Properties

Label 187.3.q.a.138.18
Level $187$
Weight $3$
Character 187.138
Analytic conductor $5.095$
Analytic rank $0$
Dimension $544$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [187,3,Mod(2,187)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("187.2"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(187, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([4, 35])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 187 = 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 187.q (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.09538094354\)
Analytic rank: \(0\)
Dimension: \(544\)
Relative dimension: \(34\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 138.18
Character \(\chi\) \(=\) 187.138
Dual form 187.3.q.a.145.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.144987 + 0.0738746i) q^{2} +(-3.69599 - 0.887328i) q^{3} +(-2.33558 - 3.21465i) q^{4} +(0.691295 - 0.0544061i) q^{5} +(-0.470320 - 0.401691i) q^{6} +(-4.14682 + 0.995564i) q^{7} +(-0.202970 - 1.28150i) q^{8} +(4.85392 + 2.47320i) q^{9} +(0.104248 + 0.0431810i) q^{10} +(9.93913 + 4.71315i) q^{11} +(5.77982 + 13.9537i) q^{12} +(5.21929 + 16.0633i) q^{13} +(-0.674783 - 0.162001i) q^{14} +(-2.60329 - 0.412321i) q^{15} +(-4.84630 + 14.9154i) q^{16} +(-16.9018 + 1.82481i) q^{17} +(0.521050 + 0.717164i) q^{18} +(7.19575 - 1.13970i) q^{19} +(-1.78947 - 2.09520i) q^{20} +16.2100 q^{21} +(1.09286 + 1.41760i) q^{22} +(15.4753 + 6.41008i) q^{23} +(-0.386938 + 4.91651i) q^{24} +(-24.2173 + 3.83564i) q^{25} +(-0.429942 + 2.71455i) q^{26} +(10.2673 + 8.76910i) q^{27} +(12.8856 + 11.0053i) q^{28} +(-10.4401 + 17.0366i) q^{29} +(-0.346984 - 0.252099i) q^{30} +(6.11382 + 7.15837i) q^{31} +(-5.47433 + 5.47433i) q^{32} +(-32.5528 - 26.2390i) q^{33} +(-2.58535 - 0.984039i) q^{34} +(-2.81251 + 0.913840i) q^{35} +(-3.38626 - 21.3800i) q^{36} +(-1.27153 + 2.07496i) q^{37} +(1.12749 + 0.366342i) q^{38} +(-5.03700 - 64.0011i) q^{39} +(-0.210033 - 0.874852i) q^{40} +(-38.6929 - 63.1411i) q^{41} +(2.35024 + 1.19751i) q^{42} +(27.3417 + 27.3417i) q^{43} +(-8.06249 - 42.9587i) q^{44} +(3.49005 + 1.44563i) q^{45} +(1.77018 + 2.07261i) q^{46} +(-10.7190 + 14.7534i) q^{47} +(31.1467 - 50.8268i) q^{48} +(-27.4543 + 13.9887i) q^{49} +(-3.79455 - 1.23292i) q^{50} +(64.0880 + 8.25295i) q^{51} +(39.4479 - 54.2953i) q^{52} +(-27.6693 + 54.3040i) q^{53} +(0.840812 + 2.02990i) q^{54} +(7.12729 + 2.71743i) q^{55} +(2.11749 + 5.11208i) q^{56} +(-27.6067 - 2.17269i) q^{57} +(-2.77225 + 1.69884i) q^{58} +(3.04505 - 19.2257i) q^{59} +(4.75473 + 9.33168i) q^{60} +(49.9327 - 58.4637i) q^{61} +(0.357604 + 1.48953i) q^{62} +(-22.5906 - 5.42352i) q^{63} +(58.4634 - 18.9959i) q^{64} +(4.48201 + 10.8205i) q^{65} +(-2.78134 - 6.20915i) q^{66} -124.848 q^{67} +(45.3415 + 50.0712i) q^{68} +(-51.5087 - 37.4232i) q^{69} +(-0.475288 - 0.0752782i) q^{70} +(8.91029 + 113.216i) q^{71} +(2.18420 - 6.72229i) q^{72} +(-18.9220 + 30.8778i) q^{73} +(-0.337643 + 0.206908i) q^{74} +(92.9103 + 7.31220i) q^{75} +(-20.4700 - 20.4700i) q^{76} +(-45.9080 - 9.64955i) q^{77} +(3.99776 - 9.65145i) q^{78} +(56.9495 + 4.48202i) q^{79} +(-2.53873 + 10.5746i) q^{80} +(-58.9854 - 81.1864i) q^{81} +(-0.945449 - 12.0131i) q^{82} +(29.2698 + 57.4452i) q^{83} +(-37.8597 - 52.1094i) q^{84} +(-11.5848 + 2.18104i) q^{85} +(1.94434 + 5.98405i) q^{86} +(53.7034 - 53.7034i) q^{87} +(4.02256 - 13.6936i) q^{88} +106.211i q^{89} +(0.399217 + 0.467423i) q^{90} +(-37.6355 - 61.4156i) q^{91} +(-15.5376 - 64.7188i) q^{92} +(-16.2448 - 31.8822i) q^{93} +(-2.64402 + 1.34720i) q^{94} +(4.91238 - 1.17936i) q^{95} +(25.0906 - 15.3755i) q^{96} +(19.3764 - 16.5490i) q^{97} -5.01394 q^{98} +(36.5872 + 47.4587i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 544 q - 20 q^{2} - 12 q^{3} - 20 q^{5} - 20 q^{6} - 20 q^{7} - 20 q^{8} + 36 q^{9} + 28 q^{11} - 200 q^{12} + 36 q^{14} + 108 q^{15} + 424 q^{16} - 180 q^{17} - 40 q^{18} - 20 q^{19} - 140 q^{20} + 32 q^{22}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/187\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(122\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.144987 + 0.0738746i 0.0724936 + 0.0369373i 0.489861 0.871800i \(-0.337047\pi\)
−0.417368 + 0.908738i \(0.637047\pi\)
\(3\) −3.69599 0.887328i −1.23200 0.295776i −0.435372 0.900251i \(-0.643383\pi\)
−0.796624 + 0.604475i \(0.793383\pi\)
\(4\) −2.33558 3.21465i −0.583894 0.803662i
\(5\) 0.691295 0.0544061i 0.138259 0.0108812i −0.00914076 0.999958i \(-0.502910\pi\)
0.147400 + 0.989077i \(0.452910\pi\)
\(6\) −0.470320 0.401691i −0.0783866 0.0669485i
\(7\) −4.14682 + 0.995564i −0.592403 + 0.142223i −0.518552 0.855046i \(-0.673529\pi\)
−0.0738508 + 0.997269i \(0.523529\pi\)
\(8\) −0.202970 1.28150i −0.0253712 0.160188i
\(9\) 4.85392 + 2.47320i 0.539325 + 0.274800i
\(10\) 0.104248 + 0.0431810i 0.0104248 + 0.00431810i
\(11\) 9.93913 + 4.71315i 0.903557 + 0.428468i
\(12\) 5.77982 + 13.9537i 0.481652 + 1.16281i
\(13\) 5.21929 + 16.0633i 0.401484 + 1.23564i 0.923796 + 0.382886i \(0.125070\pi\)
−0.522312 + 0.852755i \(0.674930\pi\)
\(14\) −0.674783 0.162001i −0.0481988 0.0115715i
\(15\) −2.60329 0.412321i −0.173553 0.0274881i
\(16\) −4.84630 + 14.9154i −0.302894 + 0.932211i
\(17\) −16.9018 + 1.82481i −0.994222 + 0.107342i
\(18\) 0.521050 + 0.717164i 0.0289472 + 0.0398424i
\(19\) 7.19575 1.13970i 0.378724 0.0599840i 0.0358294 0.999358i \(-0.488593\pi\)
0.342894 + 0.939374i \(0.388593\pi\)
\(20\) −1.78947 2.09520i −0.0894734 0.104760i
\(21\) 16.2100 0.771905
\(22\) 1.09286 + 1.41760i 0.0496756 + 0.0644362i
\(23\) 15.4753 + 6.41008i 0.672839 + 0.278699i 0.692830 0.721101i \(-0.256364\pi\)
−0.0199908 + 0.999800i \(0.506364\pi\)
\(24\) −0.386938 + 4.91651i −0.0161224 + 0.204855i
\(25\) −24.2173 + 3.83564i −0.968691 + 0.153426i
\(26\) −0.429942 + 2.71455i −0.0165362 + 0.104406i
\(27\) 10.2673 + 8.76910i 0.380270 + 0.324781i
\(28\) 12.8856 + 11.0053i 0.460200 + 0.393048i
\(29\) −10.4401 + 17.0366i −0.360002 + 0.587470i −0.980448 0.196780i \(-0.936952\pi\)
0.620446 + 0.784249i \(0.286952\pi\)
\(30\) −0.346984 0.252099i −0.0115661 0.00840329i
\(31\) 6.11382 + 7.15837i 0.197220 + 0.230915i 0.850200 0.526461i \(-0.176481\pi\)
−0.652979 + 0.757376i \(0.726481\pi\)
\(32\) −5.47433 + 5.47433i −0.171073 + 0.171073i
\(33\) −32.5528 26.2390i −0.986448 0.795122i
\(34\) −2.58535 0.984039i −0.0760396 0.0289423i
\(35\) −2.81251 + 0.913840i −0.0803575 + 0.0261097i
\(36\) −3.38626 21.3800i −0.0940627 0.593889i
\(37\) −1.27153 + 2.07496i −0.0343658 + 0.0560799i −0.869362 0.494176i \(-0.835470\pi\)
0.834996 + 0.550256i \(0.185470\pi\)
\(38\) 1.12749 + 0.366342i 0.0296707 + 0.00964059i
\(39\) −5.03700 64.0011i −0.129154 1.64105i
\(40\) −0.210033 0.874852i −0.00525083 0.0218713i
\(41\) −38.6929 63.1411i −0.943729 1.54003i −0.838027 0.545628i \(-0.816291\pi\)
−0.105702 0.994398i \(-0.533709\pi\)
\(42\) 2.35024 + 1.19751i 0.0559581 + 0.0285121i
\(43\) 27.3417 + 27.3417i 0.635854 + 0.635854i 0.949530 0.313676i \(-0.101561\pi\)
−0.313676 + 0.949530i \(0.601561\pi\)
\(44\) −8.06249 42.9587i −0.183238 0.976334i
\(45\) 3.49005 + 1.44563i 0.0775566 + 0.0321250i
\(46\) 1.77018 + 2.07261i 0.0384821 + 0.0450568i
\(47\) −10.7190 + 14.7534i −0.228064 + 0.313903i −0.907678 0.419667i \(-0.862147\pi\)
0.679615 + 0.733569i \(0.262147\pi\)
\(48\) 31.1467 50.8268i 0.648890 1.05889i
\(49\) −27.4543 + 13.9887i −0.560293 + 0.285483i
\(50\) −3.79455 1.23292i −0.0758910 0.0246585i
\(51\) 64.0880 + 8.25295i 1.25663 + 0.161822i
\(52\) 39.4479 54.2953i 0.758613 1.04414i
\(53\) −27.6693 + 54.3040i −0.522062 + 1.02460i 0.467968 + 0.883746i \(0.344986\pi\)
−0.990030 + 0.140859i \(0.955014\pi\)
\(54\) 0.840812 + 2.02990i 0.0155706 + 0.0375907i
\(55\) 7.12729 + 2.71743i 0.129587 + 0.0494077i
\(56\) 2.11749 + 5.11208i 0.0378124 + 0.0912872i
\(57\) −27.6067 2.17269i −0.484328 0.0381175i
\(58\) −2.77225 + 1.69884i −0.0477974 + 0.0292903i
\(59\) 3.04505 19.2257i 0.0516110 0.325859i −0.948352 0.317221i \(-0.897250\pi\)
0.999963 0.00863815i \(-0.00274964\pi\)
\(60\) 4.75473 + 9.33168i 0.0792454 + 0.155528i
