Properties

Label 1870.4.a.j.1.9
Level $1870$
Weight $4$
Character 1870.1
Self dual yes
Analytic conductor $110.334$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1870,4,Mod(1,1870)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1870, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1870.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1870 = 2 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1870.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-20,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.333571711\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} - 168 x^{8} + 138 x^{7} + 9025 x^{6} - 8357 x^{5} - 177203 x^{4} + 269951 x^{3} + \cdots + 1239820 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-6.75882\) of defining polynomial
Character \(\chi\) \(=\) 1870.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +6.75882 q^{3} +4.00000 q^{4} -5.00000 q^{5} -13.5176 q^{6} -13.5453 q^{7} -8.00000 q^{8} +18.6817 q^{9} +10.0000 q^{10} -11.0000 q^{11} +27.0353 q^{12} -22.3689 q^{13} +27.0906 q^{14} -33.7941 q^{15} +16.0000 q^{16} +17.0000 q^{17} -37.3633 q^{18} +151.863 q^{19} -20.0000 q^{20} -91.5504 q^{21} +22.0000 q^{22} -79.5943 q^{23} -54.0706 q^{24} +25.0000 q^{25} +44.7379 q^{26} -56.2222 q^{27} -54.1813 q^{28} +116.745 q^{29} +67.5882 q^{30} +61.9413 q^{31} -32.0000 q^{32} -74.3470 q^{33} -34.0000 q^{34} +67.7266 q^{35} +74.7266 q^{36} +403.396 q^{37} -303.725 q^{38} -151.188 q^{39} +40.0000 q^{40} -491.912 q^{41} +183.101 q^{42} +22.8081 q^{43} -44.0000 q^{44} -93.4083 q^{45} +159.189 q^{46} +94.1471 q^{47} +108.141 q^{48} -159.524 q^{49} -50.0000 q^{50} +114.900 q^{51} -89.4757 q^{52} +329.027 q^{53} +112.444 q^{54} +55.0000 q^{55} +108.363 q^{56} +1026.41 q^{57} -233.491 q^{58} +408.048 q^{59} -135.176 q^{60} -687.911 q^{61} -123.883 q^{62} -253.049 q^{63} +64.0000 q^{64} +111.845 q^{65} +148.694 q^{66} -223.762 q^{67} +68.0000 q^{68} -537.963 q^{69} -135.453 q^{70} -959.473 q^{71} -149.453 q^{72} +321.116 q^{73} -806.791 q^{74} +168.971 q^{75} +607.451 q^{76} +148.999 q^{77} +302.375 q^{78} +259.901 q^{79} -80.0000 q^{80} -884.400 q^{81} +983.824 q^{82} -816.371 q^{83} -366.202 q^{84} -85.0000 q^{85} -45.6161 q^{86} +789.062 q^{87} +88.0000 q^{88} -461.285 q^{89} +186.817 q^{90} +302.994 q^{91} -318.377 q^{92} +418.650 q^{93} -188.294 q^{94} -759.314 q^{95} -216.282 q^{96} +5.85796 q^{97} +319.049 q^{98} -205.498 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 20 q^{2} - q^{3} + 40 q^{4} - 50 q^{5} + 2 q^{6} + 4 q^{7} - 80 q^{8} + 67 q^{9} + 100 q^{10} - 110 q^{11} - 4 q^{12} - 7 q^{13} - 8 q^{14} + 5 q^{15} + 160 q^{16} + 170 q^{17} - 134 q^{18} + 11 q^{19}+ \cdots - 737 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 6.75882 1.30074 0.650368 0.759619i \(-0.274615\pi\)
0.650368 + 0.759619i \(0.274615\pi\)
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) −13.5176 −0.919759
\(7\) −13.5453 −0.731379 −0.365689 0.930737i \(-0.619167\pi\)
−0.365689 + 0.930737i \(0.619167\pi\)
\(8\) −8.00000 −0.353553
\(9\) 18.6817 0.691913
\(10\) 10.0000 0.316228
\(11\) −11.0000 −0.301511
\(12\) 27.0353 0.650368
\(13\) −22.3689 −0.477233 −0.238616 0.971114i \(-0.576694\pi\)
−0.238616 + 0.971114i \(0.576694\pi\)
\(14\) 27.0906 0.517163
\(15\) −33.7941 −0.581707
\(16\) 16.0000 0.250000
\(17\) 17.0000 0.242536
\(18\) −37.3633 −0.489256
\(19\) 151.863 1.83367 0.916834 0.399268i \(-0.130736\pi\)
0.916834 + 0.399268i \(0.130736\pi\)
\(20\) −20.0000 −0.223607
\(21\) −91.5504 −0.951330
\(22\) 22.0000 0.213201
\(23\) −79.5943 −0.721589 −0.360795 0.932645i \(-0.617494\pi\)
−0.360795 + 0.932645i \(0.617494\pi\)
\(24\) −54.0706 −0.459879
\(25\) 25.0000 0.200000
\(26\) 44.7379 0.337455
\(27\) −56.2222 −0.400740
\(28\) −54.1813 −0.365689
\(29\) 116.745 0.747555 0.373777 0.927518i \(-0.378062\pi\)
0.373777 + 0.927518i \(0.378062\pi\)
\(30\) 67.5882 0.411329
\(31\) 61.9413 0.358871 0.179435 0.983770i \(-0.442573\pi\)
0.179435 + 0.983770i \(0.442573\pi\)
\(32\) −32.0000 −0.176777
\(33\) −74.3470 −0.392187
\(34\) −34.0000 −0.171499
\(35\) 67.7266 0.327082
\(36\) 74.7266 0.345957
\(37\) 403.396 1.79237 0.896187 0.443677i \(-0.146326\pi\)
0.896187 + 0.443677i \(0.146326\pi\)
\(38\) −303.725 −1.29660
\(39\) −151.188 −0.620754
\(40\) 40.0000 0.158114
\(41\) −491.912 −1.87375 −0.936875 0.349664i \(-0.886296\pi\)
−0.936875 + 0.349664i \(0.886296\pi\)
\(42\) 183.101 0.672692
\(43\) 22.8081 0.0808883 0.0404442 0.999182i \(-0.487123\pi\)
0.0404442 + 0.999182i \(0.487123\pi\)
\(44\) −44.0000 −0.150756
\(45\) −93.4083 −0.309433
\(46\) 159.189 0.510241
\(47\) 94.1471 0.292186 0.146093 0.989271i \(-0.453330\pi\)
0.146093 + 0.989271i \(0.453330\pi\)
\(48\) 108.141 0.325184
\(49\) −159.524 −0.465085
\(50\) −50.0000 −0.141421
\(51\) 114.900 0.315475
\(52\) −89.4757 −0.238616
\(53\) 329.027 0.852743 0.426371 0.904548i \(-0.359792\pi\)
0.426371 + 0.904548i \(0.359792\pi\)
\(54\) 112.444 0.283366
\(55\) 55.0000 0.134840
\(56\) 108.363 0.258581
\(57\) 1026.41 2.38512
\(58\) −233.491 −0.528601
\(59\) 408.048 0.900395 0.450197 0.892929i \(-0.351354\pi\)
0.450197 + 0.892929i \(0.351354\pi\)
\(60\) −135.176 −0.290853
