Properties

Label 1870.4.a.j.1.8
Level $1870$
Weight $4$
Character 1870.1
Self dual yes
Analytic conductor $110.334$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1870,4,Mod(1,1870)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1870, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1870.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1870 = 2 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1870.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-20,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.333571711\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} - 168 x^{8} + 138 x^{7} + 9025 x^{6} - 8357 x^{5} - 177203 x^{4} + 269951 x^{3} + \cdots + 1239820 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-5.39267\) of defining polynomial
Character \(\chi\) \(=\) 1870.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +5.39267 q^{3} +4.00000 q^{4} -5.00000 q^{5} -10.7853 q^{6} +27.8251 q^{7} -8.00000 q^{8} +2.08092 q^{9} +10.0000 q^{10} -11.0000 q^{11} +21.5707 q^{12} +28.2867 q^{13} -55.6501 q^{14} -26.9634 q^{15} +16.0000 q^{16} +17.0000 q^{17} -4.16185 q^{18} -121.775 q^{19} -20.0000 q^{20} +150.052 q^{21} +22.0000 q^{22} -9.59740 q^{23} -43.1414 q^{24} +25.0000 q^{25} -56.5735 q^{26} -134.380 q^{27} +111.300 q^{28} -199.726 q^{29} +53.9267 q^{30} +119.814 q^{31} -32.0000 q^{32} -59.3194 q^{33} -34.0000 q^{34} -139.125 q^{35} +8.32370 q^{36} -33.4824 q^{37} +243.551 q^{38} +152.541 q^{39} +40.0000 q^{40} -296.335 q^{41} -300.103 q^{42} -5.08455 q^{43} -44.0000 q^{44} -10.4046 q^{45} +19.1948 q^{46} -370.402 q^{47} +86.2828 q^{48} +431.235 q^{49} -50.0000 q^{50} +91.6754 q^{51} +113.147 q^{52} -589.694 q^{53} +268.761 q^{54} +55.0000 q^{55} -222.601 q^{56} -656.695 q^{57} +399.452 q^{58} +388.382 q^{59} -107.853 q^{60} +409.983 q^{61} -239.628 q^{62} +57.9019 q^{63} +64.0000 q^{64} -141.434 q^{65} +118.639 q^{66} -654.061 q^{67} +68.0000 q^{68} -51.7556 q^{69} +278.251 q^{70} -668.591 q^{71} -16.6474 q^{72} -6.05482 q^{73} +66.9647 q^{74} +134.817 q^{75} -487.101 q^{76} -306.076 q^{77} -305.082 q^{78} +1080.05 q^{79} -80.0000 q^{80} -780.855 q^{81} +592.671 q^{82} -170.391 q^{83} +600.206 q^{84} -85.0000 q^{85} +10.1691 q^{86} -1077.06 q^{87} +88.0000 q^{88} -92.4246 q^{89} +20.8092 q^{90} +787.081 q^{91} -38.3896 q^{92} +646.117 q^{93} +740.805 q^{94} +608.877 q^{95} -172.566 q^{96} -917.695 q^{97} -862.470 q^{98} -22.8902 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 20 q^{2} - q^{3} + 40 q^{4} - 50 q^{5} + 2 q^{6} + 4 q^{7} - 80 q^{8} + 67 q^{9} + 100 q^{10} - 110 q^{11} - 4 q^{12} - 7 q^{13} - 8 q^{14} + 5 q^{15} + 160 q^{16} + 170 q^{17} - 134 q^{18} + 11 q^{19}+ \cdots - 737 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 5.39267 1.03782 0.518910 0.854829i \(-0.326338\pi\)
0.518910 + 0.854829i \(0.326338\pi\)
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) −10.7853 −0.733850
\(7\) 27.8251 1.50241 0.751206 0.660067i \(-0.229472\pi\)
0.751206 + 0.660067i \(0.229472\pi\)
\(8\) −8.00000 −0.353553
\(9\) 2.08092 0.0770713
\(10\) 10.0000 0.316228
\(11\) −11.0000 −0.301511
\(12\) 21.5707 0.518910
\(13\) 28.2867 0.603487 0.301744 0.953389i \(-0.402431\pi\)
0.301744 + 0.953389i \(0.402431\pi\)
\(14\) −55.6501 −1.06237
\(15\) −26.9634 −0.464127
\(16\) 16.0000 0.250000
\(17\) 17.0000 0.242536
\(18\) −4.16185 −0.0544976
\(19\) −121.775 −1.47038 −0.735189 0.677862i \(-0.762907\pi\)
−0.735189 + 0.677862i \(0.762907\pi\)
\(20\) −20.0000 −0.223607
\(21\) 150.052 1.55923
\(22\) 22.0000 0.213201
\(23\) −9.59740 −0.0870085 −0.0435043 0.999053i \(-0.513852\pi\)
−0.0435043 + 0.999053i \(0.513852\pi\)
\(24\) −43.1414 −0.366925
\(25\) 25.0000 0.200000
\(26\) −56.5735 −0.426730
\(27\) −134.380 −0.957834
\(28\) 111.300 0.751206
\(29\) −199.726 −1.27890 −0.639452 0.768831i \(-0.720839\pi\)
−0.639452 + 0.768831i \(0.720839\pi\)
\(30\) 53.9267 0.328188
\(31\) 119.814 0.694167 0.347084 0.937834i \(-0.387172\pi\)
0.347084 + 0.937834i \(0.387172\pi\)
\(32\) −32.0000 −0.176777
\(33\) −59.3194 −0.312915
\(34\) −34.0000 −0.171499
\(35\) −139.125 −0.671899
\(36\) 8.32370 0.0385356
\(37\) −33.4824 −0.148769 −0.0743847 0.997230i \(-0.523699\pi\)
−0.0743847 + 0.997230i \(0.523699\pi\)
\(38\) 243.551 1.03971
\(39\) 152.541 0.626311
\(40\) 40.0000 0.158114
\(41\) −296.335 −1.12878 −0.564388 0.825510i \(-0.690888\pi\)
−0.564388 + 0.825510i \(0.690888\pi\)
\(42\) −300.103 −1.10255
\(43\) −5.08455 −0.0180322 −0.00901612 0.999959i \(-0.502870\pi\)
−0.00901612 + 0.999959i \(0.502870\pi\)
\(44\) −44.0000 −0.150756
\(45\) −10.4046 −0.0344673
\(46\) 19.1948 0.0615243
\(47\) −370.402 −1.14955 −0.574774 0.818312i \(-0.694910\pi\)
−0.574774 + 0.818312i \(0.694910\pi\)
\(48\) 86.2828 0.259455
\(49\) 431.235 1.25724
\(50\) −50.0000 −0.141421
\(51\) 91.6754 0.251708
\(52\) 113.147 0.301744
\(53\) −589.694 −1.52831 −0.764157 0.645030i \(-0.776845\pi\)
−0.764157 + 0.645030i \(0.776845\pi\)
\(54\) 268.761 0.677291
\(55\) 55.0000 0.134840
\(56\) −222.601 −0.531183
\(57\) −656.695 −1.52599
\(58\) 399.452 0.904322
\(59\) 388.382 0.857000 0.428500 0.903542i \(-0.359042\pi\)
0.428500 + 0.903542i \(0.359042\pi\)
\(60\) −107.853 −0.232064
