Newspace parameters
| Level: | \( N \) | \(=\) | \( 187 = 11 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 187.q (of order \(40\), degree \(16\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.09538094354\) |
| Analytic rank: | \(0\) |
| Dimension: | \(544\) |
| Relative dimension: | \(34\) over \(\Q(\zeta_{40})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{40}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2.1 | −1.78353 | − | 3.50038i | 0.321032 | − | 0.523876i | −6.72053 | + | 9.25001i | 4.15293 | − | 3.54694i | −2.40634 | − | 0.189383i | 3.93050 | + | 6.41399i | 28.8440 | + | 4.56844i | 3.91453 | + | 7.68270i | −19.8225 | − | 8.21076i |
| 2.2 | −1.69946 | − | 3.33538i | 2.52468 | − | 4.11991i | −5.88545 | + | 8.10063i | −4.99610 | + | 4.26708i | −18.0321 | − | 1.41915i | −2.07016 | − | 3.37819i | 22.2316 | + | 3.52114i | −6.51371 | − | 12.7839i | 22.7230 | + | 9.41218i |
| 2.3 | −1.55829 | − | 3.05832i | −0.816956 | + | 1.33315i | −4.57391 | + | 6.29545i | −2.50010 | + | 2.13529i | 5.35026 | + | 0.421074i | −0.500284 | − | 0.816389i | 12.8203 | + | 2.03054i | 2.97604 | + | 5.84081i | 10.4263 | + | 4.31871i |
| 2.4 | −1.45677 | − | 2.85908i | −2.87882 | + | 4.69781i | −3.70100 | + | 5.09399i | 2.00014 | − | 1.70828i | 17.6252 | + | 1.38713i | 4.54048 | + | 7.40939i | 7.27838 | + | 1.15278i | −9.69589 | − | 19.0293i | −7.79786 | − | 3.22998i |
| 2.5 | −1.44027 | − | 2.82668i | −1.80943 | + | 2.95272i | −3.56462 | + | 4.90629i | 2.69247 | − | 2.29959i | 10.9525 | + | 0.861978i | −6.62694 | − | 10.8142i | 6.46891 | + | 1.02458i | −1.35861 | − | 2.66642i | −10.3781 | − | 4.29874i |
| 2.6 | −1.35588 | − | 2.66107i | 1.29183 | − | 2.10808i | −2.89174 | + | 3.98014i | 3.25875 | − | 2.78323i | −7.36132 | − | 0.579349i | −2.32622 | − | 3.79605i | 2.71304 | + | 0.429703i | 1.31075 | + | 2.57249i | −11.8249 | − | 4.89802i |
| 2.7 | −1.18013 | − | 2.31613i | 3.02186 | − | 4.93123i | −1.62062 | + | 2.23059i | 4.10263 | − | 3.50397i | −14.9876 | − | 1.17955i | 5.31030 | + | 8.66563i | −3.19092 | − | 0.505391i | −11.0995 | − | 21.7839i | −12.9573 | − | 5.36709i |
| 2.8 | −1.16003 | − | 2.27670i | 0.682188 | − | 1.11323i | −1.48652 | + | 2.04603i | −3.34754 | + | 2.85907i | −3.32585 | − | 0.261750i | 6.33486 | + | 10.3376i | −3.71235 | − | 0.587978i | 3.31202 | + | 6.50020i | 10.3925 | + | 4.30471i |
| 2.9 | −1.14630 | − | 2.24974i | 0.403742 | − | 0.658847i | −1.39618 | + | 1.92167i | −5.33542 | + | 4.55688i | −1.94504 | − | 0.153078i | −2.64570 | − | 4.31739i | −4.05172 | − | 0.641729i | 3.81484 | + | 7.48705i | 16.3678 | + | 6.77975i |
| 2.10 | −0.847931 | − | 1.66416i | −1.35386 | + | 2.20930i | 0.300703 | − | 0.413883i | −0.447824 | + | 0.382478i | 4.82460 | + | 0.379704i | 2.34605 | + | 3.82841i | −8.32268 | − | 1.31818i | 1.03786 | + | 2.03691i | 1.01623 | + | 0.420935i |
| 2.11 | −0.799753 | − | 1.56960i | −1.42531 | + | 2.32590i | 0.527090 | − | 0.725477i | 6.74980 | − | 5.76487i | 4.79063 | + | 0.377031i | 2.14971 | + | 3.50801i | −8.51993 | − | 1.34942i | 0.707634 | + | 1.38881i | −14.4467 | − | 5.98403i |
