i \(-0.779016\pi\)
−0.768538 + 0.639804i \(0.779016\pi\)
\(662\) 13580.8 0.797332
\(663\) 62.3263 0.00365091
\(664\) 8525.60 0.498279
\(665\) 24858.8 1.44960
\(666\) 7234.34 0.420908
\(667\) 27453.4 1.59371
\(668\) 5559.96 0.322038
\(669\) 160.441 0.00927208
\(670\) 420.953 0.0242729
\(671\) 2416.22 0.139012
\(672\) −312.275 −0.0179260
\(673\) 14944.9 0.855993 0.427996 0.903780i \(-0.359220\pi\)
0.427996 + 0.903780i \(0.359220\pi\)
\(674\) 22601.5 1.29166
\(675\) −424.515 −0.0242068
\(676\) −8246.26 −0.469177
\(677\) 4958.34 0.281484 0.140742 0.990046i \(-0.455051\pi\)
0.140742 + 0.990046i \(0.455051\pi\)
\(678\) −828.849 −0.0469495
\(679\) 40106.3 2.26677
\(680\) −680.000 −0.0383482
\(681\) 708.141 0.0398473
\(682\) −1248.92 −0.0701227
\(683\) −3170.21 −0.177606 −0.0888030 0.996049i \(-0.528304\pi\)
−0.0888030 + 0.996049i \(0.528304\pi\)
\(684\) 17270.5 0.965431
\(685\) −11063.5 −0.617103
\(686\) −16945.9 −0.943147
\(687\) −146.990 −0.00816303
\(688\) 8254.41 0.457408
\(689\) 29.7324 0.00164400
\(690\) 470.944 0.0259834
\(691\) −15069.1 −0.829605 −0.414803 0.909911i \(-0.636149\pi\)
−0.414803 + 0.909911i \(0.636149\pi\)
\(692\) 3407.48 0.187187
\(693\) −9166.14 −0.502443
\(694\) 9384.84 0.513320
\(695\) 13111.2 0.715591
\(696\) 462.843 0.0252069
\(697\) −2762.59 −0.150130
\(698\) 5036.21 0.273099
\(699\) 947.473 0.0512686
\(700\) −3097.63 −0.167256
\(701\) −2939.80 −0.158395 −0.0791974 0.996859i \(-0.525236\pi\)
−0.0791974 + 0.996859i \(0.525236\pi\)
\(702\) 395.227 0.0212491
\(703\) 21581.7 1.15785
\(704\) −704.000 −0.0376889
\(705\) −19.2957 −0.00103080
\(706\) −5580.72 −0.297497
\(707\) 29488.2 1.56863
\(708\) 66.0145 0.00350420
\(709\) −11410.9 −0.604437 −0.302219 0.953239i \(-0.597727\pi\)
−0.302219 + 0.953239i \(0.597727\pi\)
\(710\) 5803.33 0.306754
\(711\) −17963.1 −0.947493
\(712\) 9077.93 0.477823
\(713\) 8486.39 0.445747
\(714\) 331.792 0.0173908
\(715\) 640.069 0.0334786
\(716\) −15279.4 −0.797511
\(717\) −818.329 −0.0426235
\(718\) 8362.33 0.434651
\(719\) −9364.00 −0.485700 −0.242850 0.970064i \(-0.578082\pi\)
−0.242850 + 0.970064i \(0.578082\pi\)
\(720\) −2152.06 −0.111392
\(721\) 31785.0 1.64180
\(722\) 37803.9 1.94864
\(723\) −2014.25 −0.103611
\(724\) −1486.44 −0.0763027
\(725\) 4591.20 0.235190
\(726\) 76.2383 0.00389734
\(727\) 1529.82 0.0780436 0.0390218 0.999238i \(-0.487576\pi\)
0.0390218 + 0.999238i \(0.487576\pi\)
\(728\) 2883.92 0.146820
\(729\) −19250.2 −0.978013
\(730\) 3871.75 0.196301
\(731\) −8770.32 −0.443751
\(732\) −276.798 −0.0139764