\(61\) 409.983 0.860540 0.430270 0.902700i \(-0.358418\pi\)
0.430270 + 0.902700i \(0.358418\pi\)
\(62\) −239.628 −0.490851
\(63\) 57.9019 0.115793
\(64\) 64.0000 0.125000
\(65\) −141.434 −0.269888
\(66\) 118.639 0.221264
\(67\) −654.061 −1.19263 −0.596316 0.802750i \(-0.703369\pi\)
−0.596316 + 0.802750i \(0.703369\pi\)
\(68\) 68.0000 0.121268
\(69\) −51.7556 −0.0902992
\(70\) 278.251 0.475105
\(71\) −668.591 −1.11757 −0.558783 0.829314i \(-0.688732\pi\)
−0.558783 + 0.829314i \(0.688732\pi\)
\(72\) −16.6474 −0.0272488
\(73\) −6.05482 −0.00970772 −0.00485386 0.999988i \(-0.501545\pi\)
−0.00485386 + 0.999988i \(0.501545\pi\)
\(74\) 66.9647 0.105196
\(75\) 134.817 0.207564
\(76\) −487.101 −0.735189
\(77\) −306.076 −0.452995
\(78\) −305.082 −0.442869
\(79\) 1080.05 1.53817 0.769085 0.639146i \(-0.220712\pi\)
0.769085 + 0.639146i \(0.220712\pi\)
\(80\) −80.0000 −0.111803
\(81\) −780.855 −1.07113
\(82\) 592.671 0.798165
\(83\) −170.391 −0.225335 −0.112668 0.993633i \(-0.535940\pi\)
−0.112668 + 0.993633i \(0.535940\pi\)
\(84\) 600.206 0.779617
\(85\) −85.0000 −0.108465
\(86\) 10.1691 0.0127507
\(87\) −1077.06 −1.32727
\(88\) 88.0000 0.106600
\(89\) −92.4246 −0.110079 −0.0550393 0.998484i \(-0.517528\pi\)
−0.0550393 + 0.998484i \(0.517528\pi\)
\(90\) 20.8092 0.0243721
\(91\) 787.081 0.906687
\(92\) −38.3896 −0.0435043
\(93\) 646.117 0.720421
\(94\) 740.805 0.812853
\(95\) 608.877 0.657573
\(96\) −172.566 −0.183462
\(97\) −917.695 −0.960596 −0.480298 0.877105i \(-0.659472\pi\)
−0.480298 + 0.877105i \(0.659472\pi\)
\(98\) −862.470 −0.889006
\(99\) −22.8902 −0.0232379
\(100\) 100.000 0.100000
\(101\) 136.282 0.134263 0.0671317 0.997744i \(-0.478615\pi\)
0.0671317 + 0.997744i \(0.478615\pi\)
\(102\) −183.351 −0.177985
\(103\) −425.876 −0.407406 −0.203703 0.979033i \(-0.565298\pi\)
−0.203703 + 0.979033i \(0.565298\pi\)
\(104\) −226.294 −0.213365
\(105\) −750.258 −0.697311
\(106\) 1179.39 1.08068
\(107\) 809.290 0.731187 0.365594 0.930775i \(-0.380866\pi\)
0.365594 + 0.930775i \(0.380866\pi\)
\(108\) −537.522 −0.478917
\(109\) −1774.17 −1.55904 −0.779519 0.626379i \(-0.784536\pi\)
−0.779519 + 0.626379i \(0.784536\pi\)
\(110\) −110.000 −0.0953463
\(111\) −180.559 −0.154396
\(112\) 445.201 0.375603
\(113\) 1649.80 1.37346 0.686728 0.726915i \(-0.259046\pi\)
0.686728 + 0.726915i \(0.259046\pi\)
\(114\) 1313.39 1.07904
\(115\) 47.9870 0.0389114
\(116\) −798.905 −0.639452
\(117\) 58.8626 0.0465115
\(118\) −776.763 −0.605990
\(119\) 473.026 0.364389
\(120\) 215.707 0.164094
\(121\) 121.000 0.0909091
\(122\) −819.966 −0.608493
\(123\) −1598.04 −1.17147
\(124\) 479.255 0.347084
\(125\) −125.000 −0.0894427
\(126\) −115.804 −0.0818779
\(127\) 291.828 0.203902 0.101951 0.994789i \(-0.467491\pi\)
0.101951 + 0.994789i \(0.467491\pi\)
\(128\) −128.000 −0.0883883
\(129\) −27.4193 −0.0187142
\(130\) 282.867 0.190839
\(131\) 1207.75 0.805506 0.402753 0.915309i \(-0.368053\pi\)
0.402753 + 0.915309i \(0.368053\pi\)
\(132\) −237.278 −0.156457
\(133\) −3388.41 −2.20911
\(134\) 1308.12 0.843318
\(135\) 671.902 0.428357
\(136\) −136.000 −0.0857493
\(137\) −1252.99 −0.781389 −0.390695 0.920520i \(-0.627765\pi\)
−0.390695 + 0.920520i \(0.627765\pi\)
\(138\) 103.511 0.0638512
\(139\) −1274.37 −0.777631 −0.388816 0.921316i \(-0.627116\pi\)
−0.388816 + 0.921316i \(0.627116\pi\)
\(140\) −556.501 −0.335950
\(141\) −1997.46 −1.19302
\(142\) 1337.18 0.790238
\(143\) −311.154 −0.181958
\(144\) 33.2948 0.0192678
\(145\) 998.631 0.571943
\(146\) 12.1096 0.00686439
\(147\) 2325.51 1.30479
\(148\) −133.929 −0.0743847
\(149\) 1209.87 0.665210 0.332605 0.943066i \(-0.392072\pi\)
0.332605 + 0.943066i \(0.392072\pi\)
\(150\) −269.634 −0.146770
\(151\) −1076.24 −0.580022 −0.290011 0.957023i \(-0.593659\pi\)
−0.290011 + 0.957023i \(0.593659\pi\)
\(152\) 974.203 0.519857
\(153\) 35.3757 0.0186925
\(154\) 612.152 0.320315
\(155\) −599.069 −0.310441
\(156\) 610.165 0.313156
\(157\) 1745.71 0.887405 0.443702 0.896174i \(-0.353665\pi\)
0.443702 + 0.896174i \(0.353665\pi\)
\(158\) −2160.11 −1.08765
\(159\) −3180.03 −1.58612
\(160\) 160.000 0.0790569
\(161\) −267.048 −0.130723
\(162\) 1561.71 0.757404
\(163\) 946.502 0.454821 0.227410 0.973799i \(-0.426974\pi\)
0.227410 + 0.973799i \(0.426974\pi\)
\(164\) −1185.34 −0.564388
\(165\) 296.597 0.139940
\(166\) 340.782 0.159336
\(167\) −2841.15 −1.31649 −0.658247 0.752802i \(-0.728702\pi\)
−0.658247 + 0.752802i \(0.728702\pi\)
\(168\) −1200.41 −0.551273
\(169\) −1396.86 −0.635803
\(170\) 170.000 0.0766965
\(171\) −253.405 −0.113324
\(172\) −20.3382 −0.00901612
\(173\) −1124.52 −0.494197 −0.247098 0.968990i \(-0.579477\pi\)
−0.247098 + 0.968990i \(0.579477\pi\)
\(174\) 2154.12 0.938524
\(175\) 695.627 0.300483
\(176\) −176.000 −0.0753778
\(177\) 2094.41 0.889412
\(178\) 184.849 0.0778373
\(179\) −778.092 −0.324901 −0.162451 0.986717i \(-0.551940\pi\)
−0.162451 + 0.986717i \(0.551940\pi\)
\(180\) −41.6185 −0.0172337
\(181\) −63.3454 −0.0260134 −0.0130067 0.999915i \(-0.504140\pi\)
−0.0130067 + 0.999915i \(0.504140\pi\)
\(182\) −1574.16 −0.641124
\(183\) 2210.90 0.893086
\(184\) 76.7792 0.0307622
\(185\) 167.412 0.0665317
\(186\) −1292.23 −0.509415