\(61\) −687.911 −1.44390 −0.721951 0.691944i \(-0.756754\pi\)
−0.721951 + 0.691944i \(0.756754\pi\)
\(62\) −123.883 −0.253760
\(63\) −253.049 −0.506050
\(64\) 64.0000 0.125000
\(65\) 111.845 0.213425
\(66\) 148.694 0.277318
\(67\) −223.762 −0.408013 −0.204006 0.978970i \(-0.565396\pi\)
−0.204006 + 0.978970i \(0.565396\pi\)
\(68\) 68.0000 0.121268
\(69\) −537.963 −0.938597
\(70\) −135.453 −0.231282
\(71\) −959.473 −1.60378 −0.801891 0.597471i \(-0.796172\pi\)
−0.801891 + 0.597471i \(0.796172\pi\)
\(72\) −149.453 −0.244628
\(73\) 321.116 0.514847 0.257424 0.966299i \(-0.417126\pi\)
0.257424 + 0.966299i \(0.417126\pi\)
\(74\) −806.791 −1.26740
\(75\) 168.971 0.260147
\(76\) 607.451 0.916834
\(77\) 148.999 0.220519
\(78\) 302.375 0.438939
\(79\) 259.901 0.370141 0.185070 0.982725i \(-0.440749\pi\)
0.185070 + 0.982725i \(0.440749\pi\)
\(80\) −80.0000 −0.111803
\(81\) −884.400 −1.21317
\(82\) 983.824 1.32494
\(83\) −816.371 −1.07962 −0.539810 0.841787i \(-0.681504\pi\)
−0.539810 + 0.841787i \(0.681504\pi\)
\(84\) −366.202 −0.475665
\(85\) −85.0000 −0.108465
\(86\) −45.6161 −0.0571967
\(87\) 789.062 0.972371
\(88\) 88.0000 0.106600
\(89\) −461.285 −0.549395 −0.274697 0.961531i \(-0.588578\pi\)
−0.274697 + 0.961531i \(0.588578\pi\)
\(90\) 186.817 0.218802
\(91\) 302.994 0.349038
\(92\) −318.377 −0.360795
\(93\) 418.650 0.466796
\(94\) −188.294 −0.206607
\(95\) −759.314 −0.820041
\(96\) −216.282 −0.229940
\(97\) 5.85796 0.00613181 0.00306591 0.999995i \(-0.499024\pi\)
0.00306591 + 0.999995i \(0.499024\pi\)
\(98\) 319.049 0.328865
\(99\) −205.498 −0.208620
\(100\) 100.000 0.100000
\(101\) 170.428 0.167903 0.0839516 0.996470i \(-0.473246\pi\)
0.0839516 + 0.996470i \(0.473246\pi\)
\(102\) −229.800 −0.223074
\(103\) −654.386 −0.626006 −0.313003 0.949752i \(-0.601335\pi\)
−0.313003 + 0.949752i \(0.601335\pi\)
\(104\) 178.951 0.168727
\(105\) 457.752 0.425448
\(106\) −658.054 −0.602980
\(107\) −10.0987 −0.00912414 −0.00456207 0.999990i \(-0.501452\pi\)
−0.00456207 + 0.999990i \(0.501452\pi\)
\(108\) −224.889 −0.200370
\(109\) −1030.90 −0.905889 −0.452945 0.891539i \(-0.649626\pi\)
−0.452945 + 0.891539i \(0.649626\pi\)
\(110\) −110.000 −0.0953463
\(111\) 2726.48 2.33140
\(112\) −216.725 −0.182845
\(113\) −1445.50 −1.20337 −0.601687 0.798732i \(-0.705505\pi\)
−0.601687 + 0.798732i \(0.705505\pi\)
\(114\) −2052.83 −1.68653
\(115\) 397.971 0.322704
\(116\) 466.982 0.373777
\(117\) −417.889 −0.330204
\(118\) −816.096 −0.636675
\(119\) −230.270 −0.177385
\(120\) 270.353 0.205664
\(121\) 121.000 0.0909091
\(122\) 1375.82 1.02099
\(123\) −3324.75 −2.43725
\(124\) 247.765 0.179435
\(125\) −125.000 −0.0894427
\(126\) 506.098 0.357832
\(127\) −2019.43 −1.41099 −0.705493 0.708717i \(-0.749274\pi\)
−0.705493 + 0.708717i \(0.749274\pi\)
\(128\) −128.000 −0.0883883
\(129\) 154.156 0.105214
\(130\) −223.689 −0.150914
\(131\) −2614.85 −1.74397 −0.871985 0.489533i \(-0.837167\pi\)
−0.871985 + 0.489533i \(0.837167\pi\)
\(132\) −297.388 −0.196093
\(133\) −2057.03 −1.34111
\(134\) 447.523 0.288508
\(135\) 281.111 0.179216
\(136\) −136.000 −0.0857493
\(137\) −1359.91 −0.848063 −0.424032 0.905647i \(-0.639385\pi\)
−0.424032 + 0.905647i \(0.639385\pi\)
\(138\) 1075.93 0.663688
\(139\) −1926.84 −1.17577 −0.587886 0.808944i \(-0.700040\pi\)
−0.587886 + 0.808944i \(0.700040\pi\)
\(140\) 270.906 0.163541
\(141\) 636.323 0.380057
\(142\) 1918.95 1.13404
\(143\) 246.058 0.143891
\(144\) 298.906 0.172978
\(145\) −583.727 −0.334317
\(146\) −642.233 −0.364052
\(147\) −1078.20 −0.604953
\(148\) 1613.58 0.896187
\(149\) −1761.68 −0.968605 −0.484303 0.874901i \(-0.660927\pi\)
−0.484303 + 0.874901i \(0.660927\pi\)
\(150\) −337.941 −0.183952
\(151\) −539.773 −0.290901 −0.145451 0.989366i \(-0.546463\pi\)
−0.145451 + 0.989366i \(0.546463\pi\)
\(152\) −1214.90 −0.648300
\(153\) 317.588 0.167814
\(154\) −297.997 −0.155930
\(155\) −309.707 −0.160492
\(156\) −604.750 −0.310377
\(157\) 1435.83 0.729885 0.364942 0.931030i \(-0.381089\pi\)
0.364942 + 0.931030i \(0.381089\pi\)
\(158\) −519.801 −0.261729
\(159\) 2223.84 1.10919
\(160\) 160.000 0.0790569
\(161\) 1078.13 0.527755
\(162\) 1768.80 0.857840
\(163\) 260.042 0.124957 0.0624787 0.998046i \(-0.480099\pi\)
0.0624787 + 0.998046i \(0.480099\pi\)
\(164\) −1967.65 −0.936875
\(165\) 371.735 0.175391
\(166\) 1632.74 0.763406
\(167\) −304.465 −0.141079 −0.0705395 0.997509i \(-0.522472\pi\)
−0.0705395 + 0.997509i \(0.522472\pi\)
\(168\) 732.403 0.336346
\(169\) −1696.63 −0.772249
\(170\) 170.000 0.0766965
\(171\) 2837.05 1.26874
\(172\) 91.2323 0.0404442
\(173\) 2306.83 1.01379 0.506893 0.862009i \(-0.330794\pi\)
0.506893 + 0.862009i \(0.330794\pi\)
\(174\) −1578.12 −0.687570
\(175\) −338.633 −0.146276
\(176\) −176.000 −0.0753778
\(177\) 2757.92 1.17118
\(178\) 922.571 0.388481
\(179\) 1393.68 0.581948 0.290974 0.956731i \(-0.406021\pi\)
0.290974 + 0.956731i \(0.406021\pi\)
\(180\) −373.633 −0.154716
\(181\) −915.395 −0.375916 −0.187958 0.982177i \(-0.560187\pi\)
−0.187958 + 0.982177i \(0.560187\pi\)
\(182\) −605.989 −0.246807
\(183\) −4649.47 −1.87813
\(184\) 636.754 0.255120
\(185\) −2016.98 −0.801574
\(186\) −837.301 −0.330075
