Properties

Label 1870.4.a.j.1.5
Level $1870$
Weight $4$
Character 1870.1
Self dual yes
Analytic conductor $110.334$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1870,4,Mod(1,1870)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1870, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1870.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1870 = 2 \cdot 5 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1870.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-20,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.333571711\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} - 168 x^{8} + 138 x^{7} + 9025 x^{6} - 8357 x^{5} - 177203 x^{4} + 269951 x^{3} + \cdots + 1239820 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.93833\) of defining polynomial
Character \(\chi\) \(=\) 1870.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -1.93833 q^{3} +4.00000 q^{4} -5.00000 q^{5} +3.87666 q^{6} +17.2000 q^{7} -8.00000 q^{8} -23.2429 q^{9} +10.0000 q^{10} -11.0000 q^{11} -7.75332 q^{12} -14.1499 q^{13} -34.4001 q^{14} +9.69165 q^{15} +16.0000 q^{16} +17.0000 q^{17} +46.4858 q^{18} -21.4463 q^{19} -20.0000 q^{20} -33.3394 q^{21} +22.0000 q^{22} -33.4585 q^{23} +15.5066 q^{24} +25.0000 q^{25} +28.2997 q^{26} +97.3872 q^{27} +68.8002 q^{28} +267.732 q^{29} -19.3833 q^{30} +146.383 q^{31} -32.0000 q^{32} +21.3216 q^{33} -34.0000 q^{34} -86.0002 q^{35} -92.9715 q^{36} -342.017 q^{37} +42.8926 q^{38} +27.4271 q^{39} +40.0000 q^{40} -151.800 q^{41} +66.6787 q^{42} +113.445 q^{43} -44.0000 q^{44} +116.214 q^{45} +66.9171 q^{46} +377.453 q^{47} -31.0133 q^{48} -47.1584 q^{49} -50.0000 q^{50} -32.9516 q^{51} -56.5995 q^{52} -242.222 q^{53} -194.774 q^{54} +55.0000 q^{55} -137.600 q^{56} +41.5700 q^{57} -535.464 q^{58} -23.3335 q^{59} +38.7666 q^{60} +481.320 q^{61} -292.765 q^{62} -399.779 q^{63} +64.0000 q^{64} +70.7493 q^{65} -42.6432 q^{66} -384.271 q^{67} +68.0000 q^{68} +64.8537 q^{69} +172.000 q^{70} -778.875 q^{71} +185.943 q^{72} +500.356 q^{73} +684.034 q^{74} -48.4582 q^{75} -85.7853 q^{76} -189.200 q^{77} -54.8542 q^{78} -1025.48 q^{79} -80.0000 q^{80} +438.789 q^{81} +303.600 q^{82} +823.835 q^{83} -133.357 q^{84} -85.0000 q^{85} -226.891 q^{86} -518.953 q^{87} +88.0000 q^{88} +1194.43 q^{89} -232.429 q^{90} -243.378 q^{91} -133.834 q^{92} -283.738 q^{93} -754.906 q^{94} +107.232 q^{95} +62.0265 q^{96} +308.808 q^{97} +94.3169 q^{98} +255.672 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 20 q^{2} - q^{3} + 40 q^{4} - 50 q^{5} + 2 q^{6} + 4 q^{7} - 80 q^{8} + 67 q^{9} + 100 q^{10} - 110 q^{11} - 4 q^{12} - 7 q^{13} - 8 q^{14} + 5 q^{15} + 160 q^{16} + 170 q^{17} - 134 q^{18} + 11 q^{19}+ \cdots - 737 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −1.93833 −0.373032 −0.186516 0.982452i \(-0.559720\pi\)
−0.186516 + 0.982452i \(0.559720\pi\)
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) 3.87666 0.263773
\(7\) 17.2000 0.928715 0.464358 0.885648i \(-0.346285\pi\)
0.464358 + 0.885648i \(0.346285\pi\)
\(8\) −8.00000 −0.353553
\(9\) −23.2429 −0.860847
\(10\) 10.0000 0.316228
\(11\) −11.0000 −0.301511
\(12\) −7.75332 −0.186516
\(13\) −14.1499 −0.301882 −0.150941 0.988543i \(-0.548230\pi\)
−0.150941 + 0.988543i \(0.548230\pi\)
\(14\) −34.4001 −0.656701
\(15\) 9.69165 0.166825
\(16\) 16.0000 0.250000
\(17\) 17.0000 0.242536
\(18\) 46.4858 0.608711
\(19\) −21.4463 −0.258954 −0.129477 0.991582i \(-0.541330\pi\)
−0.129477 + 0.991582i \(0.541330\pi\)
\(20\) −20.0000 −0.223607
\(21\) −33.3394 −0.346440
\(22\) 22.0000 0.213201
\(23\) −33.4585 −0.303330 −0.151665 0.988432i \(-0.548463\pi\)
−0.151665 + 0.988432i \(0.548463\pi\)
\(24\) 15.5066 0.131887
\(25\) 25.0000 0.200000
\(26\) 28.2997 0.213463
\(27\) 97.3872 0.694155
\(28\) 68.8002 0.464358
\(29\) 267.732 1.71437 0.857183 0.515012i \(-0.172212\pi\)
0.857183 + 0.515012i \(0.172212\pi\)
\(30\) −19.3833 −0.117963
\(31\) 146.383 0.848100 0.424050 0.905639i \(-0.360608\pi\)
0.424050 + 0.905639i \(0.360608\pi\)
\(32\) −32.0000 −0.176777
\(33\) 21.3216 0.112473
\(34\) −34.0000 −0.171499
\(35\) −86.0002 −0.415334
\(36\) −92.9715 −0.430424
\(37\) −342.017 −1.51966 −0.759828 0.650124i \(-0.774717\pi\)
−0.759828 + 0.650124i \(0.774717\pi\)
\(38\) 42.8926 0.183108
\(39\) 27.4271 0.112612
\(40\) 40.0000 0.158114
\(41\) −151.800 −0.578223 −0.289112 0.957295i \(-0.593360\pi\)
−0.289112 + 0.957295i \(0.593360\pi\)
\(42\) 66.6787 0.244970
\(43\) 113.445 0.402332 0.201166 0.979557i \(-0.435527\pi\)
0.201166 + 0.979557i \(0.435527\pi\)
\(44\) −44.0000 −0.150756
\(45\) 116.214 0.384983
\(46\) 66.9171 0.214487
\(47\) 377.453 1.17143 0.585714 0.810518i \(-0.300814\pi\)
0.585714 + 0.810518i \(0.300814\pi\)
\(48\) −31.0133 −0.0932579
\(49\) −47.1584 −0.137488
\(50\) −50.0000 −0.141421
\(51\) −32.9516 −0.0904735
\(52\) −56.5995 −0.150941
\(53\) −242.222 −0.627770 −0.313885 0.949461i \(-0.601631\pi\)
−0.313885 + 0.949461i \(0.601631\pi\)
\(54\) −194.774 −0.490842
\(55\) 55.0000 0.134840
\(56\) −137.600 −0.328350
\(57\) 41.5700 0.0965980
\(58\) −535.464 −1.21224
\(59\) −23.3335 −0.0514874 −0.0257437 0.999669i \(-0.508195\pi\)
−0.0257437 + 0.999669i \(0.508195\pi\)