\(187\) −187.000 −0.0731272
\(188\) −1481.61 −0.574774
\(189\) −3739.15 −1.43906
\(190\) −1217.75 −0.464974
\(191\) 3000.97 1.13687 0.568436 0.822727i \(-0.307549\pi\)
0.568436 + 0.822727i \(0.307549\pi\)
\(192\) 345.131 0.129728
\(193\) −1434.05 −0.534844 −0.267422 0.963580i \(-0.586172\pi\)
−0.267422 + 0.963580i \(0.586172\pi\)
\(194\) 1835.39 0.679244
\(195\) −762.706 −0.280095
\(196\) 1724.94 0.628622
\(197\) −3115.69 −1.12682 −0.563411 0.826177i \(-0.690511\pi\)
−0.563411 + 0.826177i \(0.690511\pi\)
\(198\) 45.7803 0.0164317
\(199\) −2471.73 −0.880483 −0.440241 0.897879i \(-0.645107\pi\)
−0.440241 + 0.897879i \(0.645107\pi\)
\(200\) −200.000 −0.0707107
\(201\) −3527.14 −1.23774
\(202\) −272.565 −0.0949386
\(203\) −5557.40 −1.92144
\(204\) 366.702 0.125854
\(205\) 1481.68 0.504804
\(206\) 851.752 0.288080
\(207\) −19.9715 −0.00670586
\(208\) 452.588 0.150872
\(209\) 1339.53 0.443336
\(210\) 1500.52 0.493073
\(211\) 4787.28 1.56194 0.780972 0.624566i \(-0.214724\pi\)
0.780972 + 0.624566i \(0.214724\pi\)
\(212\) −2358.78 −0.764157
\(213\) −3605.49 −1.15983
\(214\) −1618.58 −0.517027
\(215\) 25.4227 0.00806426
\(216\) 1075.04 0.338646
\(217\) 3333.83 1.04293
\(218\) 3548.35 1.10241
\(219\) −32.6517 −0.0100749
\(220\) 220.000 0.0674200
\(221\) 480.875 0.146367
\(222\) 361.119 0.109174
\(223\) 2662.25 0.799451 0.399725 0.916635i \(-0.369106\pi\)
0.399725 + 0.916635i \(0.369106\pi\)
\(224\) −890.402 −0.265592
\(225\) 52.0231 0.0154143
\(226\) −3299.61 −0.971180
\(227\) 2766.77 0.808973 0.404486 0.914544i \(-0.367450\pi\)
0.404486 + 0.914544i \(0.367450\pi\)
\(228\) −2626.78 −0.762994
\(229\) 4564.50 1.31717 0.658583 0.752508i \(-0.271156\pi\)
0.658583 + 0.752508i \(0.271156\pi\)
\(230\) −95.9740 −0.0275145
\(231\) −1650.57 −0.470127
\(232\) 1597.81 0.452161
\(233\) −5140.39 −1.44531 −0.722657 0.691207i \(-0.757079\pi\)
−0.722657 + 0.691207i \(0.757079\pi\)
\(234\) −117.725 −0.0328886
\(235\) 1852.01 0.514093
\(236\) 1553.53 0.428500
\(237\) 5824.37 1.59634
\(238\) −946.053 −0.257662
\(239\) −2378.28 −0.643674 −0.321837 0.946795i \(-0.604300\pi\)
−0.321837 + 0.946795i \(0.604300\pi\)
\(240\) −431.414 −0.116032
\(241\) 2856.02 0.763370 0.381685 0.924292i \(-0.375344\pi\)
0.381685 + 0.924292i \(0.375344\pi\)
\(242\) −242.000 −0.0642824
\(243\) −582.623 −0.153808
\(244\) 1639.93 0.430270
\(245\) −2156.17 −0.562257
\(246\) 3196.08 0.828352
\(247\) −3444.63 −0.887354
\(248\) −958.510 −0.245425
\(249\) −918.862 −0.233858
\(250\) 250.000 0.0632456
\(251\) 175.676 0.0441775 0.0220887 0.999756i \(-0.492968\pi\)
0.0220887 + 0.999756i \(0.492968\pi\)
\(252\) 231.608 0.0578964
\(253\) 105.571 0.0262341
\(254\) −583.657 −0.144181
\(255\) −458.377 −0.112567
\(256\) 256.000 0.0625000
\(257\) 980.370 0.237953 0.118976 0.992897i \(-0.462039\pi\)
0.118976 + 0.992897i \(0.462039\pi\)
\(258\) 54.8386 0.0132330
\(259\) −931.649 −0.223513
\(260\) −565.735 −0.134944
\(261\) −415.615 −0.0985668
\(262\) −2415.49 −0.569579
\(263\) −5851.60 −1.37196 −0.685979 0.727621i \(-0.740626\pi\)
−0.685979 + 0.727621i \(0.740626\pi\)
\(264\) 474.555 0.110632
\(265\) 2948.47 0.683483
\(266\) 6776.82 1.56208
\(267\) −498.416 −0.114242
\(268\) −2616.25 −0.596316
\(269\) −64.3328 −0.0145816 −0.00729079 0.999973i \(-0.502321\pi\)
−0.00729079 + 0.999973i \(0.502321\pi\)
\(270\) −1343.80 −0.302894
\(271\) −4474.40 −1.00295 −0.501477 0.865171i \(-0.667210\pi\)
−0.501477 + 0.865171i \(0.667210\pi\)
\(272\) 272.000 0.0606339
\(273\) 4244.47 0.940978
\(274\) 2505.98 0.552526
\(275\) −275.000 −0.0603023
\(276\) −207.023 −0.0451496
\(277\) 5283.26 1.14599 0.572997 0.819557i \(-0.305781\pi\)
0.572997 + 0.819557i \(0.305781\pi\)
\(278\) 2548.74 0.549868
\(279\) 249.323 0.0535004
\(280\) 1113.00 0.237552
\(281\) 4903.72 1.04104 0.520518 0.853851i \(-0.325739\pi\)
0.520518 + 0.853851i \(0.325739\pi\)
\(282\) 3994.92 0.843596
\(283\) 3344.50 0.702508 0.351254 0.936280i \(-0.385755\pi\)
0.351254 + 0.936280i \(0.385755\pi\)
\(284\) −2674.36 −0.558783
\(285\) 3283.47 0.682443
\(286\) 622.308 0.128664
\(287\) −8245.55 −1.69589
\(288\) −66.5896 −0.0136244
\(289\) 289.000 0.0588235
\(290\) −1997.26 −0.404425
\(291\) −4948.83 −0.996927
\(292\) −24.2193 −0.00485386
\(293\) 3800.13 0.757700 0.378850 0.925458i \(-0.376320\pi\)
0.378850 + 0.925458i \(0.376320\pi\)
\(294\) −4651.02 −0.922629
\(295\) −1941.91 −0.383262
\(296\) 267.859 0.0525979
\(297\) 1478.18 0.288798
\(298\) −2419.74 −0.470375
\(299\) −271.479 −0.0525085
\(300\) 539.267 0.103782
\(301\) −141.478 −0.0270919
\(302\) 2152.49 0.410138
\(303\) 734.926 0.139341
\(304\) −1948.41 −0.367594
\(305\) −2049.91 −0.384845
\(306\) −70.7514 −0.0132176
\(307\) −1290.96 −0.239996 −0.119998 0.992774i \(-0.538289\pi\)
−0.119998 + 0.992774i \(0.538289\pi\)
\(308\) −1224.30 −0.226497
\(309\) −2296.61 −0.422814
\(310\) 1198.14 0.219515
\(311\) −5757.26 −1.04972 −0.524862 0.851187i \(-0.675883\pi\)
−0.524862 + 0.851187i \(0.675883\pi\)
\(312\) −1220.33 −0.221434
\(313\) 591.550 0.106826 0.0534128 0.998573i \(-0.482990\pi\)
0.0534128 + 0.998573i \(0.482990\pi\)
\(314\) −3491.41 −0.627490
\(315\) −289.509 −0.0517842
\(316\) 4320.21 0.769085