\(187\) −187.000 −0.0731272
\(188\) 376.588 0.146093
\(189\) 761.548 0.293092
\(190\) 1518.63 0.579857
\(191\) 743.146 0.281529 0.140765 0.990043i \(-0.455044\pi\)
0.140765 + 0.990043i \(0.455044\pi\)
\(192\) 432.565 0.162592
\(193\) 125.566 0.0468313 0.0234157 0.999726i \(-0.492546\pi\)
0.0234157 + 0.999726i \(0.492546\pi\)
\(194\) −11.7159 −0.00433585
\(195\) 755.938 0.277609
\(196\) −638.097 −0.232543
\(197\) −4303.89 −1.55655 −0.778274 0.627925i \(-0.783904\pi\)
−0.778274 + 0.627925i \(0.783904\pi\)
\(198\) 410.996 0.147516
\(199\) 2456.43 0.875033 0.437516 0.899210i \(-0.355858\pi\)
0.437516 + 0.899210i \(0.355858\pi\)
\(200\) −200.000 −0.0707107
\(201\) −1512.37 −0.530716
\(202\) −340.856 −0.118725
\(203\) −1581.36 −0.546746
\(204\) 459.600 0.157737
\(205\) 2459.56 0.837967
\(206\) 1308.77 0.442653
\(207\) −1486.95 −0.499277
\(208\) −357.903 −0.119308
\(209\) −1670.49 −0.552872
\(210\) −915.504 −0.300837
\(211\) −3118.02 −1.01731 −0.508657 0.860969i \(-0.669858\pi\)
−0.508657 + 0.860969i \(0.669858\pi\)
\(212\) 1316.11 0.426371
\(213\) −6484.90 −2.08610
\(214\) 20.1975 0.00645174
\(215\) −114.040 −0.0361744
\(216\) 449.778 0.141683
\(217\) −839.015 −0.262470
\(218\) 2061.79 0.640560
\(219\) 2170.37 0.669680
\(220\) 220.000 0.0674200
\(221\) −380.272 −0.115746
\(222\) −5452.96 −1.64855
\(223\) 4296.53 1.29021 0.645105 0.764094i \(-0.276813\pi\)
0.645105 + 0.764094i \(0.276813\pi\)
\(224\) 433.450 0.129291
\(225\) 467.041 0.138383
\(226\) 2891.00 0.850914
\(227\) −1676.69 −0.490245 −0.245123 0.969492i \(-0.578828\pi\)
−0.245123 + 0.969492i \(0.578828\pi\)
\(228\) 4105.65 1.19256
\(229\) −2750.10 −0.793588 −0.396794 0.917908i \(-0.629877\pi\)
−0.396794 + 0.917908i \(0.629877\pi\)
\(230\) −795.943 −0.228187
\(231\) 1007.05 0.286837
\(232\) −933.964 −0.264301
\(233\) 2624.96 0.738056 0.369028 0.929418i \(-0.379691\pi\)
0.369028 + 0.929418i \(0.379691\pi\)
\(234\) 835.777 0.233489
\(235\) −470.735 −0.130670
\(236\) 1632.19 0.450197
\(237\) 1756.62 0.481455
\(238\) 460.541 0.125430
\(239\) 4062.01 1.09937 0.549685 0.835372i \(-0.314748\pi\)
0.549685 + 0.835372i \(0.314748\pi\)
\(240\) −540.706 −0.145427
\(241\) 3235.21 0.864723 0.432362 0.901700i \(-0.357680\pi\)
0.432362 + 0.901700i \(0.357680\pi\)
\(242\) −242.000 −0.0642824
\(243\) −4459.50 −1.17727
\(244\) −2751.64 −0.721951
\(245\) 797.621 0.207992
\(246\) 6649.49 1.72340
\(247\) −3397.01 −0.875087
\(248\) −495.531 −0.126880
\(249\) −5517.71 −1.40430
\(250\) 250.000 0.0632456
\(251\) 3925.65 0.987190 0.493595 0.869692i \(-0.335682\pi\)
0.493595 + 0.869692i \(0.335682\pi\)
\(252\) −1012.20 −0.253025
\(253\) 875.537 0.217567
\(254\) 4038.86 0.997718
\(255\) −574.500 −0.141085
\(256\) 256.000 0.0625000
\(257\) 3615.49 0.877540 0.438770 0.898599i \(-0.355414\pi\)
0.438770 + 0.898599i \(0.355414\pi\)
\(258\) −308.311 −0.0743978
\(259\) −5464.12 −1.31090
\(260\) 447.379 0.106712
\(261\) 2181.00 0.517243
\(262\) 5229.69 1.23317
\(263\) 5875.14 1.37748 0.688739 0.725009i \(-0.258165\pi\)
0.688739 + 0.725009i \(0.258165\pi\)
\(264\) 594.776 0.138659
\(265\) −1645.14 −0.381358
\(266\) 4114.06 0.948305
\(267\) −3117.75 −0.714618
\(268\) −895.047 −0.204006
\(269\) −3528.62 −0.799792 −0.399896 0.916561i \(-0.630954\pi\)
−0.399896 + 0.916561i \(0.630954\pi\)
\(270\) −562.222 −0.126725
\(271\) 1140.78 0.255709 0.127855 0.991793i \(-0.459191\pi\)
0.127855 + 0.991793i \(0.459191\pi\)
\(272\) 272.000 0.0606339
\(273\) 2047.88 0.454006
\(274\) 2719.81 0.599671
\(275\) −275.000 −0.0603023
\(276\) −2151.85 −0.469298
\(277\) 7928.71 1.71982 0.859910 0.510445i \(-0.170519\pi\)
0.859910 + 0.510445i \(0.170519\pi\)
\(278\) 3853.68 0.831396
\(279\) 1157.17 0.248307
\(280\) −541.813 −0.115641
\(281\) −3202.47 −0.679869 −0.339935 0.940449i \(-0.610405\pi\)
−0.339935 + 0.940449i \(0.610405\pi\)
\(282\) −1272.65 −0.268741
\(283\) −7887.69 −1.65680 −0.828400 0.560137i \(-0.810749\pi\)
−0.828400 + 0.560137i \(0.810749\pi\)
\(284\) −3837.89 −0.801891
\(285\) −5132.06 −1.06666
\(286\) −492.117 −0.101746
\(287\) 6663.11 1.37042
\(288\) −597.813 −0.122314
\(289\) 289.000 0.0588235
\(290\) 1167.45 0.236398
\(291\) 39.5929 0.00797587
\(292\) 1284.47 0.257424
\(293\) 1366.96 0.272555 0.136277 0.990671i \(-0.456486\pi\)
0.136277 + 0.990671i \(0.456486\pi\)
\(294\) 2156.39 0.427766
\(295\) −2040.24 −0.402669
\(296\) −3227.17 −0.633700
\(297\) 618.444 0.120828
\(298\) 3523.35 0.684907
\(299\) 1780.44 0.344366
\(300\) 675.882 0.130074
\(301\) −308.943 −0.0591600
\(302\) 1079.55 0.205698
\(303\) 1151.89 0.218398
\(304\) 2429.80 0.458417
\(305\) 3439.56 0.645732
\(306\) −635.176 −0.118662
\(307\) −3078.43 −0.572298 −0.286149 0.958185i \(-0.592375\pi\)
−0.286149 + 0.958185i \(0.592375\pi\)
\(308\) 595.994 0.110259
\(309\) −4422.88 −0.814268
\(310\) 619.413 0.113485
\(311\) 4222.02 0.769804 0.384902 0.922958i \(-0.374235\pi\)
0.384902 + 0.922958i \(0.374235\pi\)
\(312\) 1209.50 0.219470
\(313\) 3049.54 0.550704 0.275352 0.961344i \(-0.411206\pi\)
0.275352 + 0.961344i \(0.411206\pi\)
\(314\) −2871.66 −0.516106
\(315\) 1265.25 0.226313
\(316\) 1039.60 0.185070
\(317\) 2878.98 0.510093 0.255046 0.966929i \(-0.417909\pi\)