\(61\) 49.9327 58.4637i 0.818569 0.958421i −0.181118 0.983461i \(-0.557971\pi\)
0.999686 + 0.0250404i \(0.00797145\pi\)
\(62\) 0.357604 + 1.48953i 0.00576781 + 0.0240246i
\(63\) −22.5906 5.42352i −0.358581 0.0860876i
\(64\) 58.4634 18.9959i 0.913490 0.296811i
\(65\) 4.48201 + 10.8205i 0.0689540 + 0.166470i
\(66\) −2.78134 6.20915i −0.0421415 0.0940780i
\(67\) −124.848 −1.86341 −0.931704 0.363219i \(-0.881678\pi\)
−0.931704 + 0.363219i \(0.881678\pi\)
\(68\) 45.3415 + 50.0712i 0.666787 + 0.736342i
\(69\) −51.5087 37.4232i −0.746503 0.542366i
\(70\) −0.475288 0.0752782i −0.00678982 0.00107540i
\(71\) 8.91029 + 113.216i 0.125497 + 1.59459i 0.661216 + 0.750195i \(0.270041\pi\)
−0.535719 + 0.844396i \(0.679959\pi\)
\(72\) 2.18420 6.72229i 0.0303362 0.0933651i
\(73\) −18.9220 + 30.8778i −0.259205 + 0.422984i −0.955597 0.294678i \(-0.904788\pi\)
0.696392 + 0.717662i \(0.254788\pi\)
\(74\) −0.337643 + 0.206908i −0.00456274 + 0.00279605i
\(75\) 92.9103 + 7.31220i 1.23880 + 0.0974960i
\(76\) −20.4700 20.4700i −0.269341 0.269341i
\(77\) −45.9080 9.64955i −0.596208 0.125319i
\(78\) 3.99776 9.65145i 0.0512533 0.123736i
\(79\) 56.9495 + 4.48202i 0.720879 + 0.0567344i 0.433591 0.901110i \(-0.357246\pi\)
0.287288 + 0.957844i \(0.407246\pi\)
\(80\) −2.53873 + 10.5746i −0.0317342 + 0.132182i
\(81\) −58.9854 81.1864i −0.728214 1.00230i
\(82\) −0.945449 12.0131i −0.0115299 0.146501i
\(83\) 29.2698 + 57.4452i 0.352648 + 0.692110i 0.997383 0.0722955i \(-0.0230325\pi\)
−0.644735 + 0.764406i \(0.723032\pi\)
\(84\) −37.8597 52.1094i −0.450711 0.620350i
\(85\) −11.5848 + 2.18104i −0.136292 + 0.0256593i
\(86\) 1.94434 + 5.98405i 0.0226086 + 0.0695820i
\(87\) 53.7034 53.7034i 0.617280 0.617280i
\(88\) 4.02256 13.6936i 0.0457109 0.155609i
\(89\) 106.211i 1.19338i 0.802470 + 0.596692i \(0.203519\pi\)
−0.802470 + 0.596692i \(0.796481\pi\)
\(90\) 0.399217 + 0.467423i 0.00443575 + 0.00519359i
\(91\) −37.6355 61.4156i −0.413577 0.674897i
\(92\) −15.5376 64.7188i −0.168887 0.703466i
\(93\) −16.2448 31.8822i −0.174675 0.342820i
\(94\) −2.64402 + 1.34720i −0.0281279 + 0.0143319i
\(95\) 4.91238 1.17936i 0.0517092 0.0124143i
\(96\) 25.0906 15.3755i 0.261360 0.160162i
\(97\) 19.3764 16.5490i 0.199757 0.170608i −0.543943 0.839122i \(-0.683069\pi\)
0.743700 + 0.668514i \(0.233069\pi\)
\(98\) −5.01394 −0.0511626
\(99\) 36.5872 + 47.4587i 0.369568 + 0.479381i
\(100\) 68.8916 + 68.8916i 0.688916 + 0.688916i
\(101\) −145.036 + 47.1251i −1.43600 + 0.466585i −0.920648 0.390393i \(-0.872339\pi\)
−0.515353 + 0.856978i \(0.672339\pi\)
\(102\) 8.68225 + 5.93105i 0.0851201 + 0.0581475i
\(103\) −20.4080 + 14.8273i −0.198136 + 0.143954i −0.682430 0.730951i \(-0.739077\pi\)
0.484294 + 0.874905i \(0.339077\pi\)
\(104\) 19.5258 9.94889i 0.187748 0.0956624i
\(105\) 11.2059 0.881922i 0.106723 0.00839926i
\(106\) −8.02338 + 5.82933i −0.0756923 + 0.0549937i
\(107\) −129.120 30.9990i −1.20673 0.289710i −0.420297 0.907386i \(-0.638074\pi\)
−0.786433 + 0.617676i \(0.788074\pi\)
\(108\) 4.20949 53.4866i 0.0389767 0.495246i
\(109\) −61.4264 25.4436i −0.563545 0.233428i 0.0826784 0.996576i \(-0.473653\pi\)
−0.646223 + 0.763148i \(0.723653\pi\)
\(110\) 0.832617 + 0.920518i 0.00756924 + 0.00836834i
\(111\) 6.54074 6.54074i 0.0589256 0.0589256i
\(112\) 5.24753 66.6762i 0.0468530 0.595323i
\(113\) 65.9304 + 107.589i 0.583455 + 0.952112i 0.999093 + 0.0425816i \(0.0135582\pi\)
−0.415638 + 0.909530i \(0.636442\pi\)
\(114\) −3.84211 2.35445i −0.0337027 0.0206531i
\(115\) 11.0467 + 3.58930i 0.0960586 + 0.0312113i
\(116\) 79.1503 6.22926i 0.682330 0.0537005i
\(117\) −14.3937 + 90.8785i −0.123023 + 0.776740i
\(118\) 1.86178 2.56252i 0.0157778 0.0217163i
\(119\) 68.2719 24.3940i 0.573714 0.204991i
\(120\) 3.41981i 0.0284984i
\(121\) 76.5725 + 93.6891i 0.632830 + 0.774290i
\(122\) 11.5586 4.78772i 0.0947425 0.0392436i
\(123\) 86.9817 + 267.702i 0.707168 + 2.17644i
\(124\) 8.73231 36.3727i 0.0704219 0.293328i
\(125\) −33.3894 + 8.01609i −0.267115 + 0.0641287i
\(126\) −2.87468 2.45521i −0.0228150 0.0194858i
\(127\) 41.0604 20.9213i 0.323310 0.164735i −0.284801 0.958587i \(-0.591927\pi\)
0.608111 + 0.793852i \(0.291927\pi\)
\(128\) 40.4660 + 6.40918i 0.316141 + 0.0500717i
\(129\) −76.7936 125.316i −0.595299 0.971439i
\(130\) −0.149529 + 1.89995i −0.00115022 + 0.0146150i
\(131\) 21.3691 8.85138i 0.163123 0.0675678i −0.299628 0.954056i \(-0.596862\pi\)
0.462751 + 0.886488i \(0.346862\pi\)
\(132\) −8.31958 + 165.929i −0.0630272 + 1.25704i
\(133\) −28.7049 + 11.8899i −0.215826 + 0.0893981i
\(134\) −18.1014 9.22312i −0.135085 0.0688293i
\(135\) 7.57482 + 5.50343i 0.0561098 + 0.0407661i
\(136\) 5.76904 + 21.2893i 0.0424194 + 0.156539i
\(137\) −14.3974 + 44.3106i −0.105091 + 0.323435i −0.989752 0.142799i \(-0.954390\pi\)
0.884661 + 0.466234i \(0.154390\pi\)
\(138\) −4.70347 9.23108i −0.0340831 0.0668919i
\(139\) −165.889 101.657i −1.19345 0.731344i −0.223509 0.974702i \(-0.571751\pi\)
−0.969937 + 0.243358i \(0.921751\pi\)
\(140\) 9.50651 + 6.90688i 0.0679036 + 0.0493349i
\(141\) 52.7084 45.0172i 0.373819 0.319271i
\(142\) −7.07191 + 17.0731i −0.0498022 + 0.120233i
\(143\) −23.8336 + 184.255i −0.166669 + 1.28849i
\(144\) −60.4123 + 60.4123i −0.419530 + 0.419530i
\(145\) −6.29026 + 12.3453i −0.0433811 + 0.0851402i
\(146\) −5.02453 + 3.07904i −0.0344146 + 0.0210893i
\(147\) 113.883 27.3410i 0.774718 0.185993i
\(148\) 9.64001 0.758686i 0.0651352 0.00512625i
\(149\) −18.3738 + 56.5488i −0.123314 + 0.379522i −0.993590 0.113042i \(-0.963940\pi\)
0.870276 + 0.492565i \(0.163940\pi\)
\(150\) 12.9306 + 7.92389i 0.0862041 + 0.0528259i
\(151\) −4.48113 + 0.709741i −0.0296763 + 0.00470027i −0.171255 0.985227i \(-0.554782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(152\) −2.92104 8.99003i −0.0192174 0.0591450i
\(153\) −86.5531 32.9439i −0.565706 0.215320i
\(154\) −5.94322 4.79050i −0.0385923 0.0311071i
\(155\) 4.61591 + 4.61591i 0.0297801 + 0.0297801i
\(156\) −193.977 + 165.672i −1.24344 + 1.06200i
\(157\) 45.1278 62.1131i 0.287438 0.395625i −0.640742 0.767757i \(-0.721373\pi\)
0.928180 + 0.372132i \(0.121373\pi\)
\(158\) 7.92583 + 4.85696i 0.0501635 + 0.0307402i
\(159\) 150.451 176.155i 0.946232 1.10790i
\(160\) −3.48654 + 4.08221i −0.0217909 + 0.0255138i
\(161\) −70.5549 11.1748i −0.438229 0.0694087i
\(162\) −2.55450 16.1285i −0.0157685 0.0995587i
\(163\) 251.205 + 19.7703i 1.54113 + 0.121290i 0.820347 0.571866i \(-0.193780\pi\)
0.720788 + 0.693156i \(0.243780\pi\)
\(164\) −112.606 + 271.855i −0.686622 + 1.65765i
\(165\) −23.9311 16.3678i −0.145037 0.0991989i
\(166\) 10.4911i 0.0631994i
\(167\) 105.953 90.4927i 0.634451 0.541873i −0.273009 0.962012i \(-0.588019\pi\)
0.907460 + 0.420139i \(0.138019\pi\)
\(168\) −3.29014 20.7731i −0.0195842 0.123650i
\(169\) −94.0657 + 68.3427i −0.556602 + 0.404395i
\(170\) −1.84077 0.539602i −0.0108281 0.00317413i
\(171\) 37.7463 + 12.2645i 0.220739 + 0.0717224i
\(172\) 24.0352 151.753i 0.139740 0.882282i
\(173\) −11.2682 + 46.9354i −0.0651340 + 0.271303i −0.995428 0.0955112i \(-0.969551\pi\)
0.930294 + 0.366814i \(0.119551\pi\)
\(174\) 11.7536 3.81898i 0.0675496 0.0219482i
\(175\) 96.6061 40.0156i 0.552035 0.228660i
\(176\) −118.466 + 125.404i −0.673104 + 0.712526i
\(177\) −28.3140 + 68.3559i −0.159966 + 0.386192i
\(178\) −7.84632 + 15.3993i −0.0440804 + 0.0865127i
\(179\) 189.502 30.0142i 1.05867 0.167677i 0.397264 0.917704i \(-0.369960\pi\)
0.661407 + 0.750028i \(0.269960\pi\)
\(180\) −3.50410 14.5956i −0.0194672 0.0810869i
\(181\) 213.953 250.507i 1.18206 1.38401i 0.275842 0.961203i \(-0.411043\pi\)
0.906218 0.422811i \(-0.138957\pi\)
\(182\) −0.919613 11.6848i −0.00505282 0.0642021i
\(183\) −236.427 + 171.774i −1.29195 + 0.938658i
\(184\) 5.07350 21.1327i 0.0275734 0.114851i
\(185\) −0.766115 + 1.50358i −0.00414116 + 0.00812749i
\(186\) 5.82259i 0.0313043i
\(187\) −176.590 61.5236i −0.944329 0.329003i
\(188\) 72.4621 0.385437
\(189\) −51.3068 26.1421i −0.271465 0.138318i
\(190\) 0.799356 + 0.191909i 0.00420714 + 0.00101004i