\(60\) 38.7666 0.0834124
\(61\) 481.320 1.01027 0.505137 0.863039i \(-0.331442\pi\)
0.505137 + 0.863039i \(0.331442\pi\)
\(62\) −292.765 −0.599697
\(63\) −399.779 −0.799482
\(64\) 64.0000 0.125000
\(65\) 70.7493 0.135006
\(66\) −42.6432 −0.0795306
\(67\) −384.271 −0.700689 −0.350345 0.936621i \(-0.613935\pi\)
−0.350345 + 0.936621i \(0.613935\pi\)
\(68\) 68.0000 0.121268
\(69\) 64.8537 0.113152
\(70\) 172.000 0.293686
\(71\) −778.875 −1.30191 −0.650954 0.759118i \(-0.725631\pi\)
−0.650954 + 0.759118i \(0.725631\pi\)
\(72\) 185.943 0.304356
\(73\) 500.356 0.802223 0.401111 0.916029i \(-0.368624\pi\)
0.401111 + 0.916029i \(0.368624\pi\)
\(74\) 684.034 1.07456
\(75\) −48.4582 −0.0746063
\(76\) −85.7853 −0.129477
\(77\) −189.200 −0.280018
\(78\) −54.8542 −0.0796284
\(79\) −1025.48 −1.46044 −0.730222 0.683210i \(-0.760583\pi\)
−0.730222 + 0.683210i \(0.760583\pi\)
\(80\) −80.0000 −0.111803
\(81\) 438.789 0.601906
\(82\) 303.600 0.408866
\(83\) 823.835 1.08949 0.544745 0.838602i \(-0.316627\pi\)
0.544745 + 0.838602i \(0.316627\pi\)
\(84\) −133.357 −0.173220
\(85\) −85.0000 −0.108465
\(86\) −226.891 −0.284491
\(87\) −518.953 −0.639513
\(88\) 88.0000 0.106600
\(89\) 1194.43 1.42258 0.711289 0.702899i \(-0.248112\pi\)
0.711289 + 0.702899i \(0.248112\pi\)
\(90\) −232.429 −0.272224
\(91\) −243.378 −0.280362
\(92\) −133.834 −0.151665
\(93\) −283.738 −0.316368
\(94\) −754.906 −0.828325
\(95\) 107.232 0.115808
\(96\) 62.0265 0.0659433
\(97\) 308.808 0.323244 0.161622 0.986853i \(-0.448327\pi\)
0.161622 + 0.986853i \(0.448327\pi\)
\(98\) 94.3169 0.0972188
\(99\) 255.672 0.259555
\(100\) 100.000 0.100000
\(101\) −183.403 −0.180686 −0.0903428 0.995911i \(-0.528796\pi\)
−0.0903428 + 0.995911i \(0.528796\pi\)
\(102\) 65.9032 0.0639744
\(103\) 127.151 0.121636 0.0608181 0.998149i \(-0.480629\pi\)
0.0608181 + 0.998149i \(0.480629\pi\)
\(104\) 113.199 0.106731
\(105\) 166.697 0.154933
\(106\) 484.445 0.443900
\(107\) −1379.15 −1.24605 −0.623025 0.782202i \(-0.714096\pi\)
−0.623025 + 0.782202i \(0.714096\pi\)
\(108\) 389.549 0.347077
\(109\) 1922.70 1.68955 0.844777 0.535118i \(-0.179733\pi\)
0.844777 + 0.535118i \(0.179733\pi\)
\(110\) −110.000 −0.0953463
\(111\) 662.942 0.566880
\(112\) 275.201 0.232179
\(113\) −742.009 −0.617719 −0.308860 0.951108i \(-0.599947\pi\)
−0.308860 + 0.951108i \(0.599947\pi\)
\(114\) −83.1401 −0.0683051
\(115\) 167.293 0.135653
\(116\) 1070.93 0.857183
\(117\) 328.884 0.259874
\(118\) 46.6669 0.0364071
\(119\) 292.401 0.225247
\(120\) −77.5332 −0.0589815
\(121\) 121.000 0.0909091
\(122\) −962.641 −0.714372
\(123\) 294.238 0.215696
\(124\) 585.530 0.424050
\(125\) −125.000 −0.0894427
\(126\) 799.557 0.565319
\(127\) 2150.41 1.50250 0.751251 0.660016i \(-0.229451\pi\)
0.751251 + 0.660016i \(0.229451\pi\)
\(128\) −128.000 −0.0883883
\(129\) −219.895 −0.150082
\(130\) −141.499 −0.0954635
\(131\) −2827.49 −1.88580 −0.942898 0.333081i \(-0.891912\pi\)
−0.942898 + 0.333081i \(0.891912\pi\)
\(132\) 85.2865 0.0562366
\(133\) −368.878 −0.240494
\(134\) 768.542 0.495462
\(135\) −486.936 −0.310436
\(136\) −136.000 −0.0857493
\(137\) −2897.09 −1.80668 −0.903340 0.428925i \(-0.858892\pi\)
−0.903340 + 0.428925i \(0.858892\pi\)
\(138\) −129.707 −0.0800103
\(139\) 2409.78 1.47047 0.735235 0.677812i \(-0.237072\pi\)
0.735235 + 0.677812i \(0.237072\pi\)
\(140\) −344.001 −0.207667
\(141\) −731.628 −0.436980
\(142\) 1557.75 0.920587
\(143\) 155.649 0.0910209
\(144\) −371.886 −0.215212
\(145\) −1338.66 −0.766688
\(146\) −1000.71 −0.567257
\(147\) 91.4086 0.0512874
\(148\) −1368.07 −0.759828
\(149\) 750.050 0.412393 0.206196 0.978511i \(-0.433891\pi\)
0.206196 + 0.978511i \(0.433891\pi\)
\(150\) 96.9165 0.0527546
\(151\) −1453.49 −0.783331 −0.391665 0.920108i \(-0.628101\pi\)
−0.391665 + 0.920108i \(0.628101\pi\)
\(152\) 171.571 0.0915540
\(153\) −395.129 −0.208786
\(154\) 378.401 0.198003
\(155\) −731.913 −0.379282
\(156\) 109.708 0.0563058
\(157\) −1137.83 −0.578398 −0.289199 0.957269i \(-0.593389\pi\)
−0.289199 + 0.957269i \(0.593389\pi\)
\(158\) 2050.95 1.03269
\(159\) 469.507 0.234178
\(160\) 160.000 0.0790569
\(161\) −575.488 −0.281707
\(162\) −877.578 −0.425612
\(163\) 1761.13 0.846273 0.423136 0.906066i \(-0.360929\pi\)
0.423136 + 0.906066i \(0.360929\pi\)
\(164\) −607.199 −0.289112
\(165\) −106.608 −0.0502996
\(166\) −1647.67 −0.770385
\(167\) 3538.49 1.63962 0.819810 0.572635i \(-0.194079\pi\)
0.819810 + 0.572635i \(0.194079\pi\)
\(168\) 266.715 0.122485
\(169\) −1996.78 −0.908867
\(170\) 170.000 0.0766965
\(171\) 498.474 0.222920
\(172\) 453.782 0.201166
\(173\) 1238.72 0.544384 0.272192 0.962243i \(-0.412251\pi\)
0.272192 + 0.962243i \(0.412251\pi\)
\(174\) 1037.91 0.452204
\(175\) 430.001 0.185743
\(176\) −176.000 −0.0753778
\(177\) 45.2279 0.0192064
\(178\) −2388.86 −1.00591
\(179\) −923.716 −0.385708 −0.192854 0.981227i \(-0.561774\pi\)
−0.192854 + 0.981227i \(0.561774\pi\)
\(180\) 464.858 0.192491
\(181\) 3000.36 1.23213 0.616064 0.787696i \(-0.288726\pi\)
0.616064 + 0.787696i \(0.288726\pi\)
\(182\) 486.757 0.198246
\(183\) −932.957 −0.376864
\(184\) 267.668 0.107243
\(185\) 1710.09 0.679611
\(186\) 567.475 0.223706
\(187\) −187.000 −0.0731272