0.255046 + 0.966929i \(0.417909\pi\)
\(318\) −4447.67 −0.784318
\(319\) −1284.20 −0.225396
\(320\) −320.000 −0.0559017
\(321\) −68.2556 −0.0118681
\(322\) −2156.26 −0.373179
\(323\) 2581.67 0.444730
\(324\) −3537.60 −0.606585
\(325\) −559.223 −0.0954466
\(326\) −520.084 −0.0883582
\(327\) −6967.64 −1.17832
\(328\) 3935.30 0.662471
\(329\) −1275.25 −0.213699
\(330\) −743.470 −0.124020
\(331\) 2885.34 0.479132 0.239566 0.970880i \(-0.422995\pi\)
0.239566 + 0.970880i \(0.422995\pi\)
\(332\) −3265.49 −0.539810
\(333\) 7536.10 1.24017
\(334\) 608.930 0.0997580
\(335\) 1118.81 0.182469
\(336\) −1464.81 −0.237833
\(337\) −4275.07 −0.691032 −0.345516 0.938413i \(-0.612296\pi\)
−0.345516 + 0.938413i \(0.612296\pi\)
\(338\) 3393.26 0.546062
\(339\) −9769.88 −1.56527
\(340\) −340.000 −0.0542326
\(341\) −681.355 −0.108204
\(342\) −5674.09 −0.897134
\(343\) 6806.85 1.07153
\(344\) −182.465 −0.0285983
\(345\) 2689.82 0.419753
\(346\) −4613.66 −0.716856
\(347\) −6754.63 −1.04498 −0.522489 0.852646i \(-0.674996\pi\)
−0.522489 + 0.852646i \(0.674996\pi\)
\(348\) 3156.25 0.486186
\(349\) −9241.25 −1.41740 −0.708700 0.705510i \(-0.750718\pi\)
−0.708700 + 0.705510i \(0.750718\pi\)
\(350\) 677.266 0.103433
\(351\) 1257.63 0.191246
\(352\) 352.000 0.0533002
\(353\) −6370.31 −0.960502 −0.480251 0.877131i \(-0.659455\pi\)
−0.480251 + 0.877131i \(0.659455\pi\)
\(354\) −5515.84 −0.828146
\(355\) 4797.36 0.717233
\(356\) −1845.14 −0.274697
\(357\) −1556.36 −0.230731
\(358\) −2787.36 −0.411499
\(359\) −1023.31 −0.150441 −0.0752207 0.997167i \(-0.523966\pi\)
−0.0752207 + 0.997167i \(0.523966\pi\)
\(360\) 747.266 0.109401
\(361\) 16203.3 2.36234
\(362\) 1830.79 0.265813
\(363\) 817.817 0.118249
\(364\) 1211.98 0.174519
\(365\) −1605.58 −0.230247
\(366\) 9298.94 1.32804
\(367\) −2889.17 −0.410936 −0.205468 0.978664i \(-0.565872\pi\)
−0.205468 + 0.978664i \(0.565872\pi\)
\(368\) −1273.51 −0.180397
\(369\) −9189.73 −1.29647
\(370\) 4033.96 0.566798
\(371\) −4456.78 −0.623678
\(372\) 1674.60 0.233398
\(373\) −5977.62 −0.829784 −0.414892 0.909871i \(-0.636181\pi\)
−0.414892 + 0.909871i \(0.636181\pi\)
\(374\) 374.000 0.0517088
\(375\) −844.853 −0.116341
\(376\) −753.177 −0.103304
\(377\) −2611.47 −0.356758
\(378\) −1523.10 −0.207248
\(379\) 738.455 0.100084 0.0500421 0.998747i \(-0.484064\pi\)
0.0500421 + 0.998747i \(0.484064\pi\)
\(380\) −3037.25 −0.410021
\(381\) −13648.9 −1.83532
\(382\) −1486.29 −0.199071
\(383\) −10225.5 −1.36423 −0.682115 0.731245i \(-0.738940\pi\)
−0.682115 + 0.731245i \(0.738940\pi\)
\(384\) −865.129 −0.114970
\(385\) −744.993 −0.0986191
\(386\) −251.132 −0.0331147
\(387\) 426.092 0.0559677
\(388\) 23.4318 0.00306591
\(389\) −6493.43 −0.846350 −0.423175 0.906048i \(-0.639084\pi\)
−0.423175 + 0.906048i \(0.639084\pi\)
\(390\) −1511.88 −0.196300
\(391\) −1353.10 −0.175011
\(392\) 1276.19 0.164432
\(393\) −17673.3 −2.26844
\(394\) 8607.79 1.10065
\(395\) −1299.50 −0.165532
\(396\) −821.993 −0.104310
\(397\) −3842.04 −0.485709 −0.242855 0.970063i \(-0.578084\pi\)
−0.242855 + 0.970063i \(0.578084\pi\)
\(398\) −4912.86 −0.618742
\(399\) −13903.1 −1.74442
\(400\) 400.000 0.0500000
\(401\) 10128.4 1.26132 0.630660 0.776059i \(-0.282784\pi\)
0.630660 + 0.776059i \(0.282784\pi\)
\(402\) 3024.73 0.375273
\(403\) −1385.56 −0.171265
\(404\) 681.712 0.0839516
\(405\) 4422.00 0.542546
\(406\) 3162.71 0.386608
\(407\) −4437.35 −0.540421
\(408\) −919.200 −0.111537
\(409\) −14703.2 −1.77757 −0.888783 0.458329i \(-0.848448\pi\)
−0.888783 + 0.458329i \(0.848448\pi\)
\(410\) −4919.12 −0.592532
\(411\) −9191.37 −1.10311
\(412\) −2617.54 −0.313003
\(413\) −5527.14 −0.658530
\(414\) 2973.91 0.353042
\(415\) 4081.86 0.482820
\(416\) 715.806 0.0843636
\(417\) −13023.2 −1.52937
\(418\) 3340.98 0.390939
\(419\) −10674.5 −1.24458 −0.622292 0.782785i \(-0.713799\pi\)
−0.622292 + 0.782785i \(0.713799\pi\)
\(420\) 1831.01 0.212724
\(421\) 10823.9 1.25302 0.626512 0.779412i \(-0.284482\pi\)
0.626512 + 0.779412i \(0.284482\pi\)
\(422\) 6236.04 0.719350
\(423\) 1758.82 0.202168
\(424\) −2632.22 −0.301490
\(425\) 425.000 0.0485071
\(426\) 12969.8 1.47509
\(427\) 9317.98 1.05604
\(428\) −40.3950 −0.00456207
\(429\) 1663.06 0.187164
\(430\) 228.081 0.0255791
\(431\) −7772.91 −0.868696 −0.434348 0.900745i \(-0.643021\pi\)
−0.434348 + 0.900745i \(0.643021\pi\)
\(432\) −899.555 −0.100185
\(433\) 5310.75 0.589419 0.294710 0.955587i \(-0.404777\pi\)
0.294710 + 0.955587i \(0.404777\pi\)
\(434\) 1678.03 0.185595
\(435\) −3945.31 −0.434858
\(436\) −4123.58 −0.452945
\(437\) −12087.4 −1.32316
\(438\) −4340.74 −0.473535
\(439\) 2456.03 0.267016 0.133508 0.991048i \(-0.457376\pi\)
0.133508 + 0.991048i \(0.457376\pi\)
\(440\) −440.000 −0.0476731
\(441\) −2980.18 −0.321799
\(442\) 760.544 0.0818448
\(443\) 6091.14 0.653271 0.326635 0.945150i \(-0.394085\pi\)
0.326635 + 0.945150i \(0.394085\pi\)
\(444\) 10905.9 1.16570
\(445\) 2306.43 0.245697
\(446\) −8593.06 −0.912317
\(447\) −11906.9 −1.25990
\(448\) −866.901 −0.0914223
\(449\) −7342.12 −0.771706 −0.385853 0.922560i \(-0.626093\pi\)
−0.385853 + 0.922560i \(0.626093\pi\)
\(450\) −934.083 −0.0978513