\(191\) −19.1414 26.3459i −0.100217 0.137937i 0.755963 0.654614i \(-0.227169\pi\)
−0.856180 + 0.516677i \(0.827169\pi\)
\(192\) −232.936 + 18.3324i −1.21321 + 0.0954814i
\(193\) 73.6728 + 62.9225i 0.381724 + 0.326023i 0.819519 0.573051i \(-0.194240\pi\)
−0.437795 + 0.899075i \(0.644240\pi\)
\(194\) 4.03188 0.967970i 0.0207829 0.00498953i
\(195\) −6.96410 43.9696i −0.0357133 0.225485i
\(196\) 109.090 + 55.5843i 0.556584 + 0.283594i
\(197\) −169.807 70.3362i −0.861963 0.357037i −0.0924879 0.995714i \(-0.529482\pi\)
−0.769475 + 0.638677i \(0.779482\pi\)
\(198\) 1.79868 + 9.58377i 0.00908426 + 0.0484029i
\(199\) −124.567 300.732i −0.625967 1.51122i −0.844593 0.535409i \(-0.820158\pi\)
0.218626 0.975809i \(-0.429842\pi\)
\(200\) 9.83075 + 30.2559i 0.0491537 + 0.151280i
\(201\) 461.438 + 110.781i 2.29571 + 0.551152i
\(202\) −24.5097 3.88196i −0.121335 0.0192176i
\(203\) 26.3320 81.0416i 0.129714 0.399219i
\(204\) −123.152 225.296i −0.603687 1.10439i
\(205\) −30.1835 41.5440i −0.147236 0.202653i
\(206\) −4.05426 + 0.642131i −0.0196809 + 0.00311714i
\(207\) 59.2625 + 69.3875i 0.286292 + 0.335205i
\(208\) −264.885 −1.27349
\(209\) 76.8910 + 22.5871i 0.367900 + 0.108072i
\(210\) 1.68986 + 0.699963i 0.00804696 + 0.00333316i
\(211\) 20.8144 264.473i 0.0986466 1.25342i −0.725968 0.687729i \(-0.758608\pi\)
0.824614 0.565696i \(-0.191392\pi\)
\(212\) 239.192 37.8843i 1.12826 0.178699i
\(213\) 67.5274 426.352i 0.317030 2.00165i
\(214\) −16.4307 14.0332i −0.0767790 0.0655755i
\(215\) 20.3887 + 17.4136i 0.0948313 + 0.0809936i
\(216\) 9.15365 14.9374i 0.0423780 0.0691546i
\(217\) −32.4796 23.5978i −0.149675 0.108746i
\(218\) −7.02640 8.22686i −0.0322312 0.0377379i
\(219\) 97.3341 97.3341i 0.444448 0.444448i
\(220\) −7.91077 29.2585i −0.0359581 0.132993i
\(221\) −117.528 261.975i −0.531800 1.18541i
\(222\) 1.43152 0.465129i 0.00644828 0.00209517i
\(223\) 13.0786 + 82.5748i 0.0586483 + 0.370291i 0.999504 + 0.0314839i \(0.0100233\pi\)
−0.940856 + 0.338807i \(0.889977\pi\)
\(224\) 17.2510 28.1511i 0.0770135 0.125675i
\(225\) −127.035 41.2762i −0.564601 0.183450i
\(226\) 1.61099 + 20.4695i 0.00712827 + 0.0905732i
\(227\) −9.57940 39.9011i −0.0422000 0.175776i 0.947290 0.320378i \(-0.103810\pi\)
−0.989490 + 0.144602i \(0.953810\pi\)
\(228\) 57.4931 + 93.8203i 0.252163 + 0.411492i
\(229\) 202.412 + 103.134i 0.883896 + 0.450368i 0.836156 0.548492i \(-0.184798\pi\)
0.0477405 + 0.998860i \(0.484798\pi\)
\(230\) 1.33648 + 1.33648i 0.00581077 + 0.00581077i
\(231\) 161.113 + 76.4001i 0.697460 + 0.330736i
\(232\) 23.9514 + 9.92101i 0.103239 + 0.0427630i
\(233\) 11.8736 + 13.9022i 0.0509596 + 0.0596660i 0.785300 0.619115i \(-0.212509\pi\)
−0.734341 + 0.678781i \(0.762509\pi\)
\(234\) −8.80053 + 12.1129i −0.0376091 + 0.0517645i
\(235\) −6.60731 + 10.7821i −0.0281162 + 0.0458815i
\(236\) −68.9157 + 35.1143i −0.292016 + 0.148789i
\(237\) −206.508 67.0984i −0.871340 0.283115i
\(238\) 11.7006 + 1.50675i 0.0491624 + 0.00633090i
\(239\) −45.3678 + 62.4434i −0.189823 + 0.261269i −0.893312 0.449437i \(-0.851625\pi\)
0.703489 + 0.710707i \(0.251625\pi\)
\(240\) 18.7663 36.8309i 0.0781928 0.153462i
\(241\) −142.172 343.234i −0.589925 1.42421i −0.883574 0.468292i \(-0.844869\pi\)
0.293648 0.955914i \(-0.405131\pi\)
\(242\) 4.18077 + 19.2405i 0.0172759 + 0.0795061i
\(243\) 99.4660 + 240.132i 0.409325 + 0.988198i
\(244\) −304.562 23.9695i −1.24820 0.0982358i
\(245\) −18.2180 + 11.1640i −0.0743591 + 0.0455673i
\(246\) −7.16517 + 45.2391i −0.0291267 + 0.183899i
\(247\) 55.8640 + 109.639i 0.226170 + 0.443884i
\(248\) 7.93253 9.28780i 0.0319860 0.0374508i
\(249\) −57.2080 238.289i −0.229751 0.956982i
\(250\) −5.43322 1.30440i −0.0217329 0.00521760i
\(251\) −7.25375 + 2.35689i −0.0288994 + 0.00938998i −0.323431 0.946252i \(-0.604836\pi\)
0.294532 + 0.955642i \(0.404836\pi\)
\(252\) 35.3274 + 85.2878i 0.140188 + 0.338444i
\(253\) 123.599 + 136.648i 0.488535 + 0.540110i
\(254\) 7.49879 0.0295228
\(255\) 44.7527 + 2.21844i 0.175501 + 0.00869978i
\(256\) −193.534 140.611i −0.755993 0.549261i
\(257\) −414.095 65.5861i −1.61126 0.255199i −0.715132 0.698989i \(-0.753634\pi\)
−0.896131 + 0.443790i \(0.853634\pi\)
\(258\) −1.87643 23.8423i −0.00727297 0.0924119i
\(259\) 3.20708 9.87036i 0.0123825 0.0381095i
\(260\) 24.3161 39.6803i 0.0935235 0.152616i
\(261\) −92.8102 + 56.8741i −0.355594 + 0.217909i
\(262\) 3.75214 + 0.295300i 0.0143212 + 0.00112710i
\(263\) −17.8793 17.8793i −0.0679821 0.0679821i 0.672298 0.740280i \(-0.265307\pi\)
−0.740280 + 0.672298i \(0.765307\pi\)
\(264\) −27.0181 + 47.0421i −0.102341 + 0.178190i
\(265\) −16.1732 + 39.0455i −0.0610308 + 0.147341i
\(266\) −5.04020 0.396672i −0.0189481 0.00149125i
\(267\) 94.2442 392.555i 0.352975 1.47025i
\(268\) 291.593 + 401.343i 1.08803 + 1.49755i
\(269\) −19.1061 242.766i −0.0710265 0.902477i −0.924461 0.381277i \(-0.875485\pi\)
0.853435 0.521200i \(-0.174515\pi\)
\(270\) 0.691687 + 1.35751i 0.00256181 + 0.00502783i
\(271\) 222.425 + 306.141i 0.820755 + 1.12967i 0.989574 + 0.144026i \(0.0460048\pi\)
−0.168819 + 0.985647i \(0.553995\pi\)
\(272\) 54.6933 260.940i 0.201078 0.959338i
\(273\) 84.6047 + 260.387i 0.309907 + 0.953797i
\(274\) −5.36087 + 5.36087i −0.0195652 + 0.0195652i
\(275\) −258.777 76.0167i −0.941006 0.276424i
\(276\) 252.987i 0.916620i
\(277\) 256.563 + 300.396i 0.926219 + 1.08446i 0.996216 + 0.0869155i \(0.0277010\pi\)
−0.0699971 + 0.997547i \(0.522299\pi\)
\(278\) −16.5419 26.9939i −0.0595032 0.0971004i
\(279\) 11.9720 + 49.8669i 0.0429103 + 0.178734i
\(280\) 1.74194 + 3.41875i 0.00622122 + 0.0122098i
\(281\) −176.018 + 89.6857i −0.626399 + 0.319166i −0.738218 0.674562i \(-0.764332\pi\)
0.111819 + 0.993729i \(0.464332\pi\)
\(282\) 10.9677 2.63311i 0.0388925 0.00933726i
\(283\) −252.193 + 154.544i −0.891142 + 0.546092i −0.891049 0.453908i \(-0.850030\pi\)
−9.30988e−5 1.00000i \(0.500030\pi\)
\(284\) 343.139 293.068i 1.20824 1.03193i
\(285\) −19.2026 −0.0673775
\(286\) −17.0673 + 24.9539i −0.0596760 + 0.0872513i
\(287\) 223.313 + 223.313i 0.778096 + 0.778096i
\(288\) −40.1111 + 13.0329i −0.139275 + 0.0452531i
\(289\) 282.340 61.6851i 0.976955 0.213443i
\(290\) −1.82401 + 1.32522i −0.00628970 + 0.00456974i
\(291\) −86.2994 + 43.9718i −0.296562 + 0.151106i
\(292\) 143.455 11.2902i 0.491284 0.0386649i
\(293\) −441.019 + 320.419i −1.50519 + 1.09358i −0.536928 + 0.843628i \(0.680415\pi\)
−0.968258 + 0.249953i \(0.919585\pi\)
\(294\) 18.5315 + 4.44901i 0.0630321 + 0.0151327i
\(295\) 1.05903 13.4563i 0.00358994 0.0456145i
\(296\) 2.91714 + 1.20832i 0.00985520 + 0.00408216i
\(297\) 60.7179 + 135.548i 0.204437 + 0.456392i
\(298\) −6.84149 + 6.84149i −0.0229580 + 0.0229580i
\(299\) −22.1971 + 282.041i −0.0742378 + 0.943281i
\(300\) −193.493 315.752i −0.644977 1.05251i
\(301\) −140.602 86.1607i −0.467115 0.286248i
\(302\) −0.702138 0.228138i −0.00232496 0.000755425i
\(303\) 577.868 45.4792i 1.90715 0.150096i
\(304\) −17.8738 + 112.851i −0.0587954 + 0.371219i
\(305\) 31.3374 43.1323i 0.102746 0.141417i
\(306\) −10.1154 11.1705i −0.0330567 0.0365050i
\(307\) 428.553i 1.39594i −0.716129 0.697968i \(-0.754088\pi\)
0.716129 0.697968i \(-0.245912\pi\)
\(308\) 76.2018 + 170.115i 0.247409 + 0.552322i
\(309\) 88.5844 36.6928i 0.286681 0.118747i
\(310\) 0.328249 + 1.01025i 0.00105887 + 0.00325886i
\(311\) −122.066 + 508.441i −0.392495 + 1.63486i 0.330357 + 0.943856i \(0.392831\pi\)
−0.722852 + 0.691003i \(0.757169\pi\)
\(312\) −80.9951 + 19.4452i −0.259600 + 0.0623244i
\(313\) 221.994 + 189.600i 0.709245 + 0.605752i 0.929121 0.369775i \(-0.120565\pi\)
−0.219876 + 0.975528i \(0.570565\pi\)
\(314\) 11.1315 5.67180i 0.0354507 0.0180631i
\(315\) −15.9118 2.52019i −0.0505137 0.00800059i
\(316\) −118.602 193.540i −0.375322 0.612470i
\(317\) −8.22218 + 104.473i −0.0259375 + 0.329567i 0.970236 + 0.242163i \(0.0778570\pi\)
−0.996173 + 0.0874036i \(0.972143\pi\)
\(318\) 34.8269 14.4258i 0.109518 0.0453640i
\(319\) −184.061 + 120.124i −0.576994 + 0.376563i
\(320\) 39.3819 16.3125i 0.123069 0.0509767i
\(321\) 449.720 + 229.144i 1.40100 + 0.713844i
\(322\) −9.40402 6.83242i −0.0292050 0.0212187i