\(188\) 1509.81 0.585714
\(189\) 1675.06 0.644672
\(190\) −214.463 −0.0818884
\(191\) −1967.61 −0.745400 −0.372700 0.927952i \(-0.621568\pi\)
−0.372700 + 0.927952i \(0.621568\pi\)
\(192\) −124.053 −0.0466290
\(193\) 691.407 0.257868 0.128934 0.991653i \(-0.458844\pi\)
0.128934 + 0.991653i \(0.458844\pi\)
\(194\) −617.616 −0.228568
\(195\) −137.135 −0.0503614
\(196\) −188.634 −0.0687441
\(197\) −3528.00 −1.27594 −0.637969 0.770062i \(-0.720225\pi\)
−0.637969 + 0.770062i \(0.720225\pi\)
\(198\) −511.343 −0.183533
\(199\) 1658.43 0.590769 0.295385 0.955378i \(-0.404552\pi\)
0.295385 + 0.955378i \(0.404552\pi\)
\(200\) −200.000 −0.0707107
\(201\) 744.844 0.261379
\(202\) 366.805 0.127764
\(203\) 4605.01 1.59216
\(204\) −131.806 −0.0452367
\(205\) 758.999 0.258589
\(206\) −254.301 −0.0860098
\(207\) 777.673 0.261121
\(208\) −226.398 −0.0754705
\(209\) 235.910 0.0780775
\(210\) −333.394 −0.109554
\(211\) −1990.55 −0.649455 −0.324727 0.945808i \(-0.605273\pi\)
−0.324727 + 0.945808i \(0.605273\pi\)
\(212\) −968.889 −0.313885
\(213\) 1509.72 0.485653
\(214\) 2758.30 0.881090
\(215\) −567.227 −0.179928
\(216\) −779.098 −0.245421
\(217\) 2517.79 0.787643
\(218\) −3845.40 −1.19470
\(219\) −969.855 −0.299255
\(220\) 220.000 0.0674200
\(221\) −240.548 −0.0732172
\(222\) −1325.88 −0.400844
\(223\) −5310.11 −1.59458 −0.797290 0.603596i \(-0.793734\pi\)
−0.797290 + 0.603596i \(0.793734\pi\)
\(224\) −550.401 −0.164175
\(225\) −581.072 −0.172169
\(226\) 1484.02 0.436794
\(227\) −4714.26 −1.37840 −0.689200 0.724572i \(-0.742038\pi\)
−0.689200 + 0.724572i \(0.742038\pi\)
\(228\) 166.280 0.0482990
\(229\) −5578.13 −1.60967 −0.804833 0.593502i \(-0.797745\pi\)
−0.804833 + 0.593502i \(0.797745\pi\)
\(230\) −334.585 −0.0959213
\(231\) 366.733 0.104456
\(232\) −2141.86 −0.606120
\(233\) 1105.86 0.310934 0.155467 0.987841i \(-0.450312\pi\)
0.155467 + 0.987841i \(0.450312\pi\)
\(234\) −657.767 −0.183759
\(235\) −1887.26 −0.523879
\(236\) −93.3339 −0.0257437
\(237\) 1987.71 0.544792
\(238\) −584.802 −0.159273
\(239\) −4901.87 −1.32668 −0.663339 0.748319i \(-0.730861\pi\)
−0.663339 + 0.748319i \(0.730861\pi\)
\(240\) 155.066 0.0417062
\(241\) 37.0033 0.00989042 0.00494521 0.999988i \(-0.498426\pi\)
0.00494521 + 0.999988i \(0.498426\pi\)
\(242\) −242.000 −0.0642824
\(243\) −3479.97 −0.918685
\(244\) 1925.28 0.505137
\(245\) 235.792 0.0614866
\(246\) −588.476 −0.152520
\(247\) 303.463 0.0781735
\(248\) −1171.06 −0.299848
\(249\) −1596.86 −0.406414
\(250\) 250.000 0.0632456
\(251\) −716.985 −0.180302 −0.0901508 0.995928i \(-0.528735\pi\)
−0.0901508 + 0.995928i \(0.528735\pi\)
\(252\) −1599.11 −0.399741
\(253\) 368.044 0.0914574
\(254\) −4300.81 −1.06243
\(255\) 164.758 0.0404610
\(256\) 256.000 0.0625000
\(257\) −2888.35 −0.701051 −0.350526 0.936553i \(-0.613997\pi\)
−0.350526 + 0.936553i \(0.613997\pi\)
\(258\) 439.789 0.106124
\(259\) −5882.71 −1.41133
\(260\) 282.997 0.0675029
\(261\) −6222.87 −1.47581
\(262\) 5654.99 1.33346
\(263\) −6294.73 −1.47585 −0.737927 0.674880i \(-0.764195\pi\)
−0.737927 + 0.674880i \(0.764195\pi\)
\(264\) −170.573 −0.0397653
\(265\) 1211.11 0.280747
\(266\) 737.755 0.170055
\(267\) −2315.20 −0.530667
\(268\) −1537.08 −0.350345
\(269\) −6537.25 −1.48172 −0.740861 0.671659i \(-0.765582\pi\)
−0.740861 + 0.671659i \(0.765582\pi\)
\(270\) 973.872 0.219511
\(271\) −941.790 −0.211106 −0.105553 0.994414i \(-0.533661\pi\)
−0.105553 + 0.994414i \(0.533661\pi\)
\(272\) 272.000 0.0606339
\(273\) 471.747 0.104584
\(274\) 5794.18 1.27752
\(275\) −275.000 −0.0603023
\(276\) 259.415 0.0565758
\(277\) 5247.18 1.13817 0.569084 0.822279i \(-0.307298\pi\)
0.569084 + 0.822279i \(0.307298\pi\)
\(278\) −4819.57 −1.03978
\(279\) −3402.35 −0.730084
\(280\) 688.002 0.146843
\(281\) −4416.07 −0.937511 −0.468756 0.883328i \(-0.655298\pi\)
−0.468756 + 0.883328i \(0.655298\pi\)
\(282\) 1463.26 0.308991
\(283\) 4800.21 1.00828 0.504140 0.863622i \(-0.331810\pi\)
0.504140 + 0.863622i \(0.331810\pi\)
\(284\) −3115.50 −0.650954
\(285\) −207.850 −0.0431999
\(286\) −311.297 −0.0643615
\(287\) −2610.96 −0.537005
\(288\) 743.772 0.152178
\(289\) 289.000 0.0588235
\(290\) 2677.32 0.542130
\(291\) −598.571 −0.120580
\(292\) 2001.43 0.401111
\(293\) 6536.88 1.30337 0.651687 0.758488i \(-0.274062\pi\)
0.651687 + 0.758488i \(0.274062\pi\)
\(294\) −182.817 −0.0362657
\(295\) 116.667 0.0230259
\(296\) 2736.14 0.537279
\(297\) −1071.26 −0.209296
\(298\) −1500.10 −0.291606
\(299\) 473.434 0.0915699
\(300\) −193.833 −0.0373032
\(301\) 1951.27 0.373652
\(302\) 2906.97 0.553899
\(303\) 355.495 0.0674014
\(304\) −343.141 −0.0647385
\(305\) −2406.60 −0.451809
\(306\) 790.258 0.147634
\(307\) 8499.94 1.58019 0.790093 0.612987i \(-0.210032\pi\)
0.790093 + 0.612987i \(0.210032\pi\)
\(308\) −756.802 −0.140009
\(309\) −246.460 −0.0453742
\(310\) 1463.83 0.268193
\(311\) −8746.25 −1.59471 −0.797354 0.603512i \(-0.793768\pi\)
−0.797354 + 0.603512i \(0.793768\pi\)
\(312\) −219.417 −0.0398142
\(313\) 6578.30 1.18795 0.593974 0.804484i \(-0.297558\pi\)
0.593974 + 0.804484i \(0.297558\pi\)
\(314\) 2275.65 0.408989
\(315\) 1998.89 0.357539
\(316\) −4101.90 −0.730222