\(451\) 5411.03 0.564957
\(452\) −5782.00 −0.601687
\(453\) −3648.23 −0.378385
\(454\) 3353.38 0.346656
\(455\) −1514.97 −0.156094
\(456\) −8211.30 −0.843266
\(457\) 3095.08 0.316809 0.158404 0.987374i \(-0.449365\pi\)
0.158404 + 0.987374i \(0.449365\pi\)
\(458\) 5500.20 0.561151
\(459\) −955.778 −0.0971936
\(460\) 1591.89 0.161352
\(461\) −10041.3 −1.01447 −0.507233 0.861809i \(-0.669332\pi\)
−0.507233 + 0.861809i \(0.669332\pi\)
\(462\) −2014.11 −0.202824
\(463\) −3726.25 −0.374024 −0.187012 0.982358i \(-0.559880\pi\)
−0.187012 + 0.982358i \(0.559880\pi\)
\(464\) 1867.93 0.186889
\(465\) −2093.25 −0.208758
\(466\) −5249.93 −0.521885
\(467\) −8836.46 −0.875594 −0.437797 0.899074i \(-0.644241\pi\)
−0.437797 + 0.899074i \(0.644241\pi\)
\(468\) −1671.55 −0.165102
\(469\) 3030.92 0.298412
\(470\) 941.471 0.0923975
\(471\) 9704.53 0.949387
\(472\) −3264.38 −0.318338
\(473\) −250.889 −0.0243887
\(474\) −3513.24 −0.340440
\(475\) 3796.57 0.366734
\(476\) −921.082 −0.0886927
\(477\) 6146.77 0.590024
\(478\) −8124.01 −0.777372
\(479\) −15932.7 −1.51980 −0.759902 0.650038i \(-0.774753\pi\)
−0.759902 + 0.650038i \(0.774753\pi\)
\(480\) 1081.41 0.102832
\(481\) −9023.53 −0.855380
\(482\) −6470.42 −0.611452
\(483\) 7286.89 0.686470
\(484\) 484.000 0.0454545
\(485\) −29.2898 −0.00274223
\(486\) 8919.01 0.832458
\(487\) 17676.7 1.64478 0.822390 0.568925i \(-0.192640\pi\)
0.822390 + 0.568925i \(0.192640\pi\)
\(488\) 5503.29 0.510496
\(489\) 1757.58 0.162537
\(490\) −1595.24 −0.147073
\(491\) −5360.92 −0.492740 −0.246370 0.969176i \(-0.579238\pi\)
−0.246370 + 0.969176i \(0.579238\pi\)
\(492\) −13299.0 −1.21863
\(493\) 1984.67 0.181309
\(494\) 6794.01 0.618780
\(495\) 1027.49 0.0932975
\(496\) 991.062 0.0897177
\(497\) 12996.4 1.17297
\(498\) 11035.4 0.992989
\(499\) 3491.18 0.313200 0.156600 0.987662i \(-0.449947\pi\)
0.156600 + 0.987662i \(0.449947\pi\)
\(500\) −500.000 −0.0447214
\(501\) −2057.82 −0.183507
\(502\) −7851.30 −0.698049
\(503\) −17824.6 −1.58003 −0.790017 0.613084i \(-0.789929\pi\)
−0.790017 + 0.613084i \(0.789929\pi\)
\(504\) 2024.39 0.178916
\(505\) −852.140 −0.0750886
\(506\) −1751.07 −0.153843
\(507\) −11467.2 −1.00449
\(508\) −8077.71 −0.705493
\(509\) 6862.03 0.597552 0.298776 0.954323i \(-0.403422\pi\)
0.298776 + 0.954323i \(0.403422\pi\)
\(510\) 1149.00 0.0997619
\(511\) −4349.63 −0.376548
\(512\) −512.000 −0.0441942
\(513\) −8538.06 −0.734823
\(514\) −7230.97 −0.620515
\(515\) 3271.93 0.279958
\(516\) 616.623 0.0526072
\(517\) −1035.62 −0.0880975
\(518\) 10928.2 0.926949
\(519\) 15591.5 1.31867
\(520\) −894.757 −0.0754571
\(521\) 2507.98 0.210896 0.105448 0.994425i \(-0.466372\pi\)
0.105448 + 0.994425i \(0.466372\pi\)
\(522\) −4362.00 −0.365746
\(523\) 13285.9 1.11081 0.555403 0.831582i \(-0.312564\pi\)
0.555403 + 0.831582i \(0.312564\pi\)
\(524\) −10459.4 −0.871985
\(525\) −2288.76 −0.190266
\(526\) −11750.3 −0.974024
\(527\) 1053.00 0.0870390
\(528\) −1189.55 −0.0980466
\(529\) −5831.75 −0.479309
\(530\) 3290.27 0.269661
\(531\) 7623.01 0.622995
\(532\) −8228.12 −0.670553
\(533\) 11003.5 0.894215
\(534\) 6235.49 0.505311
\(535\) 50.4937 0.00408044
\(536\) 1790.09 0.144254
\(537\) 9419.65 0.756961
\(538\) 7057.25 0.565538
\(539\) 1754.77 0.140228
\(540\) 1124.44 0.0896081
\(541\) 21242.1 1.68811 0.844055 0.536256i \(-0.180162\pi\)
0.844055 + 0.536256i \(0.180162\pi\)
\(542\) −2281.55 −0.180814
\(543\) −6186.99 −0.488967
\(544\) −544.000 −0.0428746
\(545\) 5154.48 0.405126
\(546\) −4095.77 −0.321031
\(547\) −17444.0 −1.36353 −0.681766 0.731570i \(-0.738788\pi\)
−0.681766 + 0.731570i \(0.738788\pi\)
\(548\) −5439.63 −0.424032
\(549\) −12851.3 −0.999055
\(550\) 550.000 0.0426401
\(551\) 17729.3 1.37077
\(552\) 4303.71 0.331844
\(553\) −3520.44 −0.270713
\(554\) −15857.4 −1.21610
\(555\) −13632.4 −1.04264
\(556\) −7707.35 −0.587886
\(557\) −13208.6 −1.00479 −0.502394 0.864639i \(-0.667547\pi\)
−0.502394 + 0.864639i \(0.667547\pi\)
\(558\) −2314.33 −0.175580
\(559\) −510.192 −0.0386026
\(560\) 1083.63 0.0817706
\(561\) −1263.90 −0.0951192
\(562\) 6404.94 0.480740
\(563\) 5498.89 0.411635 0.205818 0.978590i \(-0.434015\pi\)
0.205818 + 0.978590i \(0.434015\pi\)
\(564\) 2545.29 0.190029
\(565\) 7227.51 0.538165
\(566\) 15775.4 1.17153
\(567\) 11979.5 0.887286
\(568\) 7675.78 0.567022
\(569\) 6646.65 0.489705 0.244853 0.969560i \(-0.421260\pi\)
0.244853 + 0.969560i \(0.421260\pi\)
\(570\) 10264.1 0.754240
\(571\) −16849.5 −1.23490 −0.617450 0.786610i \(-0.711834\pi\)
−0.617450 + 0.786610i \(0.711834\pi\)
\(572\) 984.233 0.0719456
\(573\) 5022.79 0.366195
\(574\) −13326.2 −0.969034
\(575\) −1989.86 −0.144318
\(576\) 1195.63 0.0864891
\(577\) −3297.41 −0.237908 −0.118954 0.992900i \(-0.537954\pi\)
−0.118954 + 0.992900i \(0.537954\pi\)
\(578\) −578.000 −0.0415945
\(579\) 848.679 0.0609152
\(580\) −2334.91 −0.167158
\(581\) 11058.0 0.789610
\(582\) −79.1858 −0.00563979
\(583\) −3619.30 −0.257112
\(584\) −2568.93 −0.182026
\(585\) 2089.44 0.147672
\(586\) −2733.92 −0.192725
\(587\) 1730.96 0.121711 0.0608555 0.998147i \(-0.480617\pi\)
0.0608555 + 0.998147i \(0.480617\pi\)
\(588\) −4312.78 −0.302477
\(589\) 9406.58 0.658050