\(317\) −4329.06 −0.767016 −0.383508 0.923537i \(-0.625284\pi\)
−0.383508 + 0.923537i \(0.625284\pi\)
\(318\) 6360.05 1.12155
\(319\) 2196.99 0.385604
\(320\) −320.000 −0.0559017
\(321\) 4364.24 0.758841
\(322\) 534.097 0.0924349
\(323\) −2070.18 −0.356619
\(324\) −3123.42 −0.535566
\(325\) 707.169 0.120697
\(326\) −1893.00 −0.321607
\(327\) −9567.54 −1.61800
\(328\) 2370.68 0.399082
\(329\) −10306.5 −1.72710
\(330\) −593.194 −0.0989523
\(331\) −9173.18 −1.52327 −0.761637 0.648004i \(-0.775604\pi\)
−0.761637 + 0.648004i \(0.775604\pi\)
\(332\) −681.563 −0.112668
\(333\) −69.6743 −0.0114658
\(334\) 5682.29 0.930902
\(335\) 3270.31 0.533361
\(336\) 2400.82 0.389809
\(337\) −9000.07 −1.45479 −0.727396 0.686218i \(-0.759270\pi\)
−0.727396 + 0.686218i \(0.759270\pi\)
\(338\) 2793.72 0.449581
\(339\) 8896.85 1.42540
\(340\) −340.000 −0.0542326
\(341\) −1317.95 −0.209299
\(342\) 506.811 0.0801321
\(343\) 2455.14 0.386487
\(344\) 40.6764 0.00637536
\(345\) 258.778 0.0403830
\(346\) 2249.05 0.349450
\(347\) 4007.72 0.620016 0.310008 0.950734i \(-0.399668\pi\)
0.310008 + 0.950734i \(0.399668\pi\)
\(348\) −4308.23 −0.663637
\(349\) −1541.42 −0.236420 −0.118210 0.992989i \(-0.537716\pi\)
−0.118210 + 0.992989i \(0.537716\pi\)
\(350\) −1391.25 −0.212473
\(351\) −3801.19 −0.578041
\(352\) 352.000 0.0533002
\(353\) 4712.82 0.710590 0.355295 0.934754i \(-0.384380\pi\)
0.355295 + 0.934754i \(0.384380\pi\)
\(354\) −4188.83 −0.628909
\(355\) 3342.96 0.499791
\(356\) −369.698 −0.0550393
\(357\) 2550.88 0.378170
\(358\) 1556.18 0.229740
\(359\) −7558.07 −1.11114 −0.555571 0.831469i \(-0.687500\pi\)
−0.555571 + 0.831469i \(0.687500\pi\)
\(360\) 83.2370 0.0121860
\(361\) 7970.23 1.16201
\(362\) 126.691 0.0183943
\(363\) 652.513 0.0943473
\(364\) 3148.32 0.453343
\(365\) 30.2741 0.00434142
\(366\) −4421.81 −0.631507
\(367\) −4740.32 −0.674231 −0.337115 0.941463i \(-0.609451\pi\)
−0.337115 + 0.941463i \(0.609451\pi\)
\(368\) −153.558 −0.0217521
\(369\) −616.651 −0.0869962
\(370\) −334.824 −0.0470450
\(371\) −16408.3 −2.29616
\(372\) 2584.47 0.360211
\(373\) −6097.89 −0.846480 −0.423240 0.906018i \(-0.639107\pi\)
−0.423240 + 0.906018i \(0.639107\pi\)
\(374\) 374.000 0.0517088
\(375\) −674.084 −0.0928255
\(376\) 2963.22 0.406427
\(377\) −5649.61 −0.771802
\(378\) 7478.29 1.01757
\(379\) −3017.84 −0.409014 −0.204507 0.978865i \(-0.565559\pi\)
−0.204507 + 0.978865i \(0.565559\pi\)
\(380\) 2435.51 0.328786
\(381\) 1573.74 0.211614
\(382\) −6001.94 −0.803890
\(383\) −4631.39 −0.617893 −0.308946 0.951079i \(-0.599976\pi\)
−0.308946 + 0.951079i \(0.599976\pi\)
\(384\) −690.262 −0.0917312
\(385\) 1530.38 0.202585
\(386\) 2868.09 0.378192
\(387\) −10.5806 −0.00138977
\(388\) −3670.78 −0.480298
\(389\) 3377.14 0.440174 0.220087 0.975480i \(-0.429366\pi\)
0.220087 + 0.975480i \(0.429366\pi\)
\(390\) 1525.41 0.198057
\(391\) −163.156 −0.0211027
\(392\) −3449.88 −0.444503
\(393\) 6512.98 0.835971
\(394\) 6231.38 0.796783
\(395\) −5400.27 −0.687891
\(396\) −91.5607 −0.0116189
\(397\) 15187.4 1.91998 0.959991 0.280032i \(-0.0903452\pi\)
0.959991 + 0.280032i \(0.0903452\pi\)
\(398\) 4943.45 0.622595
\(399\) −18272.6 −2.29266
\(400\) 400.000 0.0500000
\(401\) −450.790 −0.0561381 −0.0280691 0.999606i \(-0.508936\pi\)
−0.0280691 + 0.999606i \(0.508936\pi\)
\(402\) 7054.28 0.875213
\(403\) 3389.14 0.418921
\(404\) 545.130 0.0671317
\(405\) 3904.27 0.479024
\(406\) 11114.8 1.35867
\(407\) 368.306 0.0448557
\(408\) −733.404 −0.0889924
\(409\) −4537.30 −0.548546 −0.274273 0.961652i \(-0.588437\pi\)
−0.274273 + 0.961652i \(0.588437\pi\)
\(410\) −2963.35 −0.356950
\(411\) −6756.98 −0.810942
\(412\) −1703.50 −0.203703
\(413\) 10806.7 1.28757
\(414\) 39.9429 0.00474176
\(415\) 851.954 0.100773
\(416\) −905.176 −0.106682
\(417\) −6872.26 −0.807041
\(418\) −2679.06 −0.313486
\(419\) −13750.6 −1.60324 −0.801621 0.597832i \(-0.796029\pi\)
−0.801621 + 0.597832i \(0.796029\pi\)
\(420\) −3001.03 −0.348655
\(421\) 884.509 0.102395 0.0511975 0.998689i \(-0.483696\pi\)
0.0511975 + 0.998689i \(0.483696\pi\)
\(422\) −9574.56 −1.10446
\(423\) −770.780 −0.0885971
\(424\) 4717.55 0.540341
\(425\) 425.000 0.0485071
\(426\) 7210.99 0.820126
\(427\) 11407.8 1.29289
\(428\) 3237.16 0.365594
\(429\) −1677.95 −0.188840
\(430\) −50.8455 −0.00570229
\(431\) −14467.6 −1.61689 −0.808446 0.588570i \(-0.799691\pi\)
−0.808446 + 0.588570i \(0.799691\pi\)
\(432\) −2150.09 −0.239459
\(433\) −8241.96 −0.914742 −0.457371 0.889276i \(-0.651209\pi\)
−0.457371 + 0.889276i \(0.651209\pi\)
\(434\) −6667.65 −0.737460
\(435\) 5385.29 0.593575
\(436\) −7096.70 −0.779519
\(437\) 1168.73 0.127935
\(438\) 65.3034 0.00712401
\(439\) −10752.9 −1.16904 −0.584519 0.811380i \(-0.698717\pi\)
−0.584519 + 0.811380i \(0.698717\pi\)
\(440\) −440.000 −0.0476731
\(441\) 897.367 0.0968974
\(442\) −961.749 −0.103497
\(443\) −2131.64 −0.228616 −0.114308 0.993445i \(-0.536465\pi\)
−0.114308 + 0.993445i \(0.536465\pi\)
\(444\) −722.238 −0.0771980
\(445\) 462.123 0.0492286
\(446\) −5324.50 −0.565297
\(447\) 6524.43 0.690369
\(448\) 1780.80 0.187802
\(449\) 16904.8 1.77681 0.888406 0.459059i \(-0.151814\pi\)
0.888406 + 0.459059i \(0.151814\pi\)
\(450\) −104.046 −0.0108995