| 2.12 | −0.790084 | − | 1.55063i | −2.75520 | + | 4.49607i | 0.570931 | − | 0.785819i | −6.50583 | + | 5.55651i | 9.14857 | + | 0.720008i | −0.337596 | − | 0.550907i | −8.54513 | − | 1.35341i | −8.53766 | − | 16.7561i | 13.7562 | + | 5.69801i |
| 2.13 | −0.742878 | − | 1.45798i | 2.02567 | − | 3.30559i | 0.777301 | − | 1.06986i | 0.217735 | − | 0.185963i | −6.32431 | − | 0.497734i | −3.29328 | − | 5.37415i | −8.60202 | − | 1.36243i | −2.73767 | − | 5.37298i | −0.432881 | − | 0.179305i |
| 2.14 | −0.526382 | − | 1.03308i | 0.640671 | − | 1.04548i | 1.56096 | − | 2.14848i | 4.83800 | − | 4.13204i | −1.41731 | − | 0.111544i | −3.11140 | − | 5.07734i | −7.62194 | − | 1.20720i | 3.40334 | + | 6.67944i | −6.81537 | − | 2.82302i |
| 2.15 | −0.294962 | − | 0.578895i | 2.40623 | − | 3.92662i | 2.10302 | − | 2.89456i | −6.23328 | + | 5.32372i | −2.98285 | − | 0.234755i | −1.05606 | − | 1.72334i | −4.86280 | − | 0.770193i | −5.54244 | − | 10.8776i | 4.92046 | + | 2.03812i |
| 2.16 | −0.273063 | − | 0.535917i | −1.28016 | + | 2.08903i | 2.13850 | − | 2.94339i | −2.56895 | + | 2.19409i | 1.46911 | + | 0.115621i | −4.49822 | − | 7.34043i | −4.53763 | − | 0.718690i | 1.36069 | + | 2.67050i | 1.87733 | + | 0.777617i |
| 2.17 | −0.0206482 | − | 0.0405244i | 0.427119 | − | 0.696996i | 2.34993 | − | 3.23439i | −1.14178 | + | 0.975172i | −0.0370646 | − | 0.00291705i | 6.06168 | + | 9.89176i | −0.359280 | − | 0.0569044i | 3.78254 | + | 7.42366i | 0.0630940 | + | 0.0261344i |
| 2.18 | 0.0738746 | + | 0.144987i | −1.98602 | + | 3.24089i | 2.33558 | − | 3.21465i | −0.527290 | + | 0.450348i | −0.616605 | − | 0.0485279i | 2.22828 | + | 3.63622i | 1.28150 | + | 0.202970i | −2.47320 | − | 4.85392i | −0.104248 | − | 0.0431810i |
| 2.19 | 0.0959067 | + | 0.188228i | 1.40645 | − | 2.29512i | 2.32491 | − | 3.19996i | 4.80267 | − | 4.10187i | 0.566893 | + | 0.0446154i | 2.40321 | + | 3.92168i | 1.65990 | + | 0.262903i | 0.796444 | + | 1.56311i | 1.23269 | + | 0.510599i |
| 2.20 | 0.188210 | + | 0.369383i | −2.91302 | + | 4.75361i | 2.25012 | − | 3.09702i | 5.79055 | − | 4.94560i | −2.30417 | − | 0.181342i | −3.48376 | − | 5.68498i | 3.20534 | + | 0.507677i | −10.0252 | − | 19.6756i | 2.91667 | + | 1.20812i |
| See next 80 embeddings (of 544 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 11.d | odd | 10 | 1 | inner |
| 17.d | even | 8 | 1 | inner |
| 187.q | odd | 40 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 187.3.q.a | ✓ | 544 |
| 11.d | odd | 10 | 1 | inner | 187.3.q.a | ✓ | 544 |
| 17.d | even | 8 | 1 | inner | 187.3.q.a | ✓ | 544 |
| 187.q | odd | 40 | 1 | inner | 187.3.q.a | ✓ | 544 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 187.3.q.a | ✓ | 544 | 1.a | even | 1 | 1 | trivial |
| 187.3.q.a | ✓ | 544 | 11.d | odd | 10 | 1 | inner |
| 187.3.q.a | ✓ | 544 | 17.d | even | 8 | 1 | inner |
| 187.3.q.a | ✓ | 544 | 187.q | odd | 40 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(187, [\chi])\).