\(733\) 2866.17 0.144426 0.0722132 0.997389i \(-0.476994\pi\)
0.0722132 + 0.997389i \(0.476994\pi\)
\(734\) 10610.3 0.533559
\(735\) 971.142 0.0487362
\(736\) 4783.67 0.239577
\(737\) −463.048 −0.0231433
\(738\) −8743.03 −0.436092
\(739\) 29561.9 1.47152 0.735759 0.677244i \(-0.236826\pi\)
0.735759 + 0.677244i \(0.236826\pi\)
\(740\) −2689.27 −0.133594
\(741\) 588.441 0.0291727
\(742\) 158.280 0.00783105
\(743\) −17446.3 −0.861431 −0.430715 0.902488i \(-0.641739\pi\)
−0.430715 + 0.902488i \(0.641739\pi\)
\(744\) 143.074 0.00705019
\(745\) −11238.3 −0.552670
\(746\) 17881.2 0.877582
\(747\) −28668.1 −1.40417
\(748\) 748.000 0.0365636
\(749\) 50578.2 2.46741
\(750\) 78.7586 0.00383448
\(751\) −27489.9 −1.33572 −0.667858 0.744289i \(-0.732789\pi\)
−0.667858 + 0.744289i \(0.732789\pi\)
\(752\) −195.998 −0.00950441
\(753\) 2288.79 0.110768
\(754\) −4274.45 −0.206454
\(755\) 9254.17 0.446084
\(756\) 2103.98 0.101218
\(757\) 17803.3 0.854783 0.427392 0.904067i \(-0.359433\pi\)
0.427392 + 0.904067i \(0.359433\pi\)
\(758\) −15941.0 −0.763855
\(759\) −518.038 −0.0247742
\(760\) −6420.09 −0.306422
\(761\) 24234.0 1.15438 0.577190 0.816610i \(-0.304149\pi\)
0.577190 + 0.816610i \(0.304149\pi\)
\(762\) 259.375 0.0123309
\(763\) −22434.2 −1.06445
\(764\) −18403.1 −0.871468
\(765\) 2286.56 0.108067
\(766\) 26851.0 1.26654
\(767\) −609.657 −0.0287007
\(768\) 80.6488 0.00378927
\(769\) −18004.2 −0.844277 −0.422139 0.906531i \(-0.638720\pi\)
−0.422139 + 0.906531i \(0.638720\pi\)
\(770\) 3407.39 0.159473
\(771\) 557.230 0.0260287
\(772\) 1850.51 0.0862709
\(773\) 37570.2 1.74813 0.874067 0.485806i \(-0.161474\pi\)
0.874067 + 0.485806i \(0.161474\pi\)
\(774\) −27756.2 −1.28899
\(775\) 1419.23 0.0657809
\(776\) −10357.9 −0.479160
\(777\) 1312.17 0.0605843
\(778\) −25350.8 −1.16822
\(779\) −26082.5 −1.19962
\(780\) −73.3250 −0.00336597
\(781\) −6383.67 −0.292478
\(782\) −5082.65 −0.232423
\(783\) −3118.45 −0.142330
\(784\) 9864.49 0.449366
\(785\) 7678.25 0.349106
\(786\) 1628.64 0.0739078
\(787\) 3529.32 0.159856 0.0799281 0.996801i \(-0.474531\pi\)
0.0799281 + 0.996801i \(0.474531\pi\)
\(788\) 15454.7 0.698667
\(789\) −1767.16 −0.0797373
\(790\) 6677.53 0.300729
\(791\) 40749.0 1.83169
\(792\) 2367.27 0.106209
\(793\) 2556.28 0.114472
\(794\) 19452.4 0.869444
\(795\) −4.02434 −0.000179533 0
\(796\) −607.752 −0.0270618
\(797\) 8483.29 0.377031 0.188516 0.982070i \(-0.439632\pi\)
0.188516 + 0.982070i \(0.439632\pi\)
\(798\) 3132.55 0.138961
\(799\) 208.248 0.00922063
\(800\) 800.000 0.0353553