\(451\) 3259.69 0.340339
\(452\) 6599.22 0.686728
\(453\) −5803.82 −0.601959
\(454\) −5533.53 −0.572030
\(455\) −3935.40 −0.405483
\(456\) 5253.56 0.539518
\(457\) −299.117 −0.0306173 −0.0153087 0.999883i \(-0.504873\pi\)
−0.0153087 + 0.999883i \(0.504873\pi\)
\(458\) −9129.01 −0.931377
\(459\) −2284.47 −0.232309
\(460\) 191.948 0.0194557
\(461\) −4100.04 −0.414226 −0.207113 0.978317i \(-0.566407\pi\)
−0.207113 + 0.978317i \(0.566407\pi\)
\(462\) 3301.13 0.332430
\(463\) 12374.5 1.24210 0.621050 0.783771i \(-0.286706\pi\)
0.621050 + 0.783771i \(0.286706\pi\)
\(464\) −3195.62 −0.319726
\(465\) −3230.58 −0.322182
\(466\) 10280.8 1.02199
\(467\) −13288.2 −1.31671 −0.658357 0.752706i \(-0.728748\pi\)
−0.658357 + 0.752706i \(0.728748\pi\)
\(468\) 235.450 0.0232558
\(469\) −18199.3 −1.79183
\(470\) −3704.02 −0.363519
\(471\) 9414.03 0.920967
\(472\) −3107.05 −0.302995
\(473\) 55.9300 0.00543692
\(474\) −11648.7 −1.12879
\(475\) −3044.38 −0.294076
\(476\) 1892.11 0.182194
\(477\) −1227.11 −0.117789
\(478\) 4756.56 0.455146
\(479\) −9178.39 −0.875514 −0.437757 0.899093i \(-0.644227\pi\)
−0.437757 + 0.899093i \(0.644227\pi\)
\(480\) 862.828 0.0820469
\(481\) −947.107 −0.0897804
\(482\) −5712.03 −0.539784
\(483\) −1440.10 −0.135667
\(484\) 484.000 0.0454545
\(485\) 4588.48 0.429592
\(486\) 1165.25 0.108758
\(487\) −20100.4 −1.87030 −0.935151 0.354249i \(-0.884737\pi\)
−0.935151 + 0.354249i \(0.884737\pi\)
\(488\) −3279.86 −0.304247
\(489\) 5104.18 0.472022
\(490\) 4312.35 0.397576
\(491\) 4677.77 0.429948 0.214974 0.976620i \(-0.431033\pi\)
0.214974 + 0.976620i \(0.431033\pi\)
\(492\) −6392.16 −0.585733
\(493\) −3395.35 −0.310180
\(494\) 6889.26 0.627454
\(495\) 114.451 0.0103923
\(496\) 1917.02 0.173542
\(497\) −18603.6 −1.67905
\(498\) 1837.72 0.165362
\(499\) 3212.98 0.288242 0.144121 0.989560i \(-0.453965\pi\)
0.144121 + 0.989560i \(0.453965\pi\)
\(500\) −500.000 −0.0447214
\(501\) −15321.4 −1.36628
\(502\) −351.351 −0.0312382
\(503\) −16743.2 −1.48418 −0.742090 0.670300i \(-0.766165\pi\)
−0.742090 + 0.670300i \(0.766165\pi\)
\(504\) −463.215 −0.0409390
\(505\) −681.412 −0.0600444
\(506\) −211.143 −0.0185503
\(507\) −7532.81 −0.659850
\(508\) 1167.31 0.101951
\(509\) 14285.4 1.24399 0.621993 0.783023i \(-0.286323\pi\)
0.621993 + 0.783023i \(0.286323\pi\)
\(510\) 916.754 0.0795972
\(511\) −168.476 −0.0145850
\(512\) −512.000 −0.0441942
\(513\) 16364.2 1.40838
\(514\) −1960.74 −0.168258
\(515\) 2129.38 0.182197
\(516\) −109.677 −0.00935711
\(517\) 4074.43 0.346602
\(518\) 1863.30 0.158048
\(519\) −6064.19 −0.512887
\(520\) 1131.47 0.0954197
\(521\) −791.662 −0.0665707 −0.0332854 0.999446i \(-0.510597\pi\)
−0.0332854 + 0.999446i \(0.510597\pi\)
\(522\) 831.231 0.0696973
\(523\) −13655.2 −1.14168 −0.570840 0.821061i \(-0.693382\pi\)
−0.570840 + 0.821061i \(0.693382\pi\)
\(524\) 4830.99 0.402753
\(525\) 3751.29 0.311847
\(526\) 11703.2 0.970121
\(527\) 2036.83 0.168360
\(528\) −949.110 −0.0782287
\(529\) −12074.9 −0.992430
\(530\) −5896.94 −0.483296
\(531\) 808.193 0.0660501
\(532\) −13553.6 −1.10456
\(533\) −8382.36 −0.681201
\(534\) 996.832 0.0807811
\(535\) −4046.45 −0.326997
\(536\) 5232.49 0.421659
\(537\) −4196.00 −0.337189
\(538\) 128.666 0.0103107
\(539\) −4743.58 −0.379073
\(540\) 2687.61 0.214178
\(541\) −6116.04 −0.486043 −0.243022 0.970021i \(-0.578139\pi\)
−0.243022 + 0.970021i \(0.578139\pi\)
\(542\) 8948.81 0.709196
\(543\) −341.601 −0.0269972
\(544\) −544.000 −0.0428746
\(545\) 8870.87 0.697223
\(546\) −8488.94 −0.665372
\(547\) 4297.07 0.335885 0.167943 0.985797i \(-0.446288\pi\)
0.167943 + 0.985797i \(0.446288\pi\)
\(548\) −5011.97 −0.390695
\(549\) 853.143 0.0663229
\(550\) 550.000 0.0426401
\(551\) 24321.7 1.88047
\(552\) 414.045 0.0319256
\(553\) 30052.6 2.31097
\(554\) −10566.5 −0.810340
\(555\) 902.797 0.0690480
\(556\) −5097.48 −0.388816
\(557\) −14422.8 −1.09715 −0.548575 0.836101i \(-0.684829\pi\)
−0.548575 + 0.836101i \(0.684829\pi\)
\(558\) −498.647 −0.0378305
\(559\) −143.825 −0.0108822
\(560\) −2226.01 −0.167975
\(561\) −1008.43 −0.0758929
\(562\) −9807.43 −0.736124
\(563\) 23902.4 1.78928 0.894641 0.446786i \(-0.147431\pi\)
0.894641 + 0.446786i \(0.147431\pi\)
\(564\) −7989.84 −0.596512
\(565\) −8249.02 −0.614228
\(566\) −6688.99 −0.496748
\(567\) −21727.3 −1.60928
\(568\) 5348.73 0.395119
\(569\) −12696.6 −0.935448 −0.467724 0.883875i \(-0.654926\pi\)
−0.467724 + 0.883875i \(0.654926\pi\)
\(570\) −6566.95 −0.482560
\(571\) 15927.5 1.16733 0.583664 0.811995i \(-0.301618\pi\)
0.583664 + 0.811995i \(0.301618\pi\)
\(572\) −1244.62 −0.0909791
\(573\) 16183.3 1.17987
\(574\) 16491.1 1.19917
\(575\) −239.935 −0.0174017
\(576\) 133.179 0.00963391
\(577\) −18957.1 −1.36776 −0.683879 0.729596i \(-0.739708\pi\)
−0.683879 + 0.729596i \(0.739708\pi\)
\(578\) −578.000 −0.0415945
\(579\) −7733.34 −0.555072
\(580\) 3994.52 0.285972
\(581\) −4741.14 −0.338547
\(582\) 9897.66 0.704934
\(583\) 6486.63 0.460804
\(584\) 48.4386 0.00343220
\(585\) −294.313 −0.0208006
\(586\) −7600.26 −0.535775
\(587\) −9755.33 −0.685938 −0.342969 0.939347i \(-0.611433\pi\)
−0.342969 + 0.939347i \(0.611433\pi\)
\(588\) 9302.03 0.652397