\(590\) 4080.48 0.284730
\(591\) −29089.2 −2.02466
\(592\) 6454.33 0.448093
\(593\) 13272.7 0.919134 0.459567 0.888143i \(-0.348005\pi\)
0.459567 + 0.888143i \(0.348005\pi\)
\(594\) −1236.89 −0.0854380
\(595\) 1151.35 0.0793292
\(596\) −7046.71 −0.484303
\(597\) 16602.6 1.13819
\(598\) −3560.88 −0.243504
\(599\) 19964.8 1.36183 0.680917 0.732360i \(-0.261581\pi\)
0.680917 + 0.732360i \(0.261581\pi\)
\(600\) −1351.76 −0.0919759
\(601\) 4639.53 0.314893 0.157446 0.987528i \(-0.449674\pi\)
0.157446 + 0.987528i \(0.449674\pi\)
\(602\) 617.885 0.0418324
\(603\) −4180.24 −0.282309
\(604\) −2159.09 −0.145451
\(605\) −605.000 −0.0406558
\(606\) −2303.78 −0.154430
\(607\) −5503.34 −0.367996 −0.183998 0.982927i \(-0.558904\pi\)
−0.183998 + 0.982927i \(0.558904\pi\)
\(608\) −4859.61 −0.324150
\(609\) −10688.1 −0.711172
\(610\) −6879.11 −0.456602
\(611\) −2105.97 −0.139441
\(612\) 1270.35 0.0839068
\(613\) 18205.7 1.19954 0.599772 0.800171i \(-0.295258\pi\)
0.599772 + 0.800171i \(0.295258\pi\)
\(614\) 6156.87 0.404676
\(615\) 16623.7 1.08997
\(616\) −1191.99 −0.0779652
\(617\) −6814.59 −0.444644 −0.222322 0.974973i \(-0.571364\pi\)
−0.222322 + 0.974973i \(0.571364\pi\)
\(618\) 8845.76 0.575774
\(619\) −21410.1 −1.39022 −0.695110 0.718903i \(-0.744644\pi\)
−0.695110 + 0.718903i \(0.744644\pi\)
\(620\) −1238.83 −0.0802459
\(621\) 4474.97 0.289169
\(622\) −8444.04 −0.544333
\(623\) 6248.26 0.401816
\(624\) −2419.00 −0.155188
\(625\) 625.000 0.0400000
\(626\) −6099.08 −0.389406
\(627\) −11290.5 −0.719140
\(628\) 5743.33 0.364942
\(629\) 6857.73 0.434715
\(630\) −2530.49 −0.160027
\(631\) −3608.27 −0.227644 −0.113822 0.993501i \(-0.536309\pi\)
−0.113822 + 0.993501i \(0.536309\pi\)
\(632\) −2079.20 −0.130864
\(633\) −21074.1 −1.32326
\(634\) −5757.95 −0.360690
\(635\) 10097.1 0.631012
\(636\) 8895.34 0.554596
\(637\) 3568.39 0.221954
\(638\) 2568.40 0.159379
\(639\) −17924.5 −1.10968
\(640\) 640.000 0.0395285
\(641\) 3085.65 0.190134 0.0950671 0.995471i \(-0.469693\pi\)
0.0950671 + 0.995471i \(0.469693\pi\)
\(642\) 136.511 0.00839201
\(643\) −8758.73 −0.537186 −0.268593 0.963254i \(-0.586559\pi\)
−0.268593 + 0.963254i \(0.586559\pi\)
\(644\) 4312.52 0.263877
\(645\) −770.778 −0.0470533
\(646\) −5163.33 −0.314471
\(647\) 24180.6 1.46930 0.734649 0.678448i \(-0.237347\pi\)
0.734649 + 0.678448i \(0.237347\pi\)
\(648\) 7075.20 0.428920
\(649\) −4488.53 −0.271479
\(650\) 1118.45 0.0674909
\(651\) −5670.76 −0.341405
\(652\) 1040.17 0.0624787
\(653\) 22276.3 1.33498 0.667488 0.744620i \(-0.267369\pi\)
0.667488 + 0.744620i \(0.267369\pi\)
\(654\) 13935.3 0.833200
\(655\) 13074.2 0.779927
\(656\) −7870.59 −0.468438
\(657\) 5998.99 0.356229
\(658\) 2550.50 0.151108
\(659\) −31697.9 −1.87371 −0.936855 0.349718i \(-0.886277\pi\)
−0.936855 + 0.349718i \(0.886277\pi\)
\(660\) 1486.94 0.0876956
\(661\) 19930.0 1.17275 0.586374 0.810040i \(-0.300555\pi\)
0.586374 + 0.810040i \(0.300555\pi\)
\(662\) −5770.68 −0.338798
\(663\) −2570.19 −0.150555
\(664\) 6530.97 0.381703
\(665\) 10285.1 0.599761
\(666\) −15072.2 −0.876930
\(667\) −9292.27 −0.539428
\(668\) −1217.86 −0.0705395
\(669\) 29039.5 1.67822
\(670\) −2237.62 −0.129025
\(671\) 7567.02 0.435353
\(672\) 2929.61 0.168173
\(673\) 14226.1 0.814826 0.407413 0.913244i \(-0.366431\pi\)
0.407413 + 0.913244i \(0.366431\pi\)
\(674\) 8550.13 0.488633
\(675\) −1405.56 −0.0801479
\(676\) −6786.52 −0.386124
\(677\) −23389.5 −1.32782 −0.663908 0.747814i \(-0.731104\pi\)
−0.663908 + 0.747814i \(0.731104\pi\)
\(678\) 19539.8 1.10681
\(679\) −79.3480 −0.00448468
\(680\) 680.000 0.0383482
\(681\) −11332.4 −0.637680
\(682\) 1362.71 0.0765115
\(683\) −11702.6 −0.655618 −0.327809 0.944744i \(-0.606310\pi\)
−0.327809 + 0.944744i \(0.606310\pi\)
\(684\) 11348.2 0.634370
\(685\) 6799.53 0.379265
\(686\) −13613.7 −0.757688
\(687\) −18587.4 −1.03225
\(688\) 364.929 0.0202221
\(689\) −7359.99 −0.406957
\(690\) −5379.63 −0.296810
\(691\) 8239.72 0.453623 0.226812 0.973939i \(-0.427170\pi\)
0.226812 + 0.973939i \(0.427170\pi\)
\(692\) 9227.32 0.506893
\(693\) 2783.54 0.152580
\(694\) 13509.3 0.738911
\(695\) 9634.19 0.525821
\(696\) −6312.49 −0.343785
\(697\) −8362.50 −0.454451
\(698\) 18482.5 1.00225
\(699\) 17741.7 0.960016
\(700\) −1354.53 −0.0731379
\(701\) 12402.5 0.668238 0.334119 0.942531i \(-0.391561\pi\)
0.334119 + 0.942531i \(0.391561\pi\)
\(702\) −2515.26 −0.135231
\(703\) 61260.8 3.28662
\(704\) −704.000 −0.0376889
\(705\) −3181.62 −0.169967
\(706\) 12740.6 0.679178
\(707\) −2308.50 −0.122801
\(708\) 11031.7 0.585588
\(709\) 22956.5 1.21601 0.608004 0.793934i \(-0.291971\pi\)
0.608004 + 0.793934i \(0.291971\pi\)
\(710\) −9594.73 −0.507160
\(711\) 4855.37 0.256105
\(712\) 3690.28 0.194240
\(713\) −4930.18 −0.258957
\(714\) 3112.71 0.163152
\(715\) −1230.29 −0.0643501
\(716\) 5574.73 0.290974
\(717\) 27454.4 1.42999
\(718\) 2046.63 0.106378
\(719\) −7697.35 −0.399253 −0.199626 0.979872i \(-0.563973\pi\)
−0.199626 + 0.979872i \(0.563973\pi\)
\(720\) −1494.53 −0.0773582
\(721\) 8863.87 0.457847
\(722\) −32406.6 −1.67043
\(723\) 21866.2 1.12478
\(724\) −3661.58 −0.187958
\(725\) 2918.64 0.149511
\(726\) −1635.63 −0.0836145