\(317\) −3487.51 −0.617911 −0.308956 0.951076i \(-0.599979\pi\)
−0.308956 + 0.951076i \(0.599979\pi\)
\(318\) −939.013 −0.165589
\(319\) −2945.05 −0.516901
\(320\) −320.000 −0.0559017
\(321\) 2673.24 0.464816
\(322\) 1150.98 0.199197
\(323\) −364.587 −0.0628055
\(324\) 1755.16 0.300953
\(325\) −353.747 −0.0603764
\(326\) −3522.26 −0.598405
\(327\) −3726.83 −0.630257
\(328\) 1214.40 0.204433
\(329\) 6492.20 1.08792
\(330\) 213.216 0.0355672
\(331\) −8887.34 −1.47581 −0.737904 0.674906i \(-0.764184\pi\)
−0.737904 + 0.674906i \(0.764184\pi\)
\(332\) 3295.34 0.544745
\(333\) 7949.46 1.30819
\(334\) −7076.98 −1.15939
\(335\) 1921.35 0.313358
\(336\) −533.430 −0.0866100
\(337\) 5037.96 0.814347 0.407174 0.913351i \(-0.366514\pi\)
0.407174 + 0.913351i \(0.366514\pi\)
\(338\) 3993.56 0.642666
\(339\) 1438.26 0.230429
\(340\) −340.000 −0.0542326
\(341\) −1610.21 −0.255712
\(342\) −996.948 −0.157628
\(343\) −6710.74 −1.05640
\(344\) −907.563 −0.142246
\(345\) −324.268 −0.0506030
\(346\) −2477.45 −0.384938
\(347\) −1594.63 −0.246698 −0.123349 0.992363i \(-0.539363\pi\)
−0.123349 + 0.992363i \(0.539363\pi\)
\(348\) −2075.81 −0.319756
\(349\) 3930.62 0.602869 0.301435 0.953487i \(-0.402535\pi\)
0.301435 + 0.953487i \(0.402535\pi\)
\(350\) −860.002 −0.131340
\(351\) −1378.02 −0.209553
\(352\) 352.000 0.0533002
\(353\) −6124.92 −0.923503 −0.461752 0.887009i \(-0.652779\pi\)
−0.461752 + 0.887009i \(0.652779\pi\)
\(354\) −90.4559 −0.0135810
\(355\) 3894.37 0.582231
\(356\) 4777.73 0.711289
\(357\) −566.769 −0.0840241
\(358\) 1847.43 0.272737
\(359\) −7462.03 −1.09702 −0.548511 0.836143i \(-0.684805\pi\)
−0.548511 + 0.836143i \(0.684805\pi\)
\(360\) −929.715 −0.136112
\(361\) −6399.06 −0.932943
\(362\) −6000.73 −0.871246
\(363\) −234.538 −0.0339120
\(364\) −973.513 −0.140181
\(365\) −2501.78 −0.358765
\(366\) 1865.91 0.266483
\(367\) 7346.41 1.04490 0.522451 0.852669i \(-0.325018\pi\)
0.522451 + 0.852669i \(0.325018\pi\)
\(368\) −535.337 −0.0758325
\(369\) 3528.27 0.497762
\(370\) −3420.17 −0.480557
\(371\) −4166.23 −0.583019
\(372\) −1134.95 −0.158184
\(373\) −6714.17 −0.932028 −0.466014 0.884777i \(-0.654310\pi\)
−0.466014 + 0.884777i \(0.654310\pi\)
\(374\) 374.000 0.0517088
\(375\) 242.291 0.0333650
\(376\) −3019.62 −0.414163
\(377\) −3788.38 −0.517536
\(378\) −3350.13 −0.455852
\(379\) −10142.2 −1.37459 −0.687297 0.726376i \(-0.741203\pi\)
−0.687297 + 0.726376i \(0.741203\pi\)
\(380\) 428.926 0.0579038
\(381\) −4168.20 −0.560481
\(382\) 3935.22 0.527077
\(383\) −1260.63 −0.168186 −0.0840928 0.996458i \(-0.526799\pi\)
−0.0840928 + 0.996458i \(0.526799\pi\)
\(384\) 248.106 0.0329716
\(385\) 946.002 0.125228
\(386\) −1382.81 −0.182340
\(387\) −2636.80 −0.346346
\(388\) 1235.23 0.161622
\(389\) −12006.7 −1.56494 −0.782472 0.622686i \(-0.786041\pi\)
−0.782472 + 0.622686i \(0.786041\pi\)
\(390\) 274.271 0.0356109
\(391\) −568.795 −0.0735683
\(392\) 377.268 0.0486094
\(393\) 5480.61 0.703462
\(394\) 7056.00 0.902224
\(395\) 5127.38 0.653130
\(396\) 1022.69 0.129778
\(397\) −11455.5 −1.44820 −0.724100 0.689695i \(-0.757745\pi\)
−0.724100 + 0.689695i \(0.757745\pi\)
\(398\) −3316.86 −0.417737
\(399\) 715.006 0.0897120
\(400\) 400.000 0.0500000
\(401\) 11625.3 1.44773 0.723867 0.689940i \(-0.242363\pi\)
0.723867 + 0.689940i \(0.242363\pi\)
\(402\) −1489.69 −0.184823
\(403\) −2071.29 −0.256026
\(404\) −733.610 −0.0903428
\(405\) −2193.95 −0.269180
\(406\) −9210.01 −1.12583
\(407\) 3762.19 0.458193
\(408\) 263.613 0.0319872
\(409\) 3760.81 0.454670 0.227335 0.973817i \(-0.426999\pi\)
0.227335 + 0.973817i \(0.426999\pi\)
\(410\) −1518.00 −0.182850
\(411\) 5615.52 0.673949
\(412\) 508.603 0.0608181
\(413\) −401.337 −0.0478172
\(414\) −1555.35 −0.184640
\(415\) −4119.17 −0.487234
\(416\) 452.796 0.0533657
\(417\) −4670.96 −0.548532
\(418\) −471.819 −0.0552091
\(419\) 2038.74 0.237707 0.118853 0.992912i \(-0.462078\pi\)
0.118853 + 0.992912i \(0.462078\pi\)
\(420\) 666.787 0.0774664
\(421\) −4758.71 −0.550892 −0.275446 0.961317i \(-0.588825\pi\)
−0.275446 + 0.961317i \(0.588825\pi\)
\(422\) 3981.10 0.459234
\(423\) −8773.09 −1.00842
\(424\) 1937.78 0.221950
\(425\) 425.000 0.0485071
\(426\) −3019.43 −0.343408
\(427\) 8278.73 0.938257
\(428\) −5516.59 −0.623025
\(429\) −301.698 −0.0339537
\(430\) 1134.45 0.127228
\(431\) −4304.63 −0.481083 −0.240541 0.970639i \(-0.577325\pi\)
−0.240541 + 0.970639i \(0.577325\pi\)
\(432\) 1558.20 0.173539
\(433\) −4243.91 −0.471015 −0.235507 0.971873i \(-0.575675\pi\)
−0.235507 + 0.971873i \(0.575675\pi\)
\(434\) −5035.57 −0.556948
\(435\) 2594.77 0.285999
\(436\) 7690.81 0.844777
\(437\) 717.563 0.0785484
\(438\) 1939.71 0.211605
\(439\) −12393.5 −1.34740 −0.673701 0.739004i \(-0.735296\pi\)
−0.673701 + 0.739004i \(0.735296\pi\)
\(440\) −440.000 −0.0476731
\(441\) 1096.10 0.118356
\(442\) 481.095 0.0517723
\(443\) 1307.45 0.140223 0.0701116 0.997539i \(-0.477664\pi\)
0.0701116 + 0.997539i \(0.477664\pi\)
\(444\) 2651.77 0.283440
\(445\) −5972.16 −0.636196
\(446\) 10620.2 1.12754
\(447\) −1453.84 −0.153836
\(448\) 1100.80 0.116089
\(449\) 3970.17 0.417292 0.208646 0.977991i \(-0.433094\pi\)
0.208646 + 0.977991i \(0.433094\pi\)
\(450\) 1162.14 0.121742