\(589\) −14590.4 −1.02069
\(590\) 3883.82 0.271007
\(591\) −16801.9 −1.16944
\(592\) −535.718 −0.0371924
\(593\) 7616.11 0.527414 0.263707 0.964603i \(-0.415055\pi\)
0.263707 + 0.964603i \(0.415055\pi\)
\(594\) −2956.37 −0.204211
\(595\) −2365.13 −0.162960
\(596\) 4839.47 0.332605
\(597\) −13329.2 −0.913783
\(598\) 542.958 0.0371291
\(599\) −19817.9 −1.35182 −0.675909 0.736985i \(-0.736249\pi\)
−0.675909 + 0.736985i \(0.736249\pi\)
\(600\) −1078.53 −0.0733850
\(601\) 5112.14 0.346969 0.173485 0.984837i \(-0.444497\pi\)
0.173485 + 0.984837i \(0.444497\pi\)
\(602\) 282.956 0.0191568
\(603\) −1361.05 −0.0919177
\(604\) −4304.97 −0.290011
\(605\) −605.000 −0.0406558
\(606\) −1469.85 −0.0985292
\(607\) 8327.35 0.556831 0.278416 0.960461i \(-0.410191\pi\)
0.278416 + 0.960461i \(0.410191\pi\)
\(608\) 3896.81 0.259929
\(609\) −29969.2 −1.99411
\(610\) 4099.83 0.272127
\(611\) −10477.5 −0.693737
\(612\) 141.503 0.00934627
\(613\) −20856.8 −1.37423 −0.687113 0.726551i \(-0.741122\pi\)
−0.687113 + 0.726551i \(0.741122\pi\)
\(614\) 2581.92 0.169703
\(615\) 7990.20 0.523896
\(616\) 2448.61 0.160158
\(617\) 4513.81 0.294520 0.147260 0.989098i \(-0.452955\pi\)
0.147260 + 0.989098i \(0.452955\pi\)
\(618\) 4593.22 0.298975
\(619\) 15718.1 1.02062 0.510311 0.859990i \(-0.329530\pi\)
0.510311 + 0.859990i \(0.329530\pi\)
\(620\) −2396.28 −0.155221
\(621\) 1289.70 0.0833397
\(622\) 11514.5 0.742267
\(623\) −2571.72 −0.165383
\(624\) 2440.66 0.156578
\(625\) 625.000 0.0400000
\(626\) −1183.10 −0.0755370
\(627\) 7223.64 0.460103
\(628\) 6982.83 0.443702
\(629\) −569.200 −0.0360819
\(630\) 579.019 0.0366169
\(631\) 9582.34 0.604543 0.302272 0.953222i \(-0.402255\pi\)
0.302272 + 0.953222i \(0.402255\pi\)
\(632\) −8640.42 −0.543825
\(633\) 25816.2 1.62102
\(634\) 8658.12 0.542363
\(635\) −1459.14 −0.0911879
\(636\) −12720.1 −0.793058
\(637\) 12198.2 0.758731
\(638\) −4393.98 −0.272663
\(639\) −1391.29 −0.0861322
\(640\) 640.000 0.0395285
\(641\) 15636.2 0.963484 0.481742 0.876313i \(-0.340004\pi\)
0.481742 + 0.876313i \(0.340004\pi\)
\(642\) −8728.47 −0.536582
\(643\) 10101.5 0.619538 0.309769 0.950812i \(-0.399748\pi\)
0.309769 + 0.950812i \(0.399748\pi\)
\(644\) −1068.19 −0.0653613
\(645\) 137.097 0.00836926
\(646\) 4140.36 0.252168
\(647\) 19031.7 1.15643 0.578216 0.815884i \(-0.303749\pi\)
0.578216 + 0.815884i \(0.303749\pi\)
\(648\) 6246.84 0.378702
\(649\) −4272.20 −0.258395
\(650\) −1414.34 −0.0853460
\(651\) 17978.2 1.08237
\(652\) 3786.01 0.227410
\(653\) −7566.06 −0.453419 −0.226710 0.973962i \(-0.572797\pi\)
−0.226710 + 0.973962i \(0.572797\pi\)
\(654\) 19135.1 1.14410
\(655\) −6038.73 −0.360233
\(656\) −4741.36 −0.282194
\(657\) −12.5996 −0.000748186 0
\(658\) 20613.0 1.22124
\(659\) −12354.8 −0.730310 −0.365155 0.930947i \(-0.618984\pi\)
−0.365155 + 0.930947i \(0.618984\pi\)
\(660\) 1186.39 0.0699698
\(661\) 22156.3 1.30375 0.651877 0.758325i \(-0.273982\pi\)
0.651877 + 0.758325i \(0.273982\pi\)
\(662\) 18346.4 1.07712
\(663\) 2593.20 0.151903
\(664\) 1363.13 0.0796681
\(665\) 16942.0 0.987946
\(666\) 139.349 0.00810758
\(667\) 1916.85 0.111276
\(668\) −11364.6 −0.658247
\(669\) 14356.6 0.829686
\(670\) −6540.61 −0.377143
\(671\) −4509.81 −0.259462
\(672\) −4801.65 −0.275636
\(673\) 24162.0 1.38392 0.691959 0.721937i \(-0.256748\pi\)
0.691959 + 0.721937i \(0.256748\pi\)
\(674\) 18000.1 1.02869
\(675\) −3359.51 −0.191567
\(676\) −5587.44 −0.317902
\(677\) −9435.35 −0.535642 −0.267821 0.963469i \(-0.586304\pi\)
−0.267821 + 0.963469i \(0.586304\pi\)
\(678\) −17793.7 −1.00791
\(679\) −25534.9 −1.44321
\(680\) 680.000 0.0383482
\(681\) 14920.3 0.839568
\(682\) 2635.90 0.147997
\(683\) 30241.4 1.69422 0.847111 0.531416i \(-0.178340\pi\)
0.847111 + 0.531416i \(0.178340\pi\)
\(684\) −1013.62 −0.0566620
\(685\) 6264.96 0.349448
\(686\) −4910.28 −0.273288
\(687\) 24614.9 1.36698
\(688\) −81.3528 −0.00450806
\(689\) −16680.5 −0.922318
\(690\) −517.556 −0.0285551
\(691\) 23024.3 1.26756 0.633782 0.773511i \(-0.281501\pi\)
0.633782 + 0.773511i \(0.281501\pi\)
\(692\) −4498.10 −0.247098
\(693\) −636.921 −0.0349129
\(694\) −8015.43 −0.438417
\(695\) 6371.85 0.347767
\(696\) 8616.47 0.469262
\(697\) −5037.70 −0.273768
\(698\) 3082.85 0.167174
\(699\) −27720.5 −1.49998
\(700\) 2782.51 0.150241
\(701\) 3847.14 0.207282 0.103641 0.994615i \(-0.466951\pi\)
0.103641 + 0.994615i \(0.466951\pi\)
\(702\) 7602.37 0.408736
\(703\) 4077.33 0.218747
\(704\) −704.000 −0.0376889
\(705\) 9987.30 0.533537
\(706\) −9425.65 −0.502463
\(707\) 3792.07 0.201719
\(708\) 8377.66 0.444706
\(709\) 14168.1 0.750484 0.375242 0.926927i \(-0.377560\pi\)
0.375242 + 0.926927i \(0.377560\pi\)
\(710\) −6685.91 −0.353405
\(711\) 2247.51 0.118549
\(712\) 739.397 0.0389186
\(713\) −1149.90 −0.0603985
\(714\) −5101.75 −0.267407
\(715\) 1555.77 0.0813742
\(716\) −3112.37 −0.162451
\(717\) −12825.3 −0.668018
\(718\) 15116.1 0.785696
\(719\) −3009.94 −0.156122 −0.0780611 0.996949i \(-0.524873\pi\)
−0.0780611 + 0.996949i \(0.524873\pi\)
\(720\) −166.474 −0.00861683
\(721\) −11850.0 −0.612092
\(722\) −15940.5 −0.821666
\(723\) 15401.6 0.792241
\(724\) −253.382 −0.0130067
\(725\) −4993.16 −0.255781