\(727\) 5111.26 0.260751 0.130376 0.991465i \(-0.458382\pi\)
0.130376 + 0.991465i \(0.458382\pi\)
\(728\) −2423.96 −0.123404
\(729\) −6262.18 −0.318152
\(730\) 3211.16 0.162809
\(731\) 387.737 0.0196183
\(732\) −18597.9 −0.939067
\(733\) 13590.4 0.684818 0.342409 0.939551i \(-0.388757\pi\)
0.342409 + 0.939551i \(0.388757\pi\)
\(734\) 5778.34 0.290575
\(735\) 5390.98 0.270543
\(736\) 2547.02 0.127560
\(737\) 2461.38 0.123020
\(738\) 18379.5 0.916744
\(739\) −27412.0 −1.36450 −0.682252 0.731117i \(-0.738999\pi\)
−0.682252 + 0.731117i \(0.738999\pi\)
\(740\) −8067.91 −0.400787
\(741\) −22959.8 −1.13826
\(742\) 8913.56 0.441007
\(743\) −1543.20 −0.0761970 −0.0380985 0.999274i \(-0.512130\pi\)
−0.0380985 + 0.999274i \(0.512130\pi\)
\(744\) −3349.20 −0.165037
\(745\) 8808.38 0.433173
\(746\) 11955.2 0.586746
\(747\) −15251.2 −0.747003
\(748\) −748.000 −0.0365636
\(749\) 136.791 0.00667320
\(750\) 1689.71 0.0822657
\(751\) −12374.1 −0.601246 −0.300623 0.953743i \(-0.597195\pi\)
−0.300623 + 0.953743i \(0.597195\pi\)
\(752\) 1506.35 0.0730466
\(753\) 26532.8 1.28407
\(754\) 5222.94 0.252266
\(755\) 2698.86 0.130095
\(756\) 3046.19 0.146546
\(757\) 25188.7 1.20938 0.604689 0.796462i \(-0.293297\pi\)
0.604689 + 0.796462i \(0.293297\pi\)
\(758\) −1476.91 −0.0707702
\(759\) 5917.60 0.282998
\(760\) 6074.51 0.289928
\(761\) −14631.9 −0.696986 −0.348493 0.937311i \(-0.613307\pi\)
−0.348493 + 0.937311i \(0.613307\pi\)
\(762\) 27297.9 1.29777
\(763\) 13963.8 0.662548
\(764\) 2972.58 0.140765
\(765\) −1587.94 −0.0750485
\(766\) 20451.1 0.964657
\(767\) −9127.59 −0.429698
\(768\) 1730.26 0.0812960
\(769\) 32817.3 1.53891 0.769455 0.638701i \(-0.220528\pi\)
0.769455 + 0.638701i \(0.220528\pi\)
\(770\) 1489.99 0.0697342
\(771\) 24436.4 1.14145
\(772\) 502.264 0.0234157
\(773\) 11519.4 0.535993 0.267996 0.963420i \(-0.413638\pi\)
0.267996 + 0.963420i \(0.413638\pi\)
\(774\) −852.185 −0.0395751
\(775\) 1548.53 0.0717742
\(776\) −46.8637 −0.00216792
\(777\) −36931.0 −1.70514
\(778\) 12986.9 0.598460
\(779\) −74703.1 −3.43584
\(780\) 3023.75 0.138805
\(781\) 10554.2 0.483558
\(782\) 2706.21 0.123752
\(783\) −6563.69 −0.299575
\(784\) −2552.39 −0.116271
\(785\) −7179.16 −0.326414
\(786\) 35346.5 1.60403
\(787\) 16217.8 0.734562 0.367281 0.930110i \(-0.380289\pi\)
0.367281 + 0.930110i \(0.380289\pi\)
\(788\) −17215.6 −0.778274
\(789\) 39709.0 1.79174
\(790\) 2599.01 0.117049
\(791\) 19579.8 0.880122
\(792\) 1643.99 0.0737582
\(793\) 15387.8 0.689077
\(794\) 7684.09 0.343448
\(795\) −11119.2 −0.496046
\(796\) 9825.71 0.437516
\(797\) −13350.6 −0.593352 −0.296676 0.954978i \(-0.595878\pi\)
−0.296676 + 0.954978i \(0.595878\pi\)
\(798\) 27806.2 1.23349
\(799\) 1600.50 0.0708656
\(800\) −800.000 −0.0353553
\(801\) −8617.57 −0.380134
\(802\) −20256.8 −0.891888
\(803\) −3532.28 −0.155232
\(804\) −6049.46 −0.265358
\(805\) −5390.65 −0.236019
\(806\) 2771.12 0.121103
\(807\) −23849.3 −1.04032
\(808\) −1363.42 −0.0593627
\(809\) −981.564 −0.0426576 −0.0213288 0.999773i \(-0.506790\pi\)
−0.0213288 + 0.999773i \(0.506790\pi\)
\(810\) −8844.00 −0.383638
\(811\) −37571.7 −1.62678 −0.813392 0.581717i \(-0.802381\pi\)
−0.813392 + 0.581717i \(0.802381\pi\)
\(812\) −6325.42 −0.273373
\(813\) 7710.31 0.332610
\(814\) 8874.70 0.382135
\(815\) −1300.21 −0.0558826
\(816\) 1838.40 0.0788687
\(817\) 3463.69 0.148322
\(818\) 29406.3 1.25693
\(819\) 5660.44 0.241504
\(820\) 9838.24 0.418983
\(821\) 10468.0 0.444987 0.222493 0.974934i \(-0.428580\pi\)
0.222493 + 0.974934i \(0.428580\pi\)
\(822\) 18382.7 0.780014
\(823\) −17683.1 −0.748962 −0.374481 0.927235i \(-0.622179\pi\)
−0.374481 + 0.927235i \(0.622179\pi\)
\(824\) 5235.09 0.221326
\(825\) −1858.68 −0.0784373
\(826\) 11054.3 0.465651
\(827\) −12366.5 −0.519983 −0.259992 0.965611i \(-0.583720\pi\)
−0.259992 + 0.965611i \(0.583720\pi\)
\(828\) −5947.81 −0.249639
\(829\) −16335.2 −0.684371 −0.342185 0.939632i \(-0.611167\pi\)
−0.342185 + 0.939632i \(0.611167\pi\)
\(830\) −8163.71 −0.341406
\(831\) 53588.8 2.23703
\(832\) −1431.61 −0.0596541
\(833\) −2711.91 −0.112800
\(834\) 26046.3 1.08143
\(835\) 1522.32 0.0630925
\(836\) −6681.96 −0.276436
\(837\) −3482.48 −0.143814
\(838\) 21348.9 0.880054
\(839\) −25617.8 −1.05414 −0.527070 0.849822i \(-0.676709\pi\)
−0.527070 + 0.849822i \(0.676709\pi\)
\(840\) −3662.02 −0.150419
\(841\) −10759.5 −0.441162
\(842\) −21647.7 −0.886022
\(843\) −21644.9 −0.884330
\(844\) −12472.1 −0.508657
\(845\) 8483.15 0.345360
\(846\) −3517.65 −0.142954
\(847\) −1638.98 −0.0664890
\(848\) 5264.44 0.213186
\(849\) −53311.5 −2.15506
\(850\) −850.000 −0.0342997
\(851\) −32108.0 −1.29336
\(852\) −25939.6 −1.04305
\(853\) −14578.8 −0.585193 −0.292596 0.956236i \(-0.594519\pi\)
−0.292596 + 0.956236i \(0.594519\pi\)
\(854\) −18636.0 −0.746732
\(855\) −14185.2 −0.567397
\(856\) 80.7900 0.00322587
\(857\) 37064.5 1.47736 0.738681 0.674056i \(-0.235449\pi\)
0.738681 + 0.674056i \(0.235449\pi\)
\(858\) −3326.13 −0.132345
\(859\) 13609.0 0.540551 0.270275 0.962783i \(-0.412885\pi\)
0.270275 + 0.962783i \(0.412885\pi\)
\(860\) −456.161 −0.0180872
\(861\) 45034.7 1.78256
\(862\) 15545.8 0.614261