\(451\) 1669.80 0.174341
\(452\) −2968.03 −0.308860
\(453\) 2817.33 0.292207
\(454\) 9428.53 0.974675
\(455\) 1216.89 0.125382
\(456\) −332.560 −0.0341525
\(457\) −17959.7 −1.83833 −0.919167 0.393868i \(-0.871137\pi\)
−0.919167 + 0.393868i \(0.871137\pi\)
\(458\) 11156.3 1.13821
\(459\) 1655.58 0.168357
\(460\) 669.171 0.0678266
\(461\) −3663.49 −0.370121 −0.185060 0.982727i \(-0.559248\pi\)
−0.185060 + 0.982727i \(0.559248\pi\)
\(462\) −733.466 −0.0738613
\(463\) 7795.16 0.782445 0.391222 0.920296i \(-0.372052\pi\)
0.391222 + 0.920296i \(0.372052\pi\)
\(464\) 4283.72 0.428592
\(465\) 1418.69 0.141484
\(466\) −2211.73 −0.219863
\(467\) −13473.9 −1.33512 −0.667558 0.744558i \(-0.732660\pi\)
−0.667558 + 0.744558i \(0.732660\pi\)
\(468\) 1315.53 0.129937
\(469\) −6609.48 −0.650741
\(470\) 3774.53 0.370438
\(471\) 2205.48 0.215761
\(472\) 186.668 0.0182036
\(473\) −1247.90 −0.121308
\(474\) −3975.42 −0.385226
\(475\) −536.158 −0.0517908
\(476\) 1169.60 0.112623
\(477\) 5629.94 0.540414
\(478\) 9803.75 0.938103
\(479\) −5189.88 −0.495056 −0.247528 0.968881i \(-0.579618\pi\)
−0.247528 + 0.968881i \(0.579618\pi\)
\(480\) −310.133 −0.0294907
\(481\) 4839.50 0.458757
\(482\) −74.0066 −0.00699359
\(483\) 1115.49 0.105086
\(484\) 484.000 0.0454545
\(485\) −1544.04 −0.144559
\(486\) 6959.95 0.649608
\(487\) 8633.90 0.803366 0.401683 0.915779i \(-0.368425\pi\)
0.401683 + 0.915779i \(0.368425\pi\)
\(488\) −3850.56 −0.357186
\(489\) −3413.65 −0.315686
\(490\) −471.584 −0.0434776
\(491\) 1163.26 0.106919 0.0534595 0.998570i \(-0.482975\pi\)
0.0534595 + 0.998570i \(0.482975\pi\)
\(492\) 1176.95 0.107848
\(493\) 4551.45 0.415795
\(494\) −606.925 −0.0552770
\(495\) −1278.36 −0.116077
\(496\) 2342.12 0.212025
\(497\) −13396.7 −1.20910
\(498\) 3193.73 0.287378
\(499\) −11567.7 −1.03776 −0.518880 0.854847i \(-0.673651\pi\)
−0.518880 + 0.854847i \(0.673651\pi\)
\(500\) −500.000 −0.0447214
\(501\) −6858.76 −0.611630
\(502\) 1433.97 0.127493
\(503\) −15945.8 −1.41349 −0.706745 0.707468i \(-0.749837\pi\)
−0.706745 + 0.707468i \(0.749837\pi\)
\(504\) 3198.23 0.282660
\(505\) 917.013 0.0808050
\(506\) −736.088 −0.0646702
\(507\) 3870.42 0.339036
\(508\) 8601.63 0.751251
\(509\) −11873.2 −1.03393 −0.516965 0.856006i \(-0.672938\pi\)
−0.516965 + 0.856006i \(0.672938\pi\)
\(510\) −329.516 −0.0286102
\(511\) 8606.15 0.745037
\(512\) −512.000 −0.0441942
\(513\) −2088.60 −0.179754
\(514\) 5776.70 0.495718
\(515\) −635.753 −0.0543974
\(516\) −879.578 −0.0750412
\(517\) −4151.98 −0.353199
\(518\) 11765.4 0.997959
\(519\) −2401.06 −0.203073
\(520\) −565.995 −0.0477317
\(521\) −21901.1 −1.84166 −0.920832 0.389960i \(-0.872489\pi\)
−0.920832 + 0.389960i \(0.872489\pi\)
\(522\) 12445.7 1.04355
\(523\) 21487.0 1.79648 0.898241 0.439504i \(-0.144846\pi\)
0.898241 + 0.439504i \(0.144846\pi\)
\(524\) −11310.0 −0.942898
\(525\) −833.484 −0.0692880
\(526\) 12589.5 1.04359
\(527\) 2488.50 0.205694
\(528\) 341.146 0.0281183
\(529\) −11047.5 −0.907991
\(530\) −2422.22 −0.198518
\(531\) 542.337 0.0443228
\(532\) −1475.51 −0.120247
\(533\) 2147.95 0.174555
\(534\) 4630.40 0.375238
\(535\) 6895.74 0.557250
\(536\) 3074.17 0.247731
\(537\) 1790.47 0.143881
\(538\) 13074.5 1.04773
\(539\) 518.743 0.0414542
\(540\) −1947.74 −0.155218
\(541\) 13344.1 1.06046 0.530229 0.847854i \(-0.322106\pi\)
0.530229 + 0.847854i \(0.322106\pi\)
\(542\) 1883.58 0.149274
\(543\) −5815.69 −0.459623
\(544\) −544.000 −0.0428746
\(545\) −9613.51 −0.755592
\(546\) −943.495 −0.0739521
\(547\) −15760.7 −1.23195 −0.615977 0.787764i \(-0.711239\pi\)
−0.615977 + 0.787764i \(0.711239\pi\)
\(548\) −11588.4 −0.903340
\(549\) −11187.3 −0.869692
\(550\) 550.000 0.0426401
\(551\) −5741.87 −0.443942
\(552\) −518.829 −0.0400051
\(553\) −17638.2 −1.35634
\(554\) −10494.4 −0.804807
\(555\) −3314.71 −0.253516
\(556\) 9639.14 0.735235
\(557\) 13535.3 1.02964 0.514819 0.857299i \(-0.327859\pi\)
0.514819 + 0.857299i \(0.327859\pi\)
\(558\) 6804.71 0.516248
\(559\) −1605.24 −0.121457
\(560\) −1376.00 −0.103834
\(561\) 362.468 0.0272788
\(562\) 8832.14 0.662921
\(563\) 13494.6 1.01017 0.505087 0.863069i \(-0.331461\pi\)
0.505087 + 0.863069i \(0.331461\pi\)
\(564\) −2926.51 −0.218490
\(565\) 3710.04 0.276253
\(566\) −9600.43 −0.712961
\(567\) 7547.19 0.558999
\(568\) 6231.00 0.460294
\(569\) −23878.1 −1.75926 −0.879632 0.475655i \(-0.842211\pi\)
−0.879632 + 0.475655i \(0.842211\pi\)
\(570\) 415.700 0.0305470
\(571\) −9088.62 −0.666107 −0.333053 0.942908i \(-0.608079\pi\)
−0.333053 + 0.942908i \(0.608079\pi\)
\(572\) 622.594 0.0455104
\(573\) 3813.88 0.278058
\(574\) 5221.93 0.379720
\(575\) −836.463 −0.0606660
\(576\) −1487.54 −0.107606
\(577\) 20131.4 1.45248 0.726240 0.687441i \(-0.241266\pi\)
0.726240 + 0.687441i \(0.241266\pi\)
\(578\) −578.000 −0.0415945
\(579\) −1340.17 −0.0961930
\(580\) −5354.64 −0.383344
\(581\) 14170.0 1.01183
\(582\) 1197.14 0.0852632
\(583\) 2664.45 0.189280
\(584\) −4002.85 −0.283629
\(585\) −1644.42 −0.116219
\(586\) −13073.8 −0.921624
\(587\) 16357.3 1.15015 0.575073 0.818102i \(-0.304974\pi\)
0.575073 + 0.818102i \(0.304974\pi\)
\(588\) 365.634 0.0256437
\(589\) −3139.37 −0.219619