\(726\) −1305.03 −0.0667136
\(727\) 2707.78 0.138138 0.0690688 0.997612i \(-0.477997\pi\)
0.0690688 + 0.997612i \(0.477997\pi\)
\(728\) −6296.65 −0.320562
\(729\) 17941.2 0.911507
\(730\) −60.5482 −0.00306985
\(731\) −86.4373 −0.00437346
\(732\) 8843.61 0.446543
\(733\) −13258.9 −0.668114 −0.334057 0.942553i \(-0.608418\pi\)
−0.334057 + 0.942553i \(0.608418\pi\)
\(734\) 9480.64 0.476753
\(735\) −11627.5 −0.583522
\(736\) 307.117 0.0153811
\(737\) 7194.68 0.359592
\(738\) 1233.30 0.0615156
\(739\) 26600.3 1.32410 0.662049 0.749461i \(-0.269687\pi\)
0.662049 + 0.749461i \(0.269687\pi\)
\(740\) 669.647 0.0332658
\(741\) −18575.8 −0.920914
\(742\) 32816.5 1.62363
\(743\) 13781.7 0.680489 0.340244 0.940337i \(-0.389490\pi\)
0.340244 + 0.940337i \(0.389490\pi\)
\(744\) −5168.93 −0.254707
\(745\) −6049.34 −0.297491
\(746\) 12195.8 0.598551
\(747\) −354.571 −0.0173669
\(748\) −748.000 −0.0365636
\(749\) 22518.6 1.09854
\(750\) 1348.17 0.0656375
\(751\) 19431.3 0.944154 0.472077 0.881557i \(-0.343504\pi\)
0.472077 + 0.881557i \(0.343504\pi\)
\(752\) −5926.44 −0.287387
\(753\) 947.362 0.0458483
\(754\) 11299.2 0.545747
\(755\) 5381.21 0.259394
\(756\) −14956.6 −0.719531
\(757\) −9645.51 −0.463107 −0.231553 0.972822i \(-0.574381\pi\)
−0.231553 + 0.972822i \(0.574381\pi\)
\(758\) 6035.69 0.289216
\(759\) 569.312 0.0272262
\(760\) −4871.01 −0.232487
\(761\) 2931.80 0.139655 0.0698276 0.997559i \(-0.477755\pi\)
0.0698276 + 0.997559i \(0.477755\pi\)
\(762\) −3147.47 −0.149634
\(763\) −49366.5 −2.34232
\(764\) 12003.9 0.568436
\(765\) −176.879 −0.00835955
\(766\) 9262.78 0.436916
\(767\) 10986.1 0.517188
\(768\) 1380.52 0.0648638
\(769\) −24795.2 −1.16273 −0.581363 0.813644i \(-0.697480\pi\)
−0.581363 + 0.813644i \(0.697480\pi\)
\(770\) −3060.76 −0.143249
\(771\) 5286.82 0.246952
\(772\) −5736.18 −0.267422
\(773\) 32369.2 1.50613 0.753065 0.657946i \(-0.228575\pi\)
0.753065 + 0.657946i \(0.228575\pi\)
\(774\) 21.1611 0.000982714 0
\(775\) 2995.34 0.138833
\(776\) 7341.56 0.339622
\(777\) −5024.08 −0.231966
\(778\) −6754.27 −0.311250
\(779\) 36086.3 1.65973
\(780\) −3050.82 −0.140047
\(781\) 7354.50 0.336959
\(782\) 326.312 0.0149218
\(783\) 26839.3 1.22498
\(784\) 6899.76 0.314311
\(785\) −8728.53 −0.396860
\(786\) −13026.0 −0.591120
\(787\) 8705.82 0.394319 0.197159 0.980371i \(-0.436828\pi\)
0.197159 + 0.980371i \(0.436828\pi\)
\(788\) −12462.8 −0.563411
\(789\) −31555.8 −1.42385
\(790\) 10800.5 0.486412
\(791\) 45905.9 2.06350
\(792\) 183.121 0.00821583
\(793\) 11597.1 0.519325
\(794\) −30374.7 −1.35763
\(795\) 15900.1 0.709333
\(796\) −9886.91 −0.440241
\(797\) 23495.4 1.04423 0.522115 0.852875i \(-0.325143\pi\)
0.522115 + 0.852875i \(0.325143\pi\)
\(798\) 36545.2 1.62116
\(799\) −6296.84 −0.278806
\(800\) −800.000 −0.0353553
\(801\) −192.329 −0.00848389
\(802\) 901.581 0.0396957
\(803\) 66.6031 0.00292699
\(804\) −14108.6 −0.618869
\(805\) 1335.24 0.0584610
\(806\) −6778.28 −0.296222
\(807\) −346.926 −0.0151331
\(808\) −1090.26 −0.0474693
\(809\) 6298.70 0.273733 0.136867 0.990589i \(-0.456297\pi\)
0.136867 + 0.990589i \(0.456297\pi\)
\(810\) −7808.55 −0.338721
\(811\) 21111.5 0.914088 0.457044 0.889444i \(-0.348908\pi\)
0.457044 + 0.889444i \(0.348908\pi\)
\(812\) −22229.6 −0.960721
\(813\) −24129.0 −1.04089
\(814\) −736.612 −0.0317177
\(815\) −4732.51 −0.203402
\(816\) 1466.81 0.0629271
\(817\) 619.173 0.0265142
\(818\) 9074.60 0.387880
\(819\) 1637.86 0.0698795
\(820\) 5926.71 0.252402
\(821\) 22565.2 0.959234 0.479617 0.877478i \(-0.340776\pi\)
0.479617 + 0.877478i \(0.340776\pi\)
\(822\) 13514.0 0.573422
\(823\) 35457.8 1.50180 0.750900 0.660416i \(-0.229620\pi\)
0.750900 + 0.660416i \(0.229620\pi\)
\(824\) 3407.01 0.144040
\(825\) −1482.99 −0.0625829
\(826\) −21613.5 −0.910447
\(827\) 15080.6 0.634106 0.317053 0.948408i \(-0.397307\pi\)
0.317053 + 0.948408i \(0.397307\pi\)
\(828\) −79.8858 −0.00335293
\(829\) 34814.6 1.45858 0.729290 0.684205i \(-0.239851\pi\)
0.729290 + 0.684205i \(0.239851\pi\)
\(830\) −1703.91 −0.0712573
\(831\) 28490.9 1.18934
\(832\) 1810.35 0.0754359
\(833\) 7330.99 0.304927
\(834\) 13744.5 0.570664
\(835\) 14205.7 0.588754
\(836\) 5358.12 0.221668
\(837\) −16100.6 −0.664897
\(838\) 27501.1 1.13366
\(839\) 25309.5 1.04146 0.520728 0.853723i \(-0.325661\pi\)
0.520728 + 0.853723i \(0.325661\pi\)
\(840\) 6002.06 0.246537
\(841\) 15501.6 0.635597
\(842\) −1769.02 −0.0724042
\(843\) 26444.1 1.08041
\(844\) 19149.1 0.780972
\(845\) 6984.30 0.284340
\(846\) 1541.56 0.0626476
\(847\) 3366.83 0.136583
\(848\) −9435.10 −0.382079
\(849\) 18035.8 0.729077
\(850\) −850.000 −0.0342997
\(851\) 321.344 0.0129442
\(852\) −14422.0 −0.579916
\(853\) 43334.8 1.73946 0.869728 0.493531i \(-0.164294\pi\)
0.869728 + 0.493531i \(0.164294\pi\)
\(854\) −22815.6 −0.914208
\(855\) 1267.03 0.0506800
\(856\) −6474.32 −0.258514
\(857\) 14610.5 0.582365 0.291183 0.956668i \(-0.405951\pi\)
0.291183 + 0.956668i \(0.405951\pi\)
\(858\) 3355.91 0.133530
\(859\) −38719.8 −1.53795 −0.768977 0.639276i \(-0.779234\pi\)
−0.768977 + 0.639276i \(0.779234\pi\)
\(860\) 101.691 0.00403213
\(861\) −44465.6 −1.76003
\(862\) 28935.2 1.14332