\(323\) −119.541 + 32.3938i −0.370097 + 0.100290i
\(324\) −123.221 + 379.234i −0.380311 + 1.17048i
\(325\) −188.010 368.991i −0.578493 1.13536i
\(326\) 34.9610 + 21.4241i 0.107242 + 0.0657181i
\(327\) 204.454 + 148.545i 0.625243 + 0.454266i
\(328\) −73.0618 + 62.4007i −0.222749 + 0.190246i
\(329\) 29.7618 71.8513i 0.0904613 0.218393i
\(330\) −2.26054 4.14103i −0.00685012 0.0125486i
\(331\) −164.088 + 164.088i −0.495733 + 0.495733i −0.910107 0.414374i \(-0.864001\pi\)
0.414374 + 0.910107i \(0.364001\pi\)
\(332\) 116.304 228.260i 0.350313 0.687529i
\(333\) −11.3037 + 6.92692i −0.0339451 + 0.0208016i
\(334\) 22.0470 5.29301i 0.0660090 0.0158473i
\(335\) −86.3070 + 6.79251i −0.257633 + 0.0202761i
\(336\) −78.5585 + 241.778i −0.233805 + 0.719578i
\(337\) 371.935 + 227.922i 1.10367 + 0.676327i 0.950142 0.311818i \(-0.100938\pi\)
0.153523 + 0.988145i \(0.450938\pi\)
\(338\) −18.6871 + 2.95975i −0.0552873 + 0.00875665i
\(339\) −148.212 456.148i −0.437202 1.34557i
\(340\) 34.0685 + 32.1471i 0.100202 + 0.0945504i
\(341\) 27.0276 + 99.9633i 0.0792599 + 0.293147i
\(342\) 4.56669 + 4.56669i 0.0133529 + 0.0133529i
\(343\) 258.822 221.055i 0.754584 0.644475i
\(344\) 29.4889 40.5879i 0.0857234 0.117988i
\(345\) −37.6437 23.0681i −0.109112 0.0668641i
\(346\) −5.10108 + 5.97259i −0.0147430 + 0.0172618i
\(347\) −225.582 + 264.122i −0.650091 + 0.761159i −0.983359 0.181673i \(-0.941849\pi\)
0.333268 + 0.942832i \(0.391849\pi\)
\(348\) −298.066 47.2090i −0.856511 0.135658i
\(349\) −24.5281 154.864i −0.0702811 0.443737i −0.997587 0.0694322i \(-0.977881\pi\)
0.927306 0.374305i \(-0.122119\pi\)
\(350\) 16.9628 + 1.33500i 0.0484651 + 0.00381429i
\(351\) −87.2729 + 210.695i −0.248641 + 0.600272i
\(352\) −80.2114 + 28.6087i −0.227873 + 0.0812748i
\(353\) 338.465i 0.958824i −0.877590 0.479412i \(-0.840850\pi\)
0.877590 0.479412i \(-0.159150\pi\)
\(354\) −9.15493 + 7.81905i −0.0258614 + 0.0220877i
\(355\) 12.3193 + 77.7809i 0.0347022 + 0.219101i
\(356\) 341.431 248.064i 0.959077 0.696810i
\(357\) −273.978 + 29.5802i −0.767445 + 0.0828576i
\(358\) 29.6926 + 9.64772i 0.0829403 + 0.0269489i
\(359\) 65.1991 411.651i 0.181613 1.14666i −0.713445 0.700711i \(-0.752866\pi\)
0.895058 0.445949i \(-0.147134\pi\)
\(360\) 1.14420 4.76592i 0.00317832 0.0132387i
\(361\) −292.851 + 95.1532i −0.811223 + 0.263582i
\(362\) 49.5265 20.5145i 0.136813 0.0566700i
\(363\) −199.878 414.219i −0.550628 1.14110i
\(364\) −109.529 + 264.426i −0.300903 + 0.726445i
\(365\) −11.4007 + 22.3751i −0.0312348 + 0.0613018i
\(366\) −46.9687 + 7.43911i −0.128330 + 0.0203254i
\(367\) 137.406 + 572.337i 0.374403 + 1.55950i 0.768143 + 0.640278i \(0.221181\pi\)
−0.393740 + 0.919222i \(0.628819\pi\)
\(368\) −170.607 + 199.755i −0.463605 + 0.542812i
\(369\) −31.6520 402.177i −0.0857779 1.08991i
\(370\) −0.222154 + 0.161404i −0.000600415 + 0.000436227i
\(371\) 60.6765 252.736i 0.163548 0.681228i
\(372\) −64.5491 + 126.685i −0.173519 + 0.340550i
\(373\) 206.316i 0.553126i 0.960996 + 0.276563i \(0.0891955\pi\)
−0.960996 + 0.276563i \(0.910805\pi\)
\(374\) −21.0582 21.9656i −0.0563053 0.0587316i
\(375\) 130.520 0.348053
\(376\) 21.0822 + 10.7419i 0.0560696 + 0.0285689i
\(377\) −328.155 78.7829i −0.870436 0.208973i
\(378\) −5.50759 7.58055i −0.0145703 0.0200544i
\(379\) 256.502 20.1871i 0.676785 0.0532642i 0.264592 0.964360i \(-0.414763\pi\)
0.412194 + 0.911096i \(0.364763\pi\)
\(380\) −15.2645 13.0371i −0.0401696 0.0343081i
\(381\) −170.323 + 40.8909i −0.447042 + 0.107325i
\(382\) −0.828966 5.23389i −0.00217007 0.0137013i
\(383\) 249.144 + 126.945i 0.650506 + 0.331449i 0.747914 0.663795i \(-0.231055\pi\)
−0.0974084 + 0.995244i \(0.531055\pi\)
\(384\) −143.875 59.5949i −0.374674 0.155195i
\(385\) −32.2610 4.17301i −0.0837947 0.0108390i
\(386\) 6.03323 + 14.5655i 0.0156301 + 0.0377345i
\(387\) 65.0931 + 200.336i 0.168199 + 0.517664i
\(388\) −98.4543 23.6368i −0.253748 0.0609196i
\(389\) 262.165 + 41.5228i 0.673945 + 0.106742i 0.484021 0.875056i \(-0.339176\pi\)
0.189924 + 0.981799i \(0.439176\pi\)
\(390\) 2.23853 6.88950i 0.00573983 0.0176654i
\(391\) −273.257 80.1022i −0.698868 0.204865i
\(392\) 23.4989 + 32.3435i 0.0599462 + 0.0825088i
\(393\) −86.8341 + 13.7532i −0.220952 + 0.0349954i
\(394\) −19.4237 22.7423i −0.0492988 0.0577215i
\(395\) 39.6127 0.100285
\(396\) 67.1106 228.458i 0.169471 0.576915i
\(397\) 71.5292 + 29.6284i 0.180174 + 0.0746307i 0.470947 0.882162i \(-0.343912\pi\)
−0.290773 + 0.956792i \(0.593912\pi\)
\(398\) 4.15582 52.8047i 0.0104418 0.132675i
\(399\) 116.643 18.4745i 0.292339 0.0463019i
\(400\) 60.1542 379.799i 0.150385 0.949496i
\(401\) 164.081 + 140.138i 0.409179 + 0.349472i 0.830089 0.557630i \(-0.188289\pi\)
−0.420911 + 0.907102i \(0.638289\pi\)
\(402\) 58.7186 + 50.1505i 0.146066 + 0.124752i
\(403\) −83.0774 + 135.570i −0.206147 + 0.336402i
\(404\) 490.234 + 356.176i 1.21345 + 0.881623i
\(405\) −45.1933 52.9146i −0.111588 0.130653i
\(406\) 9.80472 9.80472i 0.0241496 0.0241496i
\(407\) −22.4175 + 14.6303i −0.0550799 + 0.0359467i
\(408\) −2.43177 83.8039i −0.00596021 0.205402i
\(409\) −435.394 + 141.468i −1.06453 + 0.345888i −0.788356 0.615219i \(-0.789068\pi\)
−0.276177 + 0.961107i \(0.589068\pi\)
\(410\) −1.30717 8.25313i −0.00318821 0.0201296i
\(411\) 92.5307 150.996i 0.225136 0.367388i
\(412\) 95.3289 + 30.9742i 0.231381 + 0.0751802i
\(413\) 6.51312 + 82.7570i 0.0157703 + 0.200380i
\(414\) 3.46633 + 14.4383i 0.00837277 + 0.0348751i
\(415\) 23.3594 + 38.1191i 0.0562877 + 0.0918532i
\(416\) −116.508 59.3639i −0.280068 0.142702i
\(417\) 522.920 + 522.920i 1.25401 + 1.25401i
\(418\) 9.47960 + 8.95513i 0.0226785 + 0.0214238i
\(419\) −222.075 91.9864i −0.530011 0.219538i 0.101597 0.994826i \(-0.467605\pi\)
−0.631608 + 0.775288i \(0.717605\pi\)
\(420\) −29.0073 33.9632i −0.0690650 0.0808647i
\(421\) −422.986 + 582.190i −1.00472 + 1.38287i −0.0823296 + 0.996605i \(0.526236\pi\)
−0.922387 + 0.386268i \(0.873764\pi\)
\(422\) 22.5556 36.8075i 0.0534494 0.0872215i
\(423\) −88.5173 + 45.1018i −0.209261 + 0.106624i
\(424\) 75.2066 + 24.4361i 0.177374 + 0.0576324i
\(425\) 402.316 109.021i 0.946625 0.256520i
\(426\) 41.2872 56.8269i 0.0969183 0.133397i
\(427\) −148.858 + 292.150i −0.348613 + 0.684191i
\(428\) 201.919 + 487.476i 0.471774 + 1.13896i
\(429\) 251.583 659.855i 0.586441 1.53812i
\(430\) 1.66968 + 4.03096i 0.00388297 + 0.00937433i
\(431\) 15.0076 + 1.18112i 0.0348203 + 0.00274042i 0.0958573 0.995395i \(-0.469441\pi\)
−0.0610370 + 0.998136i \(0.519441\pi\)
\(432\) −180.553 + 110.643i −0.417946 + 0.256118i
\(433\) 99.7957 630.085i 0.230475 1.45516i −0.552710 0.833374i \(-0.686406\pi\)
0.783185 0.621789i \(-0.213594\pi\)
\(434\) −2.96584 5.82079i −0.00683373 0.0134120i
\(435\) 34.2031 40.0467i 0.0786278 0.0920613i
\(436\) 61.6738 + 256.890i 0.141454 + 0.589197i
\(437\) 118.662 + 28.4882i 0.271538 + 0.0651904i
\(438\) 21.3027 6.92167i 0.0486363 0.0158029i
\(439\) −94.1941 227.405i −0.214565 0.518006i 0.779549 0.626341i \(-0.215448\pi\)
−0.994114 + 0.108335i \(0.965448\pi\)
\(440\) 2.03576 9.68518i 0.00462672 0.0220118i
\(441\) −167.858 −0.380631
\(442\) 2.31325 46.6653i 0.00523360 0.105578i
\(443\) −280.845 204.046i −0.633962 0.460601i 0.223808 0.974633i \(-0.428151\pi\)
−0.857771 + 0.514033i \(0.828151\pi\)
\(444\) −36.3026 5.74976i −0.0817626 0.0129499i
\(445\) 5.77854 + 73.4233i 0.0129855 + 0.164996i
\(446\) −4.20396 + 12.9385i −0.00942592 + 0.0290100i
\(447\) 118.087 192.700i 0.264176 0.431097i
\(448\) −223.526 + 136.977i −0.498941 + 0.305751i
\(449\) −200.150 15.7521i −0.445767 0.0350826i −0.146411 0.989224i \(-0.546772\pi\)
−0.299357 + 0.954141i \(0.596772\pi\)
\(450\) −15.3692 15.3692i −0.0341538 0.0341538i
\(451\) −86.9804 809.932i −0.192861 1.79586i
\(452\) 191.874 463.224i 0.424500 1.02483i
\(453\) 17.1920 + 1.35304i 0.0379514 + 0.00298684i
\(454\) 1.55879 6.49282i 0.00343345 0.0143014i
\(455\) −29.3586 40.4087i −0.0645245 0.0888103i
\(456\) 2.81902 + 35.8190i 0.00618205 + 0.0785504i
\(457\) 102.928 + 202.008i 0.225226 + 0.442030i 0.975773 0.218787i \(-0.0702099\pi\)