\(590\) −233.335 −0.0162818
\(591\) 6838.43 0.475965
\(592\) −5472.27 −0.379914
\(593\) 15948.1 1.10440 0.552202 0.833711i \(-0.313788\pi\)
0.552202 + 0.833711i \(0.313788\pi\)
\(594\) 2142.52 0.147994
\(595\) −1462.00 −0.100733
\(596\) 3000.20 0.206196
\(597\) −3214.59 −0.220376
\(598\) −946.868 −0.0647497
\(599\) 14557.2 0.992971 0.496486 0.868045i \(-0.334624\pi\)
0.496486 + 0.868045i \(0.334624\pi\)
\(600\) 387.666 0.0263773
\(601\) 4953.99 0.336235 0.168118 0.985767i \(-0.446231\pi\)
0.168118 + 0.985767i \(0.446231\pi\)
\(602\) −3902.53 −0.264212
\(603\) 8931.56 0.603186
\(604\) −5813.94 −0.391665
\(605\) −605.000 −0.0406558
\(606\) −710.989 −0.0476600
\(607\) −27024.2 −1.80705 −0.903524 0.428537i \(-0.859029\pi\)
−0.903524 + 0.428537i \(0.859029\pi\)
\(608\) 686.282 0.0457770
\(609\) −8926.02 −0.593925
\(610\) 4813.20 0.319477
\(611\) −5340.91 −0.353633
\(612\) −1580.52 −0.104393
\(613\) 25098.6 1.65371 0.826855 0.562415i \(-0.190128\pi\)
0.826855 + 0.562415i \(0.190128\pi\)
\(614\) −16999.9 −1.11736
\(615\) −1471.19 −0.0964620
\(616\) 1513.60 0.0990014
\(617\) −6876.47 −0.448681 −0.224341 0.974511i \(-0.572023\pi\)
−0.224341 + 0.974511i \(0.572023\pi\)
\(618\) 492.920 0.0320844
\(619\) −5145.30 −0.334099 −0.167049 0.985949i \(-0.553424\pi\)
−0.167049 + 0.985949i \(0.553424\pi\)
\(620\) −2927.65 −0.189641
\(621\) −3258.43 −0.210558
\(622\) 17492.5 1.12763
\(623\) 20544.3 1.32117
\(624\) 438.834 0.0281529
\(625\) 625.000 0.0400000
\(626\) −13156.6 −0.840006
\(627\) −457.270 −0.0291254
\(628\) −4551.31 −0.289199
\(629\) −5814.29 −0.368571
\(630\) −3997.79 −0.252818
\(631\) −26571.9 −1.67640 −0.838202 0.545359i \(-0.816393\pi\)
−0.838202 + 0.545359i \(0.816393\pi\)
\(632\) 8203.80 0.516345
\(633\) 3858.34 0.242267
\(634\) 6975.01 0.436929
\(635\) −10752.0 −0.671939
\(636\) 1878.03 0.117089
\(637\) 667.286 0.0415052
\(638\) 5890.11 0.365504
\(639\) 18103.3 1.12074
\(640\) 640.000 0.0395285
\(641\) −7086.94 −0.436689 −0.218344 0.975872i \(-0.570066\pi\)
−0.218344 + 0.975872i \(0.570066\pi\)
\(642\) −5346.49 −0.328674
\(643\) −22685.5 −1.39134 −0.695668 0.718363i \(-0.744892\pi\)
−0.695668 + 0.718363i \(0.744892\pi\)
\(644\) −2301.95 −0.140854
\(645\) 1099.47 0.0671189
\(646\) 729.175 0.0444102
\(647\) −822.476 −0.0499766 −0.0249883 0.999688i \(-0.507955\pi\)
−0.0249883 + 0.999688i \(0.507955\pi\)
\(648\) −3510.31 −0.212806
\(649\) 256.668 0.0155240
\(650\) 707.493 0.0426926
\(651\) −4880.30 −0.293816
\(652\) 7044.52 0.423136
\(653\) 13293.5 0.796652 0.398326 0.917244i \(-0.369591\pi\)
0.398326 + 0.917244i \(0.369591\pi\)
\(654\) 7453.66 0.445659
\(655\) 14137.5 0.843354
\(656\) −2428.80 −0.144556
\(657\) −11629.7 −0.690591
\(658\) −12984.4 −0.769278
\(659\) 12917.6 0.763576 0.381788 0.924250i \(-0.375308\pi\)
0.381788 + 0.924250i \(0.375308\pi\)
\(660\) −426.432 −0.0251498
\(661\) 9389.06 0.552484 0.276242 0.961088i \(-0.410911\pi\)
0.276242 + 0.961088i \(0.410911\pi\)
\(662\) 17774.7 1.04355
\(663\) 466.261 0.0273123
\(664\) −6590.68 −0.385193
\(665\) 1844.39 0.107552
\(666\) −15898.9 −0.925031
\(667\) −8957.93 −0.520019
\(668\) 14154.0 0.819810
\(669\) 10292.7 0.594829
\(670\) −3842.71 −0.221577
\(671\) −5294.52 −0.304609
\(672\) 1066.86 0.0612425
\(673\) 19822.9 1.13539 0.567695 0.823239i \(-0.307835\pi\)
0.567695 + 0.823239i \(0.307835\pi\)
\(674\) −10075.9 −0.575830
\(675\) 2434.68 0.138831
\(676\) −7987.13 −0.454434
\(677\) −17815.7 −1.01140 −0.505698 0.862711i \(-0.668765\pi\)
−0.505698 + 0.862711i \(0.668765\pi\)
\(678\) −2876.51 −0.162938
\(679\) 5311.51 0.300202
\(680\) 680.000 0.0383482
\(681\) 9137.79 0.514187
\(682\) 3220.42 0.180815
\(683\) 18866.4 1.05696 0.528479 0.848946i \(-0.322763\pi\)
0.528479 + 0.848946i \(0.322763\pi\)
\(684\) 1993.90 0.111460
\(685\) 14485.5 0.807972
\(686\) 13421.5 0.746989
\(687\) 10812.3 0.600456
\(688\) 1815.13 0.100583
\(689\) 3427.41 0.189512
\(690\) 648.537 0.0357817
\(691\) 12346.7 0.679724 0.339862 0.940475i \(-0.389620\pi\)
0.339862 + 0.940475i \(0.389620\pi\)
\(692\) 4954.90 0.272192
\(693\) 4397.56 0.241053
\(694\) 3189.26 0.174442
\(695\) −12048.9 −0.657614
\(696\) 4151.63 0.226102
\(697\) −2580.60 −0.140240
\(698\) −7861.24 −0.426293
\(699\) −2143.53 −0.115988
\(700\) 1720.00 0.0928715
\(701\) −26388.1 −1.42178 −0.710888 0.703306i \(-0.751707\pi\)
−0.710888 + 0.703306i \(0.751707\pi\)
\(702\) 2756.03 0.148176
\(703\) 7335.01 0.393521
\(704\) −704.000 −0.0376889
\(705\) 3658.14 0.195423
\(706\) 12249.8 0.653015
\(707\) −3154.53 −0.167805
\(708\) 180.912 0.00960322
\(709\) 4461.01 0.236300 0.118150 0.992996i \(-0.462304\pi\)
0.118150 + 0.992996i \(0.462304\pi\)
\(710\) −7788.75 −0.411699
\(711\) 23835.0 1.25722
\(712\) −9555.45 −0.502957
\(713\) −4897.75 −0.257254
\(714\) 1133.54 0.0594140
\(715\) −778.243 −0.0407058
\(716\) −3694.86 −0.192854
\(717\) 9501.45 0.494893
\(718\) 14924.1 0.775712
\(719\) 25040.0 1.29879 0.649397 0.760449i \(-0.275021\pi\)
0.649397 + 0.760449i \(0.275021\pi\)
\(720\) 1859.43 0.0962457
\(721\) 2187.00 0.112965
\(722\) 12798.1 0.659690
\(723\) −71.7246 −0.00368944
\(724\) 12001.5 0.616064
\(725\) 6693.31 0.342873
\(726\) 469.076 0.0239794