\(801\) −30525.4 −1.34652
\(802\) 147.270 0.00648415
\(803\) −4258.92 −0.187166
\(804\) 53.0458 0.00232684
\(805\) −23153.2 −1.01372
\(806\) −1321.32 −0.0577436
\(807\) −1558.67 −0.0679898
\(808\) −7615.69 −0.331583
\(809\) 21406.6 0.930303 0.465152 0.885231i \(-0.346000\pi\)
0.465152 + 0.885231i \(0.346000\pi\)
\(810\) 7209.71 0.312745
\(811\) 11110.1 0.481044 0.240522 0.970644i \(-0.422681\pi\)
0.240522 + 0.970644i \(0.422681\pi\)
\(812\) −22754.9 −0.983425
\(813\) 2255.71 0.0973076
\(814\) 2958.20 0.127377
\(815\) −96.4411 −0.00414501
\(816\) −85.6894 −0.00367614
\(817\) −82803.2 −3.54580
\(818\) 8666.56 0.370439
\(819\) −9697.46 −0.413745
\(820\) 3250.11 0.138413
\(821\) −28740.5 −1.22174 −0.610871 0.791730i \(-0.709181\pi\)
−0.610871 + 0.791730i \(0.709181\pi\)
\(822\) −1394.16 −0.0591567
\(823\) −5059.82 −0.214307 −0.107153 0.994243i \(-0.534174\pi\)
−0.107153 + 0.994243i \(0.534174\pi\)
\(824\) −8208.87 −0.347050
\(825\) −86.6345 −0.00365603
\(826\) −3245.49 −0.136713
\(827\) −39489.4 −1.66044 −0.830219 0.557438i \(-0.811784\pi\)
−0.830219 + 0.557438i \(0.811784\pi\)
\(828\) −16085.5 −0.675134
\(829\) −22428.6 −0.939659 −0.469829 0.882757i \(-0.655685\pi\)
−0.469829 + 0.882757i \(0.655685\pi\)
\(830\) 10657.0 0.445674
\(831\) −275.414 −0.0114970
\(832\) −744.808 −0.0310355
\(833\) −10481.0 −0.435949
\(834\) 1652.19 0.0685979
\(835\) 6949.95 0.288039
\(836\) 7062.10 0.292162
\(837\) −963.973 −0.0398086
\(838\) 17897.7 0.737788
\(839\) −21648.0 −0.890790 −0.445395 0.895334i \(-0.646937\pi\)
−0.445395 + 0.895334i \(0.646937\pi\)
\(840\) −390.344 −0.0160335
\(841\) 9337.53 0.382858
\(842\) −26961.0 −1.10349
\(843\) 752.048 0.0307259
\(844\) −7887.50 −0.321681
\(845\) −10307.8 −0.419645
\(846\) 659.062 0.0267837
\(847\) −3748.13 −0.152051
\(848\) −40.8777 −0.00165536
\(849\) 603.842 0.0244096
\(850\) −850.000 −0.0342997
\(851\) −20100.9 −0.809694
\(852\) 731.300 0.0294060
\(853\) 34200.2 1.37279 0.686396 0.727228i \(-0.259192\pi\)
0.686396 + 0.727228i \(0.259192\pi\)
\(854\) 13608.3 0.545277
\(855\) 21588.1 0.863508
\(856\) −13062.4 −0.521571
\(857\) −33938.4 −1.35276 −0.676378 0.736554i \(-0.736452\pi\)
−0.676378 + 0.736554i \(0.736452\pi\)
\(858\) 80.6575 0.00320933
\(859\) 17184.0 0.682551 0.341275 0.939963i \(-0.389141\pi\)
0.341275 + 0.939963i \(0.389141\pi\)
\(860\) 10318.0 0.409118
\(861\) −1585.82 −0.0627698
\(862\) −8960.04 −0.354037
\(863\) −13549.8 −0.534461 −0.267230 0.963633i \(-0.586108\pi\)
−0.267230 + 0.963633i \(0.586108\pi\)
\(864\) −543.379 −0.0213960