−0.750547 + 0.660817i \(0.770210\pi\)
\(458\) 21.7282 + 29.9063i 0.0474414 + 0.0652975i
\(459\) −189.537 129.477i −0.412936 0.282086i
\(460\) −14.2622 43.8944i −0.0310047 0.0954227i
\(461\) 275.492 275.492i 0.597597 0.597597i −0.342075 0.939672i \(-0.611130\pi\)
0.939672 + 0.342075i \(0.111130\pi\)
\(462\) 17.7153 + 22.9792i 0.0383448 + 0.0497386i
\(463\) 82.2263i 0.177595i 0.996050 + 0.0887973i \(0.0283023\pi\)
−0.996050 + 0.0887973i \(0.971698\pi\)
\(464\) −203.512 238.282i −0.438603 0.513539i
\(465\) −12.9645 21.1562i −0.0278807 0.0454972i
\(466\) 0.694499 + 2.89280i 0.00149034 + 0.00620772i
\(467\) 333.272 + 654.082i 0.713644 + 1.40060i 0.907702 + 0.419615i \(0.137835\pi\)
−0.194058 + 0.980990i \(0.562165\pi\)
\(468\) 325.760 165.983i 0.696068 0.354665i
\(469\) 517.724 124.294i 1.10389 0.265020i
\(470\) −1.75450 + 1.07516i −0.00373298 + 0.00228757i
\(471\) −221.907 + 189.526i −0.471139 + 0.402391i
\(472\) −25.2558 −0.0535080
\(473\) 142.887 + 400.618i 0.302087 + 0.846973i
\(474\) −24.9841 24.9841i −0.0527090 0.0527090i
\(475\) −169.890 + 55.2006i −0.357663 + 0.116212i
\(476\) −237.872 162.496i −0.499732 0.341378i
\(477\) −268.609 + 195.156i −0.563122 + 0.409132i
\(478\) −11.1907 + 5.70196i −0.0234116 + 0.0119288i
\(479\) 255.781 20.1304i 0.533989 0.0420259i 0.191402 0.981512i \(-0.438697\pi\)
0.342588 + 0.939486i \(0.388697\pi\)
\(480\) 16.5085 11.9941i 0.0343927 0.0249877i
\(481\) −39.9672 9.59528i −0.0830919 0.0199486i
\(482\) 4.74315 60.2674i 0.00984055 0.125036i
\(483\) 250.855 + 103.907i 0.519368 + 0.215129i
\(484\) 122.337 464.972i 0.252761 0.960685i
\(485\) 12.4944 12.4944i 0.0257617 0.0257617i
\(486\) −3.31839 + 42.1641i −0.00682796 + 0.0867574i
\(487\) 233.837 + 381.587i 0.480157 + 0.783545i 0.997383 0.0723038i \(-0.0230351\pi\)
−0.517225 + 0.855849i \(0.673035\pi\)
\(488\) −85.0561 52.1224i −0.174295 0.106808i
\(489\) −910.908 295.972i −1.86280 0.605260i
\(490\) −3.46611 + 0.272789i −0.00707369 + 0.000556711i
\(491\) 86.8940 548.627i 0.176973 1.11737i −0.726008 0.687686i \(-0.758626\pi\)
0.902981 0.429680i \(-0.141374\pi\)
\(492\) 657.415 904.854i 1.33621 1.83913i
\(493\) 145.367 307.000i 0.294862 0.622719i
\(494\) 20.0232i 0.0405329i
\(495\) 27.8746 + 30.8174i 0.0563123 + 0.0622573i
\(496\) −136.399 + 56.4984i −0.274998 + 0.113908i
\(497\) −149.663 460.616i −0.301133 0.926792i
\(498\) 9.30905 38.7750i 0.0186929 0.0778615i
\(499\) −269.027 + 64.5878i −0.539133 + 0.129434i −0.493862 0.869540i \(-0.664415\pi\)
−0.0452712 + 0.998975i \(0.514415\pi\)
\(500\) 103.752 + 88.6130i 0.207505 + 0.177226i
\(501\) −471.899 + 240.445i −0.941914 + 0.479929i
\(502\) −1.22581 0.194150i −0.00244186 0.000386753i
\(503\) −334.370 545.642i −0.664751 1.08477i −0.990259 0.139236i \(-0.955535\pi\)
0.325508 0.945539i \(-0.394465\pi\)
\(504\) −2.36504 + 30.0507i −0.00469253 + 0.0596243i
\(505\) −97.6989 + 40.4682i −0.193463 + 0.0801350i
\(506\) 7.82549 + 28.9430i 0.0154654 + 0.0571997i
\(507\) 408.308 169.127i 0.805342 0.333583i
\(508\) −163.154 83.1313i −0.321170 0.163644i
\(509\) −418.345 303.945i −0.821896 0.597142i 0.0953592 0.995443i \(-0.469600\pi\)
−0.917255 + 0.398301i \(0.869600\pi\)
\(510\) 6.32468 + 3.62774i 0.0124013 + 0.00711321i
\(511\) 47.7251 146.883i 0.0933956 0.287442i
\(512\) −92.0731 180.704i −0.179830 0.352937i
\(513\) 83.8750 + 51.3987i 0.163499 + 0.100192i
\(514\) −55.1932 40.1002i −0.107380 0.0780160i
\(515\) −13.3012 + 11.3603i −0.0258277 + 0.0220589i
\(516\) −223.488 + 539.549i −0.433117 + 1.04564i
\(517\) −176.073 + 96.1160i −0.340566 + 0.185911i
\(518\) 1.19415 1.19415i 0.00230532 0.00230532i
\(519\) 83.2942 163.474i 0.160490 0.314979i
\(520\) 12.9568 7.93994i 0.0249169 0.0152691i
\(521\) 268.137 64.3740i 0.514659 0.123559i 0.0322070 0.999481i \(-0.489746\pi\)
0.482452 + 0.875923i \(0.339746\pi\)
\(522\) −17.6578 + 1.38970i −0.0338273 + 0.00266226i
\(523\) 204.690 629.972i 0.391377 1.20453i −0.540370 0.841427i \(-0.681716\pi\)
0.931747 0.363107i \(-0.118284\pi\)
\(524\) −78.3633 48.0211i −0.149548 0.0916433i
\(525\) −392.562 + 62.1757i −0.747737 + 0.118430i
\(526\) −1.27144 3.91309i −0.00241719 0.00743934i
\(527\) −116.397 109.833i −0.220867 0.208411i
\(528\) 549.125 358.375i 1.04001 0.678741i
\(529\) −175.664 175.664i −0.332068 0.332068i
\(530\) −5.22937 + 4.46630i −0.00986673 + 0.00842699i
\(531\) 62.3293 85.7890i 0.117381 0.161561i
\(532\) 105.264 + 64.5061i 0.197865 + 0.121252i
\(533\) 812.306 951.089i 1.52403 1.78441i
\(534\) 42.6641 49.9532i 0.0798953 0.0935454i
\(535\) −90.9466 14.4045i −0.169994 0.0269243i
\(536\) 25.3404 + 159.993i 0.0472769 + 0.298495i
\(537\) −727.030 57.2185i −1.35387 0.106552i
\(538\) 15.1641 36.6094i 0.0281861 0.0680473i
\(539\) −338.803 + 9.63894i −0.628577 + 0.0178830i
\(540\) 37.2040i 0.0688964i
\(541\) −62.9605 + 53.7734i −0.116378 + 0.0993963i −0.705733 0.708478i \(-0.749382\pi\)
0.589355 + 0.807874i \(0.299382\pi\)
\(542\) 9.63264 + 60.8181i 0.0177724 + 0.112211i
\(543\) −1013.05 + 736.023i −1.86565 + 1.35548i
\(544\) 82.5363 102.516i 0.151721 0.188448i
\(545\) −43.8480 14.2471i −0.0804551 0.0261415i
\(546\) −6.96937 + 44.0029i −0.0127644 + 0.0805913i
\(547\) −186.015 + 774.808i −0.340064 + 1.41647i 0.496232 + 0.868190i \(0.334717\pi\)
−0.836296 + 0.548279i \(0.815283\pi\)
\(548\) 176.069 57.2084i 0.321294 0.104395i
\(549\) 386.962 160.285i 0.704848 0.291958i
\(550\) −31.9036 30.1385i −0.0580065 0.0547972i
\(551\) −55.7075 + 134.490i −0.101103 + 0.244083i
\(552\) −37.5032 + 73.6042i −0.0679406 + 0.133341i
\(553\) −240.621 + 38.1107i −0.435120 + 0.0689162i
\(554\) 15.0066 + 62.5071i 0.0270878 + 0.112829i
\(555\) 4.16573 4.87744i 0.00750581 0.00878818i
\(556\) 60.6555 + 770.701i 0.109093 + 1.38615i
\(557\) 191.199 138.914i 0.343265 0.249397i −0.402773 0.915300i \(-0.631954\pi\)
0.746038 + 0.665903i \(0.231954\pi\)
\(558\) −1.94811 + 8.11448i −0.00349125 + 0.0145421i
\(559\) −296.494 + 581.903i −0.530402 + 1.04097i
\(560\) 46.3784i 0.0828186i
\(561\) 598.081 + 384.083i 1.06610 + 0.684640i
\(562\) −32.1459 −0.0571990
\(563\) 30.9888 + 15.7896i 0.0550423 + 0.0280455i 0.481295 0.876559i \(-0.340167\pi\)
−0.426253 + 0.904604i \(0.640167\pi\)
\(564\) −267.819 64.2977i −0.474857 0.114003i
\(565\) 51.4308 + 70.7884i 0.0910280 + 0.125289i
\(566\) −47.9817 + 3.77624i −0.0847733 + 0.00667180i
\(567\) 325.428 + 277.942i 0.573947 + 0.490197i
\(568\) 143.278 34.3980i 0.252250 0.0605598i
\(569\) 106.344 + 671.428i 0.186896 + 1.18001i 0.885547 + 0.464551i \(0.153784\pi\)
−0.698651 + 0.715463i \(0.746216\pi\)
\(570\) −2.78413 1.41858i −0.00488443 0.00248874i
\(571\) 769.379 + 318.687i 1.34742 + 0.558121i 0.935574 0.353131i \(-0.114883\pi\)
0.411850 + 0.911252i \(0.364883\pi\)
\(572\) 647.979 353.725i 1.13283 0.618399i
\(573\) 47.3691 + 114.359i 0.0826685 + 0.199579i
\(574\) 15.8804 + 48.8748i 0.0276662 + 0.0851477i
\(575\) −399.356 95.8770i −0.694533 0.166743i
\(576\) 330.758 + 52.3868i 0.574232 + 0.0909494i
\(577\) 42.3408 130.312i 0.0733810 0.225844i −0.907638 0.419753i \(-0.862117\pi\)
0.981019 + 0.193909i \(0.0621168\pi\)
\(578\) 45.4927 + 11.9142i 0.0787070 + 0.0206129i
\(579\) −216.461 297.933i −0.373853 0.514565i
\(580\) 54.3772 8.61251i 0.0937539 0.0148492i
\(581\) −178.567 209.075i −0.307344 0.359854i
\(582\) −15.7607 −0.0270802
\(583\) −530.951 + 409.325i −0.910723 + 0.702101i
\(584\) 43.4105 + 17.9812i 0.0743331 + 0.0307898i
\(585\) −5.00598 + 63.6070i −0.00855722 + 0.108730i
\(586\) −87.6130 + 13.8765i −0.149510 + 0.0236801i
\(587\) −125.207 + 790.526i −0.213300 + 1.34672i 0.615924 + 0.787806i \(0.288783\pi\)
−0.829224 + 0.558917i \(0.811217\pi\)
\(588\) −353.875 302.238i −0.601829 0.514010i
\(589\) 52.1519 + 44.5419i 0.0885432 + 0.0756230i
\(590\) 1.14762 1.87275i 0.00194513 0.00317416i
\(591\) 565.192 + 410.636i 0.956332 + 0.694816i
\(592\) −24.7865 29.0213i −0.0418691 0.0490224i
\(593\) −138.796 + 138.796i −0.234058 + 0.234058i −0.814384 0.580326i \(-0.802925\pi\)
0.580326 + 0.814384i \(0.302925\pi\)
\(594\) −1.21028 + 24.1383i −0.00203751 + 0.0406369i
\(595\) 45.8688 20.5778i 0.0770905 0.0345846i