\(863\) −32778.2 −1.29291 −0.646457 0.762951i \(-0.723750\pi\)
−0.646457 + 0.762951i \(0.723750\pi\)
\(864\) 1799.11 0.0708414
\(865\) −11534.2 −0.453379
\(866\) −10621.5 −0.416782
\(867\) 1953.30 0.0765139
\(868\) −3356.06 −0.131235
\(869\) −2858.91 −0.111602
\(870\) 7890.62 0.307491
\(871\) 5005.31 0.194717
\(872\) 8247.17 0.320280
\(873\) 109.436 0.00424268
\(874\) 24174.8 0.935612
\(875\) 1693.17 0.0654165
\(876\) 8681.47 0.334840
\(877\) 35970.7 1.38500 0.692499 0.721419i \(-0.256510\pi\)
0.692499 + 0.721419i \(0.256510\pi\)
\(878\) −4912.06 −0.188809
\(879\) 9239.02 0.354522
\(880\) 880.000 0.0337100
\(881\) −20493.7 −0.783714 −0.391857 0.920026i \(-0.628167\pi\)
−0.391857 + 0.920026i \(0.628167\pi\)
\(882\) 5960.35 0.227546
\(883\) 38559.0 1.46955 0.734776 0.678310i \(-0.237287\pi\)
0.734776 + 0.678310i \(0.237287\pi\)
\(884\) −1521.09 −0.0578730
\(885\) −13789.6 −0.523766
\(886\) −12182.3 −0.461932
\(887\) 9193.53 0.348014 0.174007 0.984744i \(-0.444328\pi\)
0.174007 + 0.984744i \(0.444328\pi\)
\(888\) −21811.8 −0.824276
\(889\) 27353.8 1.03197
\(890\) −4612.85 −0.173734
\(891\) 9728.41 0.365784
\(892\) 17186.1 0.645105
\(893\) 14297.4 0.535773
\(894\) 23813.7 0.890883
\(895\) −6968.41 −0.260255
\(896\) 1733.80 0.0646453
\(897\) 12033.7 0.447929
\(898\) 14684.2 0.545679
\(899\) 7231.37 0.268276
\(900\) 1868.17 0.0691913
\(901\) 5593.46 0.206821
\(902\) −10822.1 −0.399485
\(903\) −2088.09 −0.0769515
\(904\) 11564.0 0.425457
\(905\) 4576.97 0.168115
\(906\) 7296.45 0.267559
\(907\) 41125.4 1.50557 0.752783 0.658269i \(-0.228711\pi\)
0.752783 + 0.658269i \(0.228711\pi\)
\(908\) −6706.75 −0.245123
\(909\) 3183.88 0.116174
\(910\) 3029.94 0.110375
\(911\) −23781.0 −0.864875 −0.432437 0.901664i \(-0.642346\pi\)
−0.432437 + 0.901664i \(0.642346\pi\)
\(912\) 16422.6 0.596279
\(913\) 8980.08 0.325517
\(914\) −6190.16 −0.224018
\(915\) 23247.3 0.839927
\(916\) −11000.4 −0.396794
\(917\) 35418.9 1.27550
\(918\) 1911.56 0.0687263
\(919\) 50146.6 1.79998 0.899991 0.435908i \(-0.143573\pi\)
0.899991 + 0.435908i \(0.143573\pi\)
\(920\) −3183.77 −0.114093
\(921\) −20806.6 −0.744409
\(922\) 20082.5 0.717336
\(923\) 21462.4 0.765377
\(924\) 4028.22 0.143418
\(925\) 10084.9 0.358475
\(926\) 7452.49 0.264475
\(927\) −12225.0 −0.433142
\(928\) −3735.86 −0.132150
\(929\) −4263.08 −0.150557 −0.0752783 0.997163i \(-0.523985\pi\)
−0.0752783 + 0.997163i \(0.523985\pi\)
\(930\) 4186.50 0.147614
\(931\) −24225.8 −0.852812
\(932\) 10499.9 0.369028
\(933\) 28535.9 1.00131
\(934\) 17672.9 0.619139
\(935\) 935.000 0.0327035
\(936\) 3343.11 0.116745
\(937\) −17901.3 −0.624130 −0.312065 0.950061i \(-0.601021\pi\)
−0.312065 + 0.950061i \(0.601021\pi\)
\(938\) −6061.85 −0.211009
\(939\) 20611.3 0.716320
\(940\) −1882.94 −0.0653349
\(941\) −52622.0 −1.82299 −0.911493 0.411316i \(-0.865069\pi\)
−0.911493 + 0.411316i \(0.865069\pi\)
\(942\) −19409.1 −0.671318
\(943\) 39153.4 1.35208
\(944\) 6528.76 0.225099
\(945\) −3807.74 −0.131075
\(946\) 501.777 0.0172454
\(947\) 31333.3 1.07518 0.537591 0.843206i \(-0.319335\pi\)
0.537591 + 0.843206i \(0.319335\pi\)
\(948\) 7026.49 0.240727
\(949\) −7183.03 −0.245702
\(950\) −7593.14 −0.259320
\(951\) 19458.5 0.663496
\(952\) 1842.16 0.0627152
\(953\) −50541.9 −1.71796 −0.858978 0.512012i \(-0.828900\pi\)
−0.858978 + 0.512012i \(0.828900\pi\)
\(954\) −12293.5 −0.417210
\(955\) −3715.73 −0.125904
\(956\) 16248.0 0.549685
\(957\) −8679.68 −0.293181
\(958\) 31865.5 1.07466
\(959\) 18420.4 0.620255
\(960\) −2162.82 −0.0727133
\(961\) −25954.3 −0.871212
\(962\) 18047.1 0.604845
\(963\) −188.661 −0.00631311
\(964\) 12940.8 0.432362
\(965\) −627.830 −0.0209436
\(966\) −14573.8 −0.485407
\(967\) 55.8682 0.00185791 0.000928955 1.00000i \(-0.499704\pi\)
0.000928955 1.00000i \(0.499704\pi\)
\(968\) −968.000 −0.0321412
\(969\) 17449.0 0.578476
\(970\) 58.5796 0.00193905
\(971\) 42149.5 1.39304 0.696520 0.717537i \(-0.254731\pi\)
0.696520 + 0.717537i \(0.254731\pi\)
\(972\) −17838.0 −0.588636
\(973\) 26099.6 0.859934
\(974\) −35353.4 −1.16303
\(975\) −3779.69 −0.124151
\(976\) −11006.6 −0.360975
\(977\) 12761.9 0.417902 0.208951 0.977926i \(-0.432995\pi\)
0.208951 + 0.977926i \(0.432995\pi\)
\(978\) −3515.15 −0.114931
\(979\) 5074.14 0.165649
\(980\) 3190.49 0.103996
\(981\) −19258.8 −0.626797
\(982\) 10721.8 0.348420
\(983\) −34889.6 −1.13205 −0.566025 0.824388i \(-0.691519\pi\)
−0.566025 + 0.824388i \(0.691519\pi\)
\(984\) 26598.0 0.861699
\(985\) 21519.5 0.696109
\(986\) −3969.35 −0.128205
\(987\) −8619.20 −0.277966
\(988\) −13588.0 −0.437543
\(989\) −1815.39 −0.0583681
\(990\) −2054.98 −0.0659713
\(991\) −33085.0 −1.06053 −0.530263 0.847833i \(-0.677907\pi\)
−0.530263 + 0.847833i \(0.677907\pi\)
\(992\) −1982.12 −0.0634400
\(993\) 19501.5 0.623224
\(994\) −25992.7 −0.829416
\(995\) −12282.1 −0.391327
\(996\) −22070.8 −0.702150
\(997\) 34857.2 1.10726 0.553631 0.832762i \(-0.313242\pi\)
0.553631 + 0.832762i \(0.313242\pi\)
\(998\) −6982.36 −0.221466
\(999\) −22679.8 −0.718275
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1870.4.a.j.1.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1870.4.a.j.1.9 10 1.1 even 1 trivial