\(863\) 31015.8 1.22340 0.611698 0.791092i \(-0.290487\pi\)
0.611698 + 0.791092i \(0.290487\pi\)
\(864\) 4300.17 0.169323
\(865\) 5622.62 0.221011
\(866\) 16483.9 0.646820
\(867\) 1558.48 0.0610483
\(868\) 13335.3 0.521463
\(869\) −11880.6 −0.463776
\(870\) −10770.6 −0.419721
\(871\) −18501.3 −0.719738
\(872\) 14193.4 0.551203
\(873\) −1909.65 −0.0740344
\(874\) −2337.45 −0.0904640
\(875\) −3478.13 −0.134380
\(876\) −130.607 −0.00503743
\(877\) 7073.98 0.272373 0.136187 0.990683i \(-0.456515\pi\)
0.136187 + 0.990683i \(0.456515\pi\)
\(878\) 21505.8 0.826635
\(879\) 20492.9 0.786356
\(880\) 880.000 0.0337100
\(881\) 23284.1 0.890423 0.445212 0.895425i \(-0.353128\pi\)
0.445212 + 0.895425i \(0.353128\pi\)
\(882\) −1794.73 −0.0685168
\(883\) 31682.2 1.20746 0.603732 0.797187i \(-0.293680\pi\)
0.603732 + 0.797187i \(0.293680\pi\)
\(884\) 1923.50 0.0731836
\(885\) −10472.1 −0.397757
\(886\) 4263.27 0.161656
\(887\) 23289.7 0.881614 0.440807 0.897602i \(-0.354692\pi\)
0.440807 + 0.897602i \(0.354692\pi\)
\(888\) 1444.48 0.0545872
\(889\) 8120.15 0.306345
\(890\) −924.246 −0.0348099
\(891\) 8589.40 0.322958
\(892\) 10649.0 0.399725
\(893\) 45105.9 1.69027
\(894\) −13048.9 −0.488164
\(895\) 3890.46 0.145300
\(896\) −3561.61 −0.132796
\(897\) −1464.00 −0.0544944
\(898\) −33809.7 −1.25640
\(899\) −23930.0 −0.887774
\(900\) 208.092 0.00770713
\(901\) −10024.8 −0.370671
\(902\) −6519.38 −0.240656
\(903\) −762.944 −0.0281165
\(904\) −13198.4 −0.485590
\(905\) 316.727 0.0116335
\(906\) 11607.6 0.425649
\(907\) 12889.3 0.471865 0.235932 0.971769i \(-0.424186\pi\)
0.235932 + 0.971769i \(0.424186\pi\)
\(908\) 11067.1 0.404486
\(909\) 283.593 0.0103479
\(910\) 7870.81 0.286719
\(911\) −5001.12 −0.181882 −0.0909411 0.995856i \(-0.528987\pi\)
−0.0909411 + 0.995856i \(0.528987\pi\)
\(912\) −10507.1 −0.381497
\(913\) 1874.30 0.0679411
\(914\) 598.234 0.0216497
\(915\) −11054.5 −0.399400
\(916\) 18258.0 0.658583
\(917\) 33605.6 1.21020
\(918\) 4568.93 0.164267
\(919\) −35950.1 −1.29041 −0.645204 0.764010i \(-0.723228\pi\)
−0.645204 + 0.764010i \(0.723228\pi\)
\(920\) −383.896 −0.0137573
\(921\) −6961.72 −0.249073
\(922\) 8200.09 0.292902
\(923\) −18912.3 −0.674437
\(924\) −6602.27 −0.235063
\(925\) −837.059 −0.0297539
\(926\) −24749.0 −0.878298
\(927\) −886.216 −0.0313993
\(928\) 6391.24 0.226081
\(929\) −722.553 −0.0255180 −0.0127590 0.999919i \(-0.504061\pi\)
−0.0127590 + 0.999919i \(0.504061\pi\)
\(930\) 6461.17 0.227817
\(931\) −52513.8 −1.84862
\(932\) −20561.6 −0.722657
\(933\) −31047.0 −1.08943
\(934\) 26576.4 0.931057
\(935\) 935.000 0.0327035
\(936\) −470.901 −0.0164443
\(937\) −47672.7 −1.66211 −0.831056 0.556189i \(-0.812263\pi\)
−0.831056 + 0.556189i \(0.812263\pi\)
\(938\) 36398.6 1.26701
\(939\) 3190.04 0.110866
\(940\) 7408.05 0.257047
\(941\) −22836.9 −0.791140 −0.395570 0.918436i \(-0.629453\pi\)
−0.395570 + 0.918436i \(0.629453\pi\)
\(942\) −18828.1 −0.651222
\(943\) 2844.05 0.0982131
\(944\) 6214.11 0.214250
\(945\) 18695.7 0.643568
\(946\) −111.860 −0.00384449
\(947\) −20889.7 −0.716814 −0.358407 0.933565i \(-0.616680\pi\)
−0.358407 + 0.933565i \(0.616680\pi\)
\(948\) 23297.5 0.798172
\(949\) −171.271 −0.00585848
\(950\) 6088.77 0.207943
\(951\) −23345.2 −0.796025
\(952\) −3784.21 −0.128831
\(953\) 8799.82 0.299112 0.149556 0.988753i \(-0.452216\pi\)
0.149556 + 0.988753i \(0.452216\pi\)
\(954\) 2454.22 0.0832895
\(955\) −15004.9 −0.508425
\(956\) −9513.12 −0.321837
\(957\) 11847.6 0.400188
\(958\) 18356.8 0.619082
\(959\) −34864.6 −1.17397
\(960\) −1725.66 −0.0580159
\(961\) −15435.7 −0.518132
\(962\) 1894.21 0.0634843
\(963\) 1684.07 0.0563535
\(964\) 11424.1 0.381685
\(965\) 7170.23 0.239189
\(966\) 2880.21 0.0959308
\(967\) −30990.5 −1.03060 −0.515298 0.857011i \(-0.672319\pi\)
−0.515298 + 0.857011i \(0.672319\pi\)
\(968\) −968.000 −0.0321412
\(969\) −11163.8 −0.370107
\(970\) −9176.95 −0.303767
\(971\) 1206.85 0.0398865 0.0199433 0.999801i \(-0.493651\pi\)
0.0199433 + 0.999801i \(0.493651\pi\)
\(972\) −2330.49 −0.0769038
\(973\) −35459.5 −1.16832
\(974\) 40200.9 1.32250
\(975\) 3813.53 0.125262
\(976\) 6559.72 0.215135
\(977\) −13046.2 −0.427209 −0.213605 0.976920i \(-0.568520\pi\)
−0.213605 + 0.976920i \(0.568520\pi\)
\(978\) −10208.4 −0.333770
\(979\) 1016.67 0.0331899
\(980\) −8624.70 −0.281128
\(981\) −3691.92 −0.120157
\(982\) −9355.53 −0.304019
\(983\) −42847.8 −1.39027 −0.695134 0.718880i \(-0.744655\pi\)
−0.695134 + 0.718880i \(0.744655\pi\)
\(984\) 12784.3 0.414176
\(985\) 15578.5 0.503930
\(986\) 6790.69 0.219330
\(987\) −55579.5 −1.79242
\(988\) −13778.5 −0.443677
\(989\) 48.7984 0.00156896
\(990\) −228.902 −0.00734846
\(991\) −55931.4 −1.79285 −0.896427 0.443191i \(-0.853846\pi\)
−0.896427 + 0.443191i \(0.853846\pi\)
\(992\) −3834.04 −0.122713
\(993\) −49468.0 −1.58089
\(994\) 37207.2 1.18726
\(995\) 12358.6 0.393764
\(996\) −3675.45 −0.116929
\(997\) 20758.6 0.659410 0.329705 0.944084i \(-0.393051\pi\)
0.329705 + 0.944084i \(0.393051\pi\)
\(998\) −6425.96 −0.203818
\(999\) 4499.38 0.142496
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1870.4.a.j.1.8 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1870.4.a.j.1.8 10 1.1 even 1 trivial