\(596\) 224.698 73.0088i 0.377010 0.122498i
\(597\) 193.551 + 1222.04i 0.324207 + 2.04696i
\(598\) −24.0540 + 39.2525i −0.0402240 + 0.0656396i
\(599\) 1025.04 + 333.056i 1.71126 + 0.556021i 0.990542 0.137211i \(-0.0438140\pi\)
0.720714 + 0.693232i \(0.243814\pi\)
\(600\) −9.48739 120.549i −0.0158123 0.200915i
\(601\) 247.546 + 1031.10i 0.411890 + 1.71564i 0.663814 + 0.747897i \(0.268936\pi\)
−0.251925 + 0.967747i \(0.581064\pi\)
\(602\) −14.0203 22.8791i −0.0232896 0.0380051i
\(603\) −606.004 308.775i −1.00498 0.512064i
\(604\) 12.7476 + 12.7476i 0.0211053 + 0.0211053i
\(605\) 58.0314 + 60.6008i 0.0959197 + 0.100167i
\(606\) 87.1431 + 36.0959i 0.143801 + 0.0595641i
\(607\) −456.830 534.880i −0.752604 0.881186i 0.243452 0.969913i \(-0.421720\pi\)
−0.996056 + 0.0887273i \(0.971720\pi\)
\(608\) −33.1529 + 45.6310i −0.0545277 + 0.0750510i
\(609\) −169.233 + 276.164i −0.277887 + 0.453471i
\(610\) 7.72991 3.93858i 0.0126720 0.00645670i
\(611\) −292.935 95.1803i −0.479435 0.155778i
\(612\) 96.2482 + 355.181i 0.157268 + 0.580360i
\(613\) −229.923 + 316.462i −0.375079 + 0.516252i −0.954272 0.298938i \(-0.903367\pi\)
0.579194 + 0.815190i \(0.303367\pi\)
\(614\) 31.6592 62.1346i 0.0515622 0.101196i
\(615\) 74.6946 + 180.329i 0.121455 + 0.293217i
\(616\) −3.04796 + 60.7897i −0.00494799 + 0.0986846i
\(617\) 6.87116 + 16.5884i 0.0111364 + 0.0268857i 0.929350 0.369200i \(-0.120368\pi\)
−0.918214 + 0.396086i \(0.870368\pi\)
\(618\) 15.5543 + 1.22415i 0.0251687 + 0.00198082i
\(619\) 842.863 516.507i 1.36165 0.834422i 0.366280 0.930505i \(-0.380631\pi\)
0.995373 + 0.0960829i \(0.0306314\pi\)
\(620\) 4.05771 25.6193i 0.00654469 0.0413215i
\(621\) 102.679 + 201.519i 0.165344 + 0.324506i
\(622\) −55.2589 + 64.6999i −0.0888407 + 0.104019i
\(623\) −105.740 440.439i −0.169727 0.706965i
\(624\) 979.012 + 235.040i 1.56893 + 0.376667i
\(625\) 560.332 182.063i 0.896531 0.291300i
\(626\) 18.1796 + 43.8893i 0.0290408 + 0.0701108i
\(627\) −264.146 151.709i −0.421286 0.241960i
\(628\) −305.071 −0.485782
\(629\) 17.7048 37.3907i 0.0281475 0.0594447i
\(630\) −2.12083 1.54087i −0.00336640 0.00244583i
\(631\) 1228.25 + 194.536i 1.94652 + 0.308298i 0.999901 0.0140635i \(-0.00447671\pi\)
0.946617 + 0.322362i \(0.104477\pi\)
\(632\) −5.81531 73.8905i −0.00920143 0.116915i
\(633\) −311.604 + 959.018i −0.492265 + 1.51504i
\(634\) −8.90999 + 14.5398i −0.0140536 + 0.0229334i
\(635\) 27.2466 16.6967i 0.0429080 0.0262941i
\(636\) −917.667 72.2219i −1.44287 0.113556i
\(637\) −367.997 367.997i −0.577703 0.577703i
\(638\) −35.5606 + 3.81893i −0.0557376 + 0.00598578i
\(639\) −236.756 + 571.579i −0.370510 + 0.894490i
\(640\) 28.3226 + 2.22904i 0.0442541 + 0.00348287i
\(641\) −195.988 + 816.350i −0.305754 + 1.27356i 0.581981 + 0.813202i \(0.302278\pi\)
−0.887735 + 0.460355i \(0.847722\pi\)
\(642\) 48.2757 + 66.4458i 0.0751958 + 0.103498i
\(643\) 0.421850 + 5.36011i 0.000656065 + 0.00833609i 0.997237 0.0742904i \(-0.0236692\pi\)
−0.996581 + 0.0826265i \(0.973669\pi\)
\(644\) 128.863 + 252.909i 0.200099 + 0.392715i
\(645\) −59.9049 82.4520i −0.0928758 0.127833i
\(646\) −19.7250 4.13439i −0.0305341 0.00639998i
\(647\) −206.712 636.194i −0.319493 0.983298i −0.973865 0.227126i \(-0.927067\pi\)
0.654373 0.756172i \(-0.272933\pi\)
\(648\) −92.0681 + 92.0681i −0.142080 + 0.142080i
\(649\) 120.879 176.735i 0.186254 0.272318i
\(650\) 67.3881i 0.103674i
\(651\) 99.1051 + 116.037i 0.152235 + 0.178244i
\(652\) −523.154 853.710i −0.802384 1.30937i
\(653\) −181.480 755.918i −0.277917 1.15761i −0.920296 0.391222i \(-0.872053\pi\)
0.642379 0.766387i \(-0.277947\pi\)
\(654\) 18.6696 + 36.6411i 0.0285467 + 0.0560261i
\(655\) 14.2908 7.28152i 0.0218180 0.0111168i
\(656\) 1129.29 271.119i 1.72148 0.413291i
\(657\) −168.213 + 103.081i −0.256032 + 0.156896i
\(658\) 9.62306 8.21887i 0.0146247 0.0124907i
\(659\) −401.718 −0.609587 −0.304793 0.952419i \(-0.598587\pi\)
−0.304793 + 0.952419i \(0.598587\pi\)
\(660\) 3.27626 + 115.158i 0.00496403 + 0.174482i
\(661\) −474.482 474.482i −0.717824 0.717824i 0.250335 0.968159i \(-0.419459\pi\)
−0.968159 + 0.250335i \(0.919459\pi\)
\(662\) −35.9125 + 11.6687i −0.0542485 + 0.0176264i
\(663\) 201.924 + 1072.54i 0.304561 + 1.61771i
\(664\) 67.6751 49.1688i 0.101920 0.0740495i
\(665\) −19.1966 + 9.78117i −0.0288671 + 0.0147085i
\(666\) −2.15062 + 0.169257i −0.00322915 + 0.000254140i
\(667\) −270.769 + 196.725i −0.405951 + 0.294940i
\(668\) −538.364 129.250i −0.805935 0.193488i
\(669\) 24.9328 316.801i 0.0372687 0.473544i
\(670\) −13.0152 5.39107i −0.0194257 0.00804637i
\(671\) 771.835 345.738i 1.15028 0.515257i
\(672\) −88.7389 + 88.7389i −0.132052 + 0.132052i
\(673\) 23.7514 301.791i 0.0352919 0.448426i −0.953731 0.300662i \(-0.902792\pi\)
0.989023 0.147764i \(-0.0472076\pi\)
\(674\) 37.0881 + 60.5224i 0.0550269 + 0.0897958i
\(675\) −282.281 172.982i −0.418194 0.256270i
\(676\) 439.395 + 142.768i 0.649993 + 0.211196i
\(677\) −768.441 + 60.4776i −1.13507 + 0.0893317i −0.632038 0.774937i \(-0.717781\pi\)
−0.503030 + 0.864269i \(0.667781\pi\)
\(678\) 12.2090 77.0847i 0.0180074 0.113694i
\(679\) −63.8749 + 87.9163i −0.0940720 + 0.129479i
\(680\) 5.14637 + 14.4033i 0.00756820 + 0.0211813i
\(681\) 155.974i 0.229037i
\(682\) −3.46609 + 16.4900i −0.00508225 + 0.0241790i
\(683\) 243.033 100.668i 0.355832 0.147390i −0.197604 0.980282i \(-0.563316\pi\)
0.553436 + 0.832891i \(0.313316\pi\)
\(684\) −48.7334 149.986i −0.0712476 0.219278i
\(685\) −7.54208 + 31.4150i −0.0110103 + 0.0458613i
\(686\) 53.8563 12.9297i 0.0785077 0.0188480i
\(687\) −656.599 560.789i −0.955749 0.816287i
\(688\) −540.318 + 275.306i −0.785346 + 0.400154i
\(689\) −1016.72 161.032i −1.47564 0.233719i
\(690\) −3.75371 6.12550i −0.00544016 0.00887753i
\(691\) −50.4135 + 640.565i −0.0729573 + 0.927011i 0.846135 + 0.532969i \(0.178924\pi\)
−0.919092 + 0.394042i \(0.871076\pi\)
\(692\) 177.198 73.3980i 0.256067 0.106066i
\(693\) −198.969 160.378i −0.287112 0.231425i
\(694\) −52.2184 + 21.6296i −0.0752426 + 0.0311665i
\(695\) −120.209 61.2495i −0.172962 0.0881287i
\(696\) −79.7211 57.9208i −0.114542 0.0832195i
\(697\) 769.199 + 996.589i 1.10359 + 1.42983i
\(698\) 7.88429 24.2653i 0.0112955 0.0347641i
\(699\) −31.5488 61.9181i −0.0451343 0.0885810i
\(700\) −354.267 217.095i −0.506096 0.310136i
\(701\) 356.984 + 259.364i 0.509249 + 0.369991i 0.812539 0.582907i \(-0.198085\pi\)
−0.303289 + 0.952899i \(0.598085\pi\)
\(702\) −28.2185 + 24.1009i −0.0401973 + 0.0343317i
\(703\) −6.78483 + 16.3800i −0.00965125 + 0.0233002i
\(704\) 670.606 + 86.7439i 0.952565 + 0.123216i
\(705\) 33.9878 33.9878i 0.0482097 0.0482097i
\(706\) 25.0040 49.0730i 0.0354164 0.0695086i
\(707\) 554.523 339.812i 0.784333 0.480640i
\(708\) 285.870 68.6312i 0.403771 0.0969368i
\(709\) −299.044 + 23.5353i −0.421783 + 0.0331950i −0.287575 0.957758i \(-0.592849\pi\)
−0.134208 + 0.990953i \(0.542849\pi\)
\(710\) −3.95990 + 12.1873i −0.00557732 + 0.0171652i
\(711\) 265.343 + 162.603i 0.373198 + 0.228696i
\(712\) 136.110 21.5577i 0.191165 0.0302776i
\(713\) 48.7275 + 149.968i 0.0683416 + 0.210334i
\(714\) −41.9085 15.9513i −0.0586954 0.0223407i
\(715\) −6.45149 + 128.671i −0.00902307 + 0.179960i
\(716\) −539.081 539.081i −0.752907 0.752907i
\(717\) 223.087 190.534i 0.311139 0.265738i
\(718\) 39.8636 54.8675i 0.0555203 0.0764172i
\(719\) 1.39744 + 0.856355i 0.00194360 + 0.00119104i 0.523470 0.852044i \(-0.324637\pi\)
−0.521526 + 0.853235i \(0.674637\pi\)
\(720\) −38.4759 + 45.0495i −0.0534387 + 0.0625687i
\(721\) 69.8668 81.8035i 0.0969026 0.113458i
\(722\) −49.4891 7.83830i −0.0685445 0.0108564i
\(723\) 220.905 + 1394.74i 0.305540 + 1.92910i
\(724\) −1304.99 102.705i −1.80248 0.141858i
\(725\) 187.483 452.625i 0.258598 0.624310i
\(726\) 1.62054 74.8223i 0.00223215 0.103061i
\(727\) 1287.32i 1.77073i −0.464897 0.885365i \(-0.653909\pi\)
0.464897 0.885365i \(-0.346091\pi\)
\(728\) −71.0653 + 60.6955i −0.0976171 + 0.0833729i
\(729\) −13.2627 83.7375i −0.0181930 0.114866i
\(730\) −3.30591 + 2.40189i −0.00452865 + 0.00329025i