\(727\) 712.986 0.0363730 0.0181865 0.999835i \(-0.494211\pi\)
0.0181865 + 0.999835i \(0.494211\pi\)
\(728\) 1947.03 0.0991231
\(729\) −5101.97 −0.259207
\(730\) 5003.56 0.253685
\(731\) 1928.57 0.0975798
\(732\) −3731.83 −0.188432
\(733\) −12406.1 −0.625143 −0.312572 0.949894i \(-0.601190\pi\)
−0.312572 + 0.949894i \(0.601190\pi\)
\(734\) −14692.8 −0.738858
\(735\) −457.043 −0.0229364
\(736\) 1070.67 0.0536217
\(737\) 4226.98 0.211266
\(738\) −7056.53 −0.351971
\(739\) −23880.9 −1.18873 −0.594366 0.804195i \(-0.702597\pi\)
−0.594366 + 0.804195i \(0.702597\pi\)
\(740\) 6840.34 0.339805
\(741\) −588.210 −0.0291612
\(742\) 8332.47 0.412257
\(743\) 2448.14 0.120880 0.0604399 0.998172i \(-0.480750\pi\)
0.0604399 + 0.998172i \(0.480750\pi\)
\(744\) 2269.90 0.111853
\(745\) −3750.25 −0.184428
\(746\) 13428.3 0.659043
\(747\) −19148.3 −0.937884
\(748\) −748.000 −0.0365636
\(749\) −23721.4 −1.15722
\(750\) −484.582 −0.0235926
\(751\) 12768.7 0.620422 0.310211 0.950668i \(-0.399600\pi\)
0.310211 + 0.950668i \(0.399600\pi\)
\(752\) 6039.24 0.292857
\(753\) 1389.75 0.0672582
\(754\) 7576.75 0.365954
\(755\) 7267.43 0.350316
\(756\) 6700.26 0.322336
\(757\) −7317.50 −0.351333 −0.175666 0.984450i \(-0.556208\pi\)
−0.175666 + 0.984450i \(0.556208\pi\)
\(758\) 20284.5 0.971985
\(759\) −713.390 −0.0341165
\(760\) −857.853 −0.0409442
\(761\) −5263.65 −0.250732 −0.125366 0.992111i \(-0.540011\pi\)
−0.125366 + 0.992111i \(0.540011\pi\)
\(762\) 8336.40 0.396320
\(763\) 33070.6 1.56912
\(764\) −7870.44 −0.372700
\(765\) 1975.64 0.0933720
\(766\) 2521.26 0.118925
\(767\) 330.165 0.0155431
\(768\) −496.212 −0.0233145
\(769\) 20533.2 0.962867 0.481433 0.876483i \(-0.340116\pi\)
0.481433 + 0.876483i \(0.340116\pi\)
\(770\) −1892.00 −0.0885495
\(771\) 5598.57 0.261514
\(772\) 2765.63 0.128934
\(773\) −20834.2 −0.969410 −0.484705 0.874678i \(-0.661073\pi\)
−0.484705 + 0.874678i \(0.661073\pi\)
\(774\) 5273.60 0.244904
\(775\) 3659.56 0.169620
\(776\) −2470.46 −0.114284
\(777\) 11402.6 0.526470
\(778\) 24013.4 1.10658
\(779\) 3255.55 0.149733
\(780\) −548.542 −0.0251807
\(781\) 8567.62 0.392540
\(782\) 1137.59 0.0520206
\(783\) 26073.7 1.19004
\(784\) −754.535 −0.0343720
\(785\) 5689.14 0.258668
\(786\) −10961.2 −0.497422
\(787\) 1345.92 0.0609619 0.0304809 0.999535i \(-0.490296\pi\)
0.0304809 + 0.999535i \(0.490296\pi\)
\(788\) −14112.0 −0.637969
\(789\) 12201.3 0.550540
\(790\) −10254.8 −0.461833
\(791\) −12762.6 −0.573685
\(792\) −2045.37 −0.0917666
\(793\) −6810.62 −0.304984
\(794\) 22911.0 1.02403
\(795\) −2347.53 −0.104728
\(796\) 6633.72 0.295385
\(797\) 32198.3 1.43102 0.715511 0.698602i \(-0.246194\pi\)
0.715511 + 0.698602i \(0.246194\pi\)
\(798\) −1430.01 −0.0634360
\(799\) 6416.70 0.284113
\(800\) −800.000 −0.0353553
\(801\) −27762.0 −1.22462
\(802\) −23250.6 −1.02370
\(803\) −5503.92 −0.241879
\(804\) 2979.37 0.130690
\(805\) 2877.44 0.125983
\(806\) 4142.59 0.181038
\(807\) 12671.3 0.552729
\(808\) 1467.22 0.0638820
\(809\) 23943.4 1.04055 0.520274 0.853999i \(-0.325830\pi\)
0.520274 + 0.853999i \(0.325830\pi\)
\(810\) 4387.89 0.190339
\(811\) 22846.8 0.989223 0.494611 0.869114i \(-0.335310\pi\)
0.494611 + 0.869114i \(0.335310\pi\)
\(812\) 18420.0 0.796079
\(813\) 1825.50 0.0787491
\(814\) −7524.38 −0.323992
\(815\) −8805.65 −0.378465
\(816\) −527.226 −0.0226184
\(817\) −2432.99 −0.104185
\(818\) −7521.61 −0.321500
\(819\) 5656.81 0.241349
\(820\) 3036.00 0.129295
\(821\) −12883.5 −0.547669 −0.273834 0.961777i \(-0.588292\pi\)
−0.273834 + 0.961777i \(0.588292\pi\)
\(822\) −11231.0 −0.476554
\(823\) 33725.6 1.42844 0.714218 0.699924i \(-0.246783\pi\)
0.714218 + 0.699924i \(0.246783\pi\)
\(824\) −1017.21 −0.0430049
\(825\) 533.041 0.0224947
\(826\) 802.673 0.0338118
\(827\) 31258.0 1.31432 0.657162 0.753750i \(-0.271757\pi\)
0.657162 + 0.753750i \(0.271757\pi\)
\(828\) 3110.69 0.130560
\(829\) −14741.9 −0.617621 −0.308811 0.951124i \(-0.599931\pi\)
−0.308811 + 0.951124i \(0.599931\pi\)
\(830\) 8238.35 0.344527
\(831\) −10170.8 −0.424573
\(832\) −905.591 −0.0377353
\(833\) −801.693 −0.0333458
\(834\) 9341.91 0.387870
\(835\) −17692.5 −0.733260
\(836\) 943.638 0.0390388
\(837\) 14255.8 0.588712
\(838\) −4077.49 −0.168084
\(839\) 17338.9 0.713476 0.356738 0.934204i \(-0.383889\pi\)
0.356738 + 0.934204i \(0.383889\pi\)
\(840\) −1333.57 −0.0547770
\(841\) 47291.6 1.93905
\(842\) 9517.42 0.389539
\(843\) 8559.80 0.349721
\(844\) −7962.19 −0.324727
\(845\) 9983.91 0.406458
\(846\) 17546.2 0.713062
\(847\) 2081.21 0.0844287
\(848\) −3875.56 −0.156942
\(849\) −9304.39 −0.376120
\(850\) −850.000 −0.0342997
\(851\) 11443.4 0.460957
\(852\) 6038.86 0.242826
\(853\) −493.320 −0.0198018 −0.00990091 0.999951i \(-0.503152\pi\)
−0.00990091 + 0.999951i \(0.503152\pi\)
\(854\) −16557.5 −0.663448
\(855\) −2492.37 −0.0996927
\(856\) 11033.2 0.440545
\(857\) −15486.1 −0.617266 −0.308633 0.951181i \(-0.599871\pi\)
−0.308633 + 0.951181i \(0.599871\pi\)
\(858\) 603.396 0.0240089
\(859\) 25326.4 1.00597 0.502983 0.864296i \(-0.332236\pi\)
0.502983 + 0.864296i \(0.332236\pi\)
\(860\) −2268.91 −0.0899641
\(861\) 5060.91 0.200320
\(862\) 8609.26 0.340177
\(863\) 43889.7 1.73120 0.865599 0.500738i \(-0.166938\pi\)