\(865\) 4259.35 0.167425
\(866\) 15861.1 0.622381
\(867\) 91.0449 0.00356638
\(868\) −7033.99 −0.275057
\(869\) −7345.29 −0.286734
\(870\) 578.554 0.0225458
\(871\) −489.889 −0.0190577
\(872\) 5793.90 0.225007
\(873\) 34829.6 1.35029
\(874\) −47986.8 −1.85718
\(875\) −3872.04 −0.149599
\(876\) 487.894 0.0188178
\(877\) 10086.8 0.388377 0.194189 0.980964i \(-0.437793\pi\)
0.194189 + 0.980964i \(0.437793\pi\)
\(878\) −454.166 −0.0174571
\(879\) 1874.02 0.0719105
\(880\) −880.000 −0.0337100
\(881\) 44175.5 1.68934 0.844671 0.535286i \(-0.179796\pi\)
0.844671 + 0.535286i \(0.179796\pi\)
\(882\) −33170.3 −1.26633
\(883\) −8865.89 −0.337894 −0.168947 0.985625i \(-0.554037\pi\)
−0.168947 + 0.985625i \(0.554037\pi\)
\(884\) 791.358 0.0301089
\(885\) 82.5181 0.00313425
\(886\) 6411.86 0.243127
\(887\) −33126.8 −1.25399 −0.626995 0.779023i \(-0.715715\pi\)
−0.626995 + 0.779023i \(0.715715\pi\)
\(888\) −338.885 −0.0128066
\(889\) −12751.7 −0.481080
\(890\) 11347.4 0.427378
\(891\) −7930.68 −0.298191
\(892\) 2037.13 0.0764665
\(893\) 1966.13 0.0736776
\(894\) −1416.18 −0.0529800
\(895\) −19099.2 −0.713315
\(896\) −3964.97 −0.147835
\(897\) −548.067 −0.0204007
\(898\) 37712.7 1.40143
\(899\) 10425.5 0.386775
\(900\) −2690.08 −0.0996324
\(901\) 43.4325 0.00160594
\(902\) −3575.12 −0.131972
\(903\) −5034.47 −0.185533
\(904\) −10523.9 −0.387191
\(905\) −1858.05 −0.0682472
\(906\) 1166.15 0.0427625
\(907\) 45911.1 1.68076 0.840382 0.541994i \(-0.182331\pi\)
0.840382 + 0.541994i \(0.182331\pi\)
\(908\) 8991.29 0.328619
\(909\) 25608.5 0.934411
\(910\) 3604.90 0.131320
\(911\) 33850.9 1.23110 0.615549 0.788098i \(-0.288934\pi\)
0.615549 + 0.788098i \(0.288934\pi\)
\(912\) −809.019 −0.0293742
\(913\) −11722.7 −0.424934
\(914\) 22933.3 0.829942
\(915\) −345.997 −0.0125009
\(916\) −1866.33 −0.0673202
\(917\) −80069.2 −2.88344
\(918\) 577.340 0.0207571
\(919\) 13833.8 0.496556 0.248278 0.968689i \(-0.420135\pi\)
0.248278 + 0.968689i \(0.420135\pi\)
\(920\) 5979.58 0.214284
\(921\) 1680.71 0.0601318
\(922\) −16415.3 −0.586346
\(923\) −6753.70 −0.240846
\(924\) 429.378 0.0152873
\(925\) −3361.59 −0.119490
\(926\) 14213.1 0.504395
\(927\) 27603.1 0.977998
\(928\) 5876.73 0.207881
\(929\) 53615.1 1.89349 0.946747 0.321980i \(-0.104348\pi\)
0.946747 + 0.321980i \(0.104348\pi\)
\(930\) 178.842 0.00630588
\(931\) −98954.5 −3.48346
\(932\) 12030.1 0.422810
\(933\) 45.5070 0.00159682
\(934\) 3061.12 0.107241
\(935\) 935.000 0.0327035
\(936\) 2504.49 0.0874591
\(937\) 52673.5 1.83647 0.918233 0.396041i \(-0.129616\pi\)