\(731\) −512.017 412.230i −0.700433 0.563926i
\(732\) 1104.39 + 358.837i 1.50873 + 0.490215i
\(733\) 108.091 682.461i 0.147464 0.931052i −0.797367 0.603494i \(-0.793775\pi\)
0.944831 0.327557i \(-0.106225\pi\)
\(734\) −22.3591 + 93.1323i −0.0304620 + 0.126883i
\(735\) 77.2395 25.0966i 0.105088 0.0341451i
\(736\) −119.808 + 49.6260i −0.162782 + 0.0674266i
\(737\) −1240.88 588.429i −1.68369 0.798411i
\(738\) 25.1216 60.6488i 0.0340401 0.0821800i
\(739\) 588.155 1154.32i 0.795880 1.56200i −0.0309303 0.999522i \(-0.509847\pi\)
0.826810 0.562481i \(-0.190153\pi\)
\(740\) 6.62281 1.04895i 0.00894975 0.00141750i
\(741\) −109.187 454.796i −0.147351 0.613759i
\(742\) 27.4681 32.1610i 0.0370189 0.0433436i
\(743\) 41.4780 + 527.028i 0.0558251 + 0.709325i 0.959609 + 0.281336i \(0.0907776\pi\)
−0.903784 + 0.427988i \(0.859222\pi\)
\(744\) −37.5599 + 27.2888i −0.0504837 + 0.0366786i
\(745\) −9.62513 + 40.0915i −0.0129196 + 0.0538142i
\(746\) −15.2415 + 29.9132i −0.0204310 + 0.0400981i
\(747\) 351.224i 0.470180i
\(748\) 214.662 + 711.366i 0.286981 + 0.951024i
\(749\) 566.299 0.756074
\(750\) 18.9237 + 9.64210i 0.0252316 + 0.0128561i
\(751\) 177.931 + 42.7174i 0.236925 + 0.0568806i 0.350169 0.936687i \(-0.386124\pi\)
−0.113244 + 0.993567i \(0.536124\pi\)
\(752\) −168.105 231.377i −0.223545 0.307683i
\(753\) 28.9011 2.27457i 0.0383813 0.00302067i
\(754\) −41.7581 35.6648i −0.0553821 0.0473008i
\(755\) −3.05917 + 0.734441i −0.00405187 + 0.000972769i
\(756\) 35.7933 + 225.990i 0.0473457 + 0.298929i
\(757\) −877.925 447.325i −1.15974 0.590919i −0.235181 0.971951i \(-0.575568\pi\)
−0.924561 + 0.381033i \(0.875568\pi\)
\(758\) 38.6808 + 16.0221i 0.0510300 + 0.0211373i
\(759\) −335.570 614.722i −0.442121 0.809911i
\(760\) −2.50841 6.05584i −0.00330054 0.00796821i
\(761\) −213.776 657.935i −0.280915 0.864566i −0.987594 0.157032i \(-0.949807\pi\)
0.706679 0.707534i \(-0.250193\pi\)
\(762\) −27.7154 6.65389i −0.0363720 0.00873214i
\(763\) 280.055 + 44.3564i 0.367045 + 0.0581342i
\(764\) −39.9865 + 123.066i −0.0523384 + 0.161081i
\(765\) −61.6260 18.0650i −0.0805569 0.0236143i
\(766\) 26.7446 + 36.8108i 0.0349147 + 0.0480559i
\(767\) 324.721 51.4308i 0.423366 0.0670545i
\(768\) 590.532 + 691.424i 0.768922 + 0.900292i
\(769\) 340.547 0.442844 0.221422 0.975178i \(-0.428930\pi\)
0.221422 + 0.975178i \(0.428930\pi\)
\(770\) −4.36915 2.98830i −0.00567422 0.00388091i
\(771\) 1472.29 + 609.844i 1.90959 + 0.790977i
\(772\) 30.2051 383.792i 0.0391258 0.497140i
\(773\) 941.034 149.045i 1.21738 0.192814i 0.485493 0.874241i \(-0.338640\pi\)
0.731886 + 0.681427i \(0.238640\pi\)
\(774\) −5.36209 + 33.8549i −0.00692776 + 0.0437401i
\(775\) −175.517 149.906i −0.226474 0.193427i
\(776\) −25.1404 21.4719i −0.0323974 0.0276700i
\(777\) −20.6116 + 33.6350i −0.0265271 + 0.0432883i
\(778\) 34.9430 + 25.3876i 0.0449139 + 0.0326319i
\(779\) −350.386 410.249i −0.449790 0.526636i
\(780\) −125.081 + 125.081i −0.160361 + 0.160361i
\(781\) −445.043 + 1167.26i −0.569838 + 1.49458i
\(782\) −33.7013 31.8006i −0.0430962 0.0406657i
\(783\) −256.587 + 83.3701i −0.327697 + 0.106475i
\(784\) −75.5945 477.285i −0.0964216 0.608782i
\(785\) 27.8173 45.3937i 0.0354360 0.0578263i
\(786\) −13.6058 4.42081i −0.0173102 0.00562444i
\(787\) −42.2861 537.296i −0.0537307 0.682714i −0.963519 0.267641i \(-0.913756\pi\)
0.909788 0.415073i \(-0.136244\pi\)
\(788\) 170.490 + 710.144i 0.216359 + 0.901198i
\(789\) 50.2169 + 81.9465i 0.0636462 + 0.103861i
\(790\) 5.74333 + 2.92637i 0.00727004 + 0.00370427i
\(791\) −380.513 380.513i −0.481053 0.481053i
\(792\) 53.3922 56.5192i 0.0674144 0.0713626i
\(793\) 1199.73 + 496.946i 1.51291 + 0.626666i
\(794\) 8.18203 + 9.57993i 0.0103048 + 0.0120654i
\(795\) 94.4220 129.961i 0.118770 0.163473i
\(796\) −675.811 + 1102.82i −0.849009 + 1.38546i
\(797\) 444.771 226.622i 0.558056 0.284344i −0.152127 0.988361i \(-0.548612\pi\)
0.710183 + 0.704017i \(0.248612\pi\)
\(798\) 18.2765 + 5.93841i 0.0229029 + 0.00744162i
\(799\) 154.248 268.919i 0.193051 0.336570i
\(800\) 111.576 153.571i 0.139470 0.191964i
\(801\) −262.681 + 515.541i −0.327942 + 0.643622i
\(802\) 13.4369 + 32.4396i 0.0167543 + 0.0404484i
\(803\) −333.599 + 217.717i −0.415441 + 0.271129i
\(804\) −721.601 1742.10i −0.897513 2.16679i
\(805\) −49.3822 3.88647i −0.0613444 0.00482791i
\(806\) −22.0603 + 13.5186i −0.0273702 + 0.0167725i
\(807\) −144.797 + 914.215i −0.179427 + 1.13286i
\(808\) 89.8288 + 176.299i 0.111174 + 0.218192i
\(809\) −491.275 + 575.209i −0.607262 + 0.711012i −0.975816 0.218594i \(-0.929853\pi\)
0.368554 + 0.929606i \(0.379853\pi\)
\(810\) −2.64340 11.0106i −0.00326346 0.0135933i
\(811\) 766.250 + 183.960i 0.944822 + 0.226832i 0.676454 0.736485i \(-0.263516\pi\)
0.268368 + 0.963317i \(0.413516\pi\)
\(812\) −322.020 + 104.631i −0.396577 + 0.128856i
\(813\) −550.431 1328.86i −0.677037 1.63451i
\(814\) −4.33106 + 0.465122i −0.00532071 + 0.000571403i
\(815\) 174.732 0.214395
\(816\) −433.685 + 915.900i −0.531477 + 1.12243i
\(817\) 227.905 + 165.583i 0.278954 + 0.202672i
\(818\) −73.5774 11.6535i −0.0899480 0.0142464i
\(819\) −30.7871 391.187i −0.0375911 0.477640i
\(820\) −63.0533 + 194.058i −0.0768943 + 0.236656i
\(821\) 694.373 1133.11i 0.845765 1.38016i −0.0778999 0.996961i \(-0.524821\pi\)
0.923665 0.383202i \(-0.125179\pi\)
\(822\) 24.5706 15.0569i 0.0298912 0.0183174i
\(823\) 665.880 + 52.4059i 0.809089 + 0.0636767i 0.476253 0.879308i \(-0.341995\pi\)
0.332836 + 0.942985i \(0.391995\pi\)
\(824\) 23.1434 + 23.1434i 0.0280866 + 0.0280866i
\(825\) 888.984 + 510.577i 1.07756 + 0.618881i
\(826\) −5.16933 + 12.4799i −0.00625826 + 0.0151088i
\(827\) 456.503 + 35.9275i 0.551998 + 0.0434432i 0.351392 0.936229i \(-0.385709\pi\)
0.200607 + 0.979672i \(0.435709\pi\)
\(828\) 84.6441 352.568i 0.102227 0.425807i
\(829\) 172.385 + 237.267i 0.207943 + 0.286209i 0.900231 0.435412i \(-0.143397\pi\)
−0.692288 + 0.721621i \(0.743397\pi\)
\(830\) 0.570780 + 7.25244i 0.000687686 + 0.00873788i
\(831\) −681.702 1337.92i −0.820340 1.61001i
\(832\) 610.275 + 839.972i 0.733504 + 1.00958i
\(833\) 438.500 286.533i 0.526411 0.343977i
\(834\) 37.1862 + 114.447i 0.0445878 + 0.137227i
\(835\) 68.3216 68.3216i 0.0818223 0.0818223i
\(836\) −106.976 299.931i −0.127961 0.358770i
\(837\) 127.110i 0.151864i
\(838\) −25.4025 29.7425i −0.0303133 0.0354923i
\(839\) 262.561 + 428.460i 0.312945 + 0.510680i 0.969981 0.243179i \(-0.0781903\pi\)
−0.657036 + 0.753859i \(0.728190\pi\)
\(840\) −3.40464 14.1813i −0.00405314 0.0168826i
\(841\) 200.554 + 393.610i 0.238471 + 0.468026i
\(842\) −104.337 + 53.1621i −0.123915 + 0.0631379i
\(843\) 730.141 175.291i 0.866123 0.207938i
\(844\) −898.799 + 550.785i −1.06493 + 0.652589i
\(845\) −61.3089 + 52.3627i −0.0725549 + 0.0619677i
\(846\) −16.1658 −0.0191085
\(847\) −410.806 312.279i −0.485013 0.368689i
\(848\) −675.871 675.871i −0.797018 0.797018i
\(849\) 1069.23 347.415i 1.25940 0.409205i
\(850\) 66.3845 + 13.9143i 0.0780994 + 0.0163697i
\(851\) −32.9780 + 23.9599i −0.0387521 + 0.0281550i
\(852\) −1528.28 + 778.700i −1.79376 + 0.913967i
\(853\) −386.656 + 30.4305i −0.453289 + 0.0356746i −0.303049 0.952975i \(-0.598005\pi\)
−0.150240 + 0.988650i \(0.548005\pi\)
\(854\) −43.1649 + 31.3611i −0.0505444 + 0.0367226i
\(855\) 26.7611 + 6.42477i 0.0312995 + 0.00751435i
\(856\) −13.5178 + 171.759i −0.0157918 + 0.200653i
\(857\) 56.4173 + 23.3688i 0.0658311 + 0.0272682i 0.415356 0.909659i \(-0.363657\pi\)
−0.349525 + 0.936927i \(0.613657\pi\)
\(858\) 85.2229 77.0849i 0.0993274 0.0898426i
\(859\) −472.268 + 472.268i −0.549788 + 0.549788i −0.926379 0.376591i \(-0.877096\pi\)
0.376591 + 0.926379i \(0.377096\pi\)
\(860\) 8.35918 106.213i 0.00971997 0.123504i
\(861\) −627.212 1023.52i −0.728469 1.18875i
\(862\) 2.08865 + 1.27993i 0.00242303 + 0.00148483i
\(863\) −1019.18 331.152i −1.18097 0.383722i −0.348246 0.937403i \(-0.613223\pi\)
−0.832729 + 0.553681i \(0.813223\pi\)
\(864\) −104.212 + 8.20162i −0.120615 + 0.00949262i
\(865\) −5.23607 + 33.0592i −0.00605326 + 0.0382188i
\(866\) 61.0164 83.9819i 0.0704578 0.0969768i