0.865599 + 0.500738i \(0.166938\pi\)
\(864\) −3116.39 −0.122710
\(865\) −6193.62 −0.243456
\(866\) 8487.82 0.333058
\(867\) −560.177 −0.0219430
\(868\) 10071.1 0.393821
\(869\) 11280.2 0.440340
\(870\) −5189.53 −0.202232
\(871\) 5437.38 0.211525
\(872\) −15381.6 −0.597348
\(873\) −7177.58 −0.278264
\(874\) −1435.13 −0.0555421
\(875\) −2150.01 −0.0830668
\(876\) −3879.42 −0.149627
\(877\) 13941.5 0.536796 0.268398 0.963308i \(-0.413506\pi\)
0.268398 + 0.963308i \(0.413506\pi\)
\(878\) 24787.0 0.952757
\(879\) −12670.6 −0.486199
\(880\) 880.000 0.0337100
\(881\) 16445.5 0.628904 0.314452 0.949273i \(-0.398179\pi\)
0.314452 + 0.949273i \(0.398179\pi\)
\(882\) −2192.20 −0.0836906
\(883\) 4162.10 0.158625 0.0793125 0.996850i \(-0.474728\pi\)
0.0793125 + 0.996850i \(0.474728\pi\)
\(884\) −962.191 −0.0366086
\(885\) −226.140 −0.00858938
\(886\) −2614.90 −0.0991528
\(887\) −20012.8 −0.757569 −0.378784 0.925485i \(-0.623658\pi\)
−0.378784 + 0.925485i \(0.623658\pi\)
\(888\) −5303.53 −0.200422
\(889\) 36987.1 1.39540
\(890\) 11944.3 0.449859
\(891\) −4826.68 −0.181481
\(892\) −21240.4 −0.797290
\(893\) −8094.97 −0.303346
\(894\) 2907.69 0.108778
\(895\) 4618.58 0.172494
\(896\) −2201.61 −0.0820876
\(897\) −917.671 −0.0341585
\(898\) −7940.35 −0.295070
\(899\) 39191.3 1.45395
\(900\) −2324.29 −0.0860847
\(901\) −4117.78 −0.152257
\(902\) −3339.60 −0.123278
\(903\) −3782.20 −0.139384
\(904\) 5936.07 0.218397
\(905\) −15001.8 −0.551025
\(906\) −5634.67 −0.206622
\(907\) 31455.2 1.15155 0.575773 0.817610i \(-0.304701\pi\)
0.575773 + 0.817610i \(0.304701\pi\)
\(908\) −18857.1 −0.689200
\(909\) 4262.80 0.155543
\(910\) −2433.78 −0.0886584
\(911\) 33962.2 1.23515 0.617574 0.786513i \(-0.288116\pi\)
0.617574 + 0.786513i \(0.288116\pi\)
\(912\) 665.120 0.0241495
\(913\) −9062.18 −0.328493
\(914\) 35919.4 1.29990
\(915\) 4664.79 0.168539
\(916\) −22312.5 −0.804833
\(917\) −48633.0 −1.75137
\(918\) −3311.17 −0.119047
\(919\) −42646.1 −1.53076 −0.765379 0.643580i \(-0.777448\pi\)
−0.765379 + 0.643580i \(0.777448\pi\)
\(920\) −1338.34 −0.0479607
\(921\) −16475.7 −0.589459
\(922\) 7326.98 0.261715
\(923\) 11021.0 0.393022
\(924\) 1466.93 0.0522278
\(925\) −8550.43 −0.303931
\(926\) −15590.3 −0.553272
\(927\) −2955.35 −0.104710
\(928\) −8567.43 −0.303060
\(929\) −34681.3 −1.22482 −0.612410 0.790541i \(-0.709800\pi\)
−0.612410 + 0.790541i \(0.709800\pi\)
\(930\) −2837.38 −0.100044
\(931\) 1011.37 0.0356031
\(932\) 4423.45 0.155467
\(933\) 16953.1 0.594877
\(934\) 26947.9 0.944070
\(935\) 935.000 0.0327035
\(936\) −2631.07 −0.0918795
\(937\) 6210.98 0.216546 0.108273 0.994121i \(-0.465468\pi\)
0.108273 + 0.994121i \(0.465468\pi\)
\(938\) 13219.0 0.460143
\(939\) −12750.9 −0.443142
\(940\) −7549.06 −0.261939
\(941\) −45461.7 −1.57493 −0.787466 0.616358i \(-0.788607\pi\)
−0.787466 + 0.616358i \(0.788607\pi\)
\(942\) −4410.97 −0.152566
\(943\) 5079.00 0.175392
\(944\) −373.336 −0.0128719
\(945\) −8375.32 −0.288306
\(946\) 2495.80 0.0857774
\(947\) −2420.59 −0.0830609 −0.0415305 0.999137i \(-0.513223\pi\)
−0.0415305 + 0.999137i \(0.513223\pi\)
\(948\) 7950.84 0.272396
\(949\) −7079.97 −0.242177
\(950\) 1072.32 0.0366216
\(951\) 6759.93 0.230500
\(952\) −2339.21 −0.0796367
\(953\) 32037.3 1.08897 0.544486 0.838770i \(-0.316725\pi\)
0.544486 + 0.838770i \(0.316725\pi\)
\(954\) −11259.9 −0.382130
\(955\) 9838.06 0.333353
\(956\) −19607.5 −0.663339
\(957\) 5708.49 0.192820
\(958\) 10379.8 0.350057
\(959\) −49830.1 −1.67789
\(960\) 620.265 0.0208531
\(961\) −8363.14 −0.280727
\(962\) −9678.99 −0.324390
\(963\) 32055.4 1.07266
\(964\) 148.013 0.00494521
\(965\) −3457.03 −0.115322
\(966\) −2230.97 −0.0743068
\(967\) −15002.6 −0.498917 −0.249458 0.968386i \(-0.580253\pi\)
−0.249458 + 0.968386i \(0.580253\pi\)
\(968\) −968.000 −0.0321412
\(969\) 706.690 0.0234284
\(970\) 3088.08 0.102219
\(971\) 59163.1 1.95534 0.977670 0.210146i \(-0.0673940\pi\)
0.977670 + 0.210146i \(0.0673940\pi\)
\(972\) −13919.9 −0.459342
\(973\) 41448.4 1.36565
\(974\) −17267.8 −0.568066
\(975\) 685.677 0.0225223
\(976\) 7701.12 0.252569
\(977\) −51854.7 −1.69803 −0.849017 0.528366i \(-0.822805\pi\)
−0.849017 + 0.528366i \(0.822805\pi\)
\(978\) 6827.30 0.223224
\(979\) −13138.7 −0.428924
\(980\) 943.169 0.0307433
\(981\) −44689.1 −1.45445
\(982\) −2326.52 −0.0756032
\(983\) −19402.6 −0.629548 −0.314774 0.949167i \(-0.601929\pi\)
−0.314774 + 0.949167i \(0.601929\pi\)
\(984\) −2353.90 −0.0762599
\(985\) 17640.0 0.570617
\(986\) −9102.90 −0.294011
\(987\) −12584.0 −0.405830
\(988\) 1213.85 0.0390868
\(989\) −3795.72 −0.122039
\(990\) 2556.72 0.0820786
\(991\) 30543.5 0.979059 0.489530 0.871987i \(-0.337168\pi\)
0.489530 + 0.871987i \(0.337168\pi\)
\(992\) −4684.24 −0.149924
\(993\) 17226.6 0.550523
\(994\) 26793.4 0.854963
\(995\) −8292.16 −0.264200
\(996\) −6387.45 −0.203207
\(997\) −34937.2 −1.10980 −0.554900 0.831917i \(-0.687244\pi\)
−0.554900 + 0.831917i \(0.687244\pi\)
\(998\) 23135.4 0.733807
\(999\) −33308.1 −1.05488
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1870.4.a.j.1.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1870.4.a.j.1.5 10 1.1 even 1 trivial