0.918233 + 0.396041i \(0.129616\pi\)
\(938\) −2607.91 −0.0907797
\(939\) −1244.43 −0.0432487
\(940\) −244.998 −0.00850100
\(941\) 22858.3 0.791880 0.395940 0.918276i \(-0.370419\pi\)
0.395940 + 0.918276i \(0.370419\pi\)
\(942\) 967.565 0.0334660
\(943\) 24292.9 0.838902
\(944\) 838.187 0.0288990
\(945\) 2629.98 0.0905325
\(946\) −11349.8 −0.390079
\(947\) −17948.2 −0.615880 −0.307940 0.951406i \(-0.599640\pi\)
−0.307940 + 0.951406i \(0.599640\pi\)
\(948\) 841.461 0.0288285
\(949\) −4505.80 −0.154125
\(950\) −8025.11 −0.274073
\(951\) −1141.09 −0.0389089
\(952\) 4212.78 0.143421
\(953\) −7633.31 −0.259462 −0.129731 0.991549i \(-0.541411\pi\)
−0.129731 + 0.991549i \(0.541411\pi\)
\(954\) 137.455 0.00466486
\(955\) −23003.9 −0.779465
\(956\) −10390.3 −0.351514
\(957\) −636.409 −0.0214965
\(958\) 15047.9 0.507490
\(959\) 68541.4 2.30794
\(960\) 100.811 0.00338923
\(961\) −26568.3 −0.891822
\(962\) 3129.67 0.104890
\(963\) 43923.7 1.46980
\(964\) −25575.0 −0.854478
\(965\) 2313.13 0.0771631
\(966\) −2917.62 −0.0971768
\(967\) −12230.0 −0.406712 −0.203356 0.979105i \(-0.565185\pi\)
−0.203356 + 0.979105i \(0.565185\pi\)
\(968\) 968.000 0.0321412
\(969\) 859.583 0.0284972
\(970\) −12947.4 −0.428574
\(971\) 41188.0 1.36126 0.680631 0.732626i \(-0.261706\pi\)
0.680631 + 0.732626i \(0.261706\pi\)
\(972\) 2742.43 0.0904973
\(973\) −81227.2 −2.67629
\(974\) −4522.77 −0.148787
\(975\) −91.6563 −0.00301062
\(976\) −3514.51 −0.115263
\(977\) −23207.4 −0.759951 −0.379975 0.924997i \(-0.624068\pi\)
−0.379975 + 0.924997i \(0.624068\pi\)
\(978\) −12.1529 −0.000397349 0
\(979\) −12482.2 −0.407489
\(980\) 12330.6 0.401926
\(981\) −19482.5 −0.634076
\(982\) 7348.82 0.238809
\(983\) −22302.8 −0.723650 −0.361825 0.932246i \(-0.617846\pi\)
−0.361825 + 0.932246i \(0.617846\pi\)
\(984\) 409.558 0.0132685
\(985\) 19318.3 0.624907
\(986\) −6244.03 −0.201674
\(987\) 119.542 0.00385517
\(988\) 7471.46 0.240586
\(989\) 77121.8 2.47961
\(990\) 2959.08 0.0949958
\(991\) 46512.6 1.49094 0.745469 0.666540i \(-0.232225\pi\)
0.745469 + 0.666540i \(0.232225\pi\)
\(992\) 1816.61 0.0581426
\(993\) 2139.21 0.0683645
\(994\) −35953.1 −1.14725
\(995\) −759.690 −0.0242048
\(996\) 1342.93 0.0427232
\(997\) −42220.8 −1.34117 −0.670585 0.741832i \(-0.733957\pi\)
−0.670585 + 0.741832i \(0.733957\pi\)
\(998\) 13455.5 0.426781
\(999\) 2283.27 0.0723117
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1870.4.a.l.1.6 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1870.4.a.l.1.6 10 1.1 even 1 trivial