\(867\) −1098.26 22.5410i −1.26674 0.0259989i
\(868\) 159.525i 0.183784i
\(869\) 544.903 + 312.959i 0.627047 + 0.360136i
\(870\) 7.91744 3.27951i 0.00910051 0.00376955i
\(871\) −651.620 2005.48i −0.748128 2.30250i
\(872\) −20.1383 + 83.8822i −0.0230944 + 0.0961952i
\(873\) 134.981 32.4060i 0.154617 0.0371203i
\(874\) 15.0999 + 12.8965i 0.0172768 + 0.0147558i
\(875\) 130.479 66.4826i 0.149119 0.0759801i
\(876\) −540.226 85.5634i −0.616696 0.0976751i
\(877\) −244.854 399.565i −0.279195 0.455604i 0.682048 0.731307i \(-0.261089\pi\)
−0.961243 + 0.275703i \(0.911089\pi\)
\(878\) 3.14250 39.9293i 0.00357916 0.0454776i
\(879\) 1914.32 792.937i 2.17784 0.902090i
\(880\) −75.0724 + 93.1368i −0.0853096 + 0.105837i
\(881\) 1141.50 472.825i 1.29569 0.536691i 0.375011 0.927020i \(-0.377639\pi\)
0.920675 + 0.390330i \(0.127639\pi\)
\(882\) −24.3373 12.4005i −0.0275933 0.0140595i
\(883\) 450.245 + 327.122i 0.509903 + 0.370466i 0.812787 0.582561i \(-0.197949\pi\)
−0.302884 + 0.953028i \(0.597949\pi\)
\(884\) −567.660 + 989.672i −0.642150 + 1.11954i
\(885\) −15.8543 + 48.7946i −0.0179145 + 0.0551351i
\(886\) −25.6451 50.3314i −0.0289448 0.0568075i
\(887\) −782.105 479.275i −0.881742 0.540332i 0.00635935 0.999980i \(-0.497976\pi\)
−0.888101 + 0.459648i \(0.847976\pi\)
\(888\) −9.70954 7.05439i −0.0109342 0.00794414i
\(889\) −149.442 + 127.635i −0.168101 + 0.143572i
\(890\) −4.58630 + 11.0723i −0.00515315 + 0.0124408i
\(891\) −203.620 1084.93i −0.228529 1.21765i
\(892\) 234.903 234.903i 0.263344 0.263344i
\(893\) −60.3168 + 118.378i −0.0675440 + 0.132563i
\(894\) 31.3567 19.2154i 0.0350746 0.0214938i
\(895\) 129.369 31.0587i 0.144546 0.0347025i
\(896\) −174.186 + 13.7087i −0.194404 + 0.0152999i
\(897\) 332.303 1022.72i 0.370461 1.14016i
\(898\) −27.8554 17.0698i −0.0310194 0.0190087i
\(899\) −185.783 + 29.4251i −0.206655 + 0.0327310i
\(900\) 164.012 + 504.777i 0.182235 + 0.560863i
\(901\) 368.565 968.326i 0.409063 1.07472i
\(902\) 47.2224 123.855i 0.0523530 0.137312i
\(903\) 443.209 + 443.209i 0.490818 + 0.490818i
\(904\) 124.493 106.327i 0.137713 0.117618i
\(905\) 134.275 184.814i 0.148371 0.204215i
\(906\) 2.39266 + 1.46622i 0.00264090 + 0.00161835i
\(907\) 500.240 585.706i 0.551532 0.645762i −0.412685 0.910874i \(-0.635409\pi\)
0.964218 + 0.265112i \(0.0854090\pi\)
\(908\) −105.894 + 123.986i −0.116624 + 0.136549i
\(909\) −820.544 129.961i −0.902689 0.142972i
\(910\) −1.27145 8.02760i −0.00139719 0.00882154i
\(911\) −640.405 50.4009i −0.702969 0.0553248i −0.278064 0.960563i \(-0.589693\pi\)
−0.424905 + 0.905238i \(0.639693\pi\)
\(912\) 166.197 401.235i 0.182233 0.439951i
\(913\) 20.1684 + 708.907i 0.0220903 + 0.776459i
\(914\) 36.8923i 0.0403636i
\(915\) −154.095 + 131.610i −0.168410 + 0.143836i
\(916\) −141.209 891.562i −0.154159 0.973320i
\(917\) −79.8018 + 57.9794i −0.0870249 + 0.0632273i
\(918\) −17.9154 32.7746i −0.0195157 0.0357022i
\(919\) −143.890 46.7527i −0.156572 0.0508735i 0.229682 0.973266i \(-0.426231\pi\)
−0.386254 + 0.922392i \(0.626231\pi\)
\(920\) 2.35754 14.8849i 0.00256254 0.0161793i
\(921\) −380.267 + 1583.93i −0.412885 + 1.71979i
\(922\) 60.2947 19.5909i 0.0653956 0.0212483i
\(923\) −1772.12 + 734.037i −1.91996 + 0.795272i
\(924\) −130.693 696.360i −0.141443 0.753637i
\(925\) 22.8343 55.1269i 0.0246857 0.0595967i
\(926\) −6.07444 + 11.9218i −0.00655987 + 0.0128745i
\(927\) −135.730 + 21.4975i −0.146418 + 0.0231904i
\(928\) −36.1118 150.416i −0.0389136 0.162087i
\(929\) −813.158 + 952.085i −0.875304 + 1.02485i 0.124165 + 0.992262i \(0.460375\pi\)
−0.999469 + 0.0325878i \(0.989625\pi\)
\(930\) −0.316784 4.02513i −0.000340628 0.00432809i
\(931\) −181.612 + 131.949i −0.195072 + 0.141728i
\(932\) 16.9589 70.6390i 0.0181963 0.0757929i
\(933\) 902.309 1770.88i 0.967105 1.89805i
\(934\) 119.454i 0.127895i
\(935\) −125.423 32.9234i −0.134142 0.0352122i
\(936\) 119.382 0.127545
\(937\) 1067.36 + 543.847i 1.13913 + 0.580413i 0.918687 0.394987i \(-0.129251\pi\)
0.220439 + 0.975401i \(0.429251\pi\)
\(938\) 84.2455 + 20.2256i 0.0898140 + 0.0215624i
\(939\) −652.248 897.743i −0.694620 0.956062i
\(940\) 50.0927 3.94238i 0.0532901 0.00419402i
\(941\) 987.518 + 843.420i 1.04943 + 0.896302i 0.994764 0.102203i \(-0.0325890\pi\)
0.0546709 + 0.998504i \(0.482589\pi\)
\(942\) −46.1748 + 11.0856i −0.0490178 + 0.0117681i
\(943\) −194.045 1225.15i −0.205774 1.29921i
\(944\) 272.001 + 138.591i 0.288137 + 0.146813i
\(945\) −36.8904 15.2805i −0.0390375 0.0161699i
\(946\) −8.87872 + 68.6402i −0.00938554 + 0.0725584i
\(947\) 270.258 + 652.460i 0.285383 + 0.688976i 0.999944 0.0105974i \(-0.00337331\pi\)
−0.714561 + 0.699574i \(0.753373\pi\)
\(948\) 266.617 + 820.562i 0.281241 + 0.865572i
\(949\) −594.760 142.789i −0.626723 0.150463i
\(950\) −28.7098 4.54719i −0.0302208 0.00478651i
\(951\) 123.091 378.834i 0.129433 0.398354i
\(952\) −45.1180 82.5393i −0.0473929 0.0867009i
\(953\) 263.445 + 362.601i 0.276437 + 0.380484i 0.924550 0.381061i \(-0.124441\pi\)
−0.648112 + 0.761545i \(0.724441\pi\)
\(954\) −53.3620 + 8.45170i −0.0559350 + 0.00885923i
\(955\) −14.6658 17.1714i −0.0153568 0.0179805i
\(956\) 306.693 0.320809
\(957\) 786.877 280.653i 0.822233 0.293263i
\(958\) 38.5721 + 15.9771i 0.0402631 + 0.0166775i
\(959\) 15.5894 198.082i 0.0162559 0.206550i
\(960\) −160.030 + 25.3462i −0.166698 + 0.0264023i
\(961\) 136.470 861.638i 0.142008 0.896606i
\(962\) −5.08588 4.34375i −0.00528678 0.00451534i
\(963\) −550.073 469.806i −0.571207 0.487857i
\(964\) −771.321 + 1258.68i −0.800126 + 1.30569i
\(965\) 54.3530 + 39.4898i 0.0563243 + 0.0409220i
\(966\) 28.6946 + 33.5970i 0.0297045 + 0.0347795i
\(967\) −1152.03 + 1152.03i −1.19134 + 1.19134i −0.214655 + 0.976690i \(0.568863\pi\)
−0.976690 + 0.214655i \(0.931137\pi\)
\(968\) 104.521 117.144i 0.107976 0.121016i
\(969\) 470.567 13.6546i 0.485621 0.0140914i
\(970\) 2.73456 0.888511i 0.00281913 0.000915991i
\(971\) 132.892 + 839.046i 0.136861 + 0.864105i 0.956608 + 0.291379i \(0.0941141\pi\)
−0.819747 + 0.572726i \(0.805886\pi\)
\(972\) 539.630 880.595i 0.555174 0.905962i
\(973\) 789.117 + 256.400i 0.811015 + 0.263515i
\(974\) 5.71372 + 72.5998i 0.00586625 + 0.0745377i
\(975\) 367.468 + 1530.61i 0.376890 + 1.56986i
\(976\) 630.019 + 1028.10i 0.645511 + 1.05338i
\(977\) 1664.35 + 848.030i 1.70353 + 0.867994i 0.985011 + 0.172489i \(0.0551809\pi\)
0.718522 + 0.695504i \(0.244819\pi\)
\(978\) −110.205 110.205i −0.112684 0.112684i
\(979\) −500.589 + 1055.65i −0.511327 + 1.07829i
\(980\) 78.4377 + 32.4900i 0.0800385 + 0.0331530i
\(981\) −235.232 275.421i −0.239788 0.280756i
\(982\) 53.1281 73.1246i 0.0541020 0.0744649i
\(983\) −746.249 + 1217.77i −0.759154 + 1.23883i 0.206360 + 0.978476i \(0.433838\pi\)
−0.965514 + 0.260351i \(0.916162\pi\)
\(984\) 325.406 165.802i 0.330697 0.168498i
\(985\) −121.213 39.3845i −0.123059 0.0399843i
\(986\) 43.7559 33.7722i 0.0443771 0.0342517i
\(987\) −173.755 + 239.153i −0.176043 + 0.242303i
\(988\) 221.977 435.654i 0.224673 0.440946i
\(989\) 247.859 + 598.383i 0.250615 + 0.605039i
\(990\) 1.76484 + 6.52735i 0.00178266 + 0.00659328i
\(991\) 41.2681 + 99.6301i 0.0416429 + 0.100535i 0.943332 0.331849i \(-0.107672\pi\)
−0.901690 + 0.432384i \(0.857672\pi\)
\(992\) −72.6564 5.71818i −0.0732423 0.00576430i
\(993\) 752.066 460.866i 0.757367 0.464115i
\(994\) 12.3286 77.8397i 0.0124030 0.0783095i
\(995\) −102.474 201.117i −0.102989 0.202128i
\(996\) −632.400 + 740.445i −0.634939 + 0.743419i
\(997\) −266.764 1111.15i −0.267566 1.11449i −0.930639 0.365939i \(-0.880748\pi\)
0.663072 0.748555i \(-0.269252\pi\)
\(998\) −43.7769 10.5099i −0.0438647 0.0105310i
\(999\) −31.2507 + 10.1540i −0.0312820 + 0.0101641i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 187.3.q.a.138.18 yes 544
11.2 odd 10 inner 187.3.q.a.2.18 544
17.9 even 8 inner 187.3.q.a.94.18 yes 544
187.145 odd 40 inner 187.3.q.a.145.18 yes 544
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
187.3.q.a.2.18 544 11.2 odd 10 inner
187.3.q.a.94.18 yes 544 17.9 even 8 inner
187.3.q.a.138.18 yes 544 1.1 even 1 trivial
187.3.q.a.145.18 yes 544 187.145 odd 40 inner