Newspace parameters
| Level: | \( N \) | \(=\) | \( 187 = 11 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 187.j (of order \(10\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(1.49320251780\) |
| Analytic rank: | \(0\) |
| Dimension: | \(64\) |
| Relative dimension: | \(16\) over \(\Q(\zeta_{10})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 16.1 | −0.781136 | − | 2.40409i | −0.850854 | + | 1.17110i | −3.55144 | + | 2.58027i | 2.42532 | + | 0.788033i | 3.48006 | + | 1.13074i | 0.460130 | + | 0.633314i | 4.88728 | + | 3.55082i | 0.279529 | + | 0.860301i | − | 6.44624i | |
| 16.2 | −0.781136 | − | 2.40409i | 0.850854 | − | 1.17110i | −3.55144 | + | 2.58027i | −2.42532 | − | 0.788033i | −3.48006 | − | 1.13074i | −0.460130 | − | 0.633314i | 4.88728 | + | 3.55082i | 0.279529 | + | 0.860301i | 6.44624i | ||
| 16.3 | −0.609729 | − | 1.87655i | −1.09362 | + | 1.50523i | −1.53164 | + | 1.11281i | −2.63951 | − | 0.857628i | 3.49146 | + | 1.13444i | 1.01174 | + | 1.39254i | −0.170457 | − | 0.123844i | −0.142682 | − | 0.439131i | 5.47610i | ||
| 16.4 | −0.609729 | − | 1.87655i | 1.09362 | − | 1.50523i | −1.53164 | + | 1.11281i | 2.63951 | + | 0.857628i | −3.49146 | − | 1.13444i | −1.01174 | − | 1.39254i | −0.170457 | − | 0.123844i | −0.142682 | − | 0.439131i | − | 5.47610i | |
| 16.5 | −0.299814 | − | 0.922734i | −0.345028 | + | 0.474890i | 0.856485 | − | 0.622273i | −2.20747 | − | 0.717252i | 0.541642 | + | 0.175990i | −2.36486 | − | 3.25494i | −2.40083 | − | 1.74430i | 0.820575 | + | 2.52547i | 2.25195i | ||
| 16.6 | −0.299814 | − | 0.922734i | 0.345028 | − | 0.474890i | 0.856485 | − | 0.622273i | 2.20747 | + | 0.717252i | −0.541642 | − | 0.175990i | 2.36486 | + | 3.25494i | −2.40083 | − | 1.74430i | 0.820575 | + | 2.52547i | − | 2.25195i | |
| 16.7 | −0.150351 | − | 0.462733i | −1.01595 | + | 1.39834i | 1.42652 | − | 1.03643i | 0.411135 | + | 0.133586i | 0.799806 | + | 0.259873i | 1.36610 | + | 1.88027i | −1.48131 | − | 1.07624i | 0.00385940 | + | 0.0118780i | − | 0.210330i | |
| 16.8 | −0.150351 | − | 0.462733i | 1.01595 | − | 1.39834i | 1.42652 | − | 1.03643i | −0.411135 | − | 0.133586i | −0.799806 | − | 0.259873i | −1.36610 | − | 1.88027i | −1.48131 | − | 1.07624i | 0.00385940 | + | 0.0118780i | 0.210330i | ||
| 16.9 | 0.0862831 | + | 0.265552i | −1.41541 | + | 1.94814i | 1.55496 | − | 1.12975i | 3.81388 | + | 1.23921i | −0.639458 | − | 0.207772i | −2.14946 | − | 2.95848i | 0.885957 | + | 0.643686i | −0.864821 | − | 2.66164i | 1.11971i | ||
| 16.10 | 0.0862831 | + | 0.265552i | 1.41541 | − | 1.94814i | 1.55496 | − | 1.12975i | −3.81388 | − | 1.23921i | 0.639458 | + | 0.207772i | 2.14946 | + | 2.95848i | 0.885957 | + | 0.643686i | −0.864821 | − | 2.66164i | − | 1.11971i | |
| 16.11 | 0.418751 | + | 1.28878i | −0.465953 | + | 0.641330i | 0.132428 | − | 0.0962145i | 0.416272 | + | 0.135255i | −1.02165 | − | 0.331955i | 0.474970 | + | 0.653740i | 2.37206 | + | 1.72340i | 0.732860 | + | 2.25551i | 0.593122i | ||
| 16.12 | 0.418751 | + | 1.28878i | 0.465953 | − | 0.641330i | 0.132428 | − | 0.0962145i | −0.416272 | − | 0.135255i | 1.02165 | + | 0.331955i | −0.474970 | − | 0.653740i | 2.37206 | + | 1.72340i | 0.732860 | + | 2.25551i | − | 0.593122i | |
| 16.13 | 0.636250 | + | 1.95818i | −1.78295 | + | 2.45402i | −1.81160 | + | 1.31621i | −0.308808 | − | 0.100338i | −5.93981 | − | 1.92996i | 0.911451 | + | 1.25450i | −0.398550 | − | 0.289564i | −1.91626 | − | 5.89763i | − | 0.668541i | |
| 16.14 | 0.636250 | + | 1.95818i | 1.78295 | − | 2.45402i | −1.81160 | + | 1.31621i | 0.308808 | + | 0.100338i | 5.93981 | + | 1.92996i | −0.911451 | − | 1.25450i | −0.398550 | − | 0.289564i | −1.91626 | − | 5.89763i | 0.668541i | ||
| 16.15 | 0.817781 | + | 2.51687i | −0.0601072 | + | 0.0827304i | −4.04784 | + | 2.94093i | 3.67505 | + | 1.19410i | −0.257376 | − | 0.0836266i | −1.36656 | − | 1.88091i | −6.43022 | − | 4.67183i | 0.923820 | + | 2.84322i | 10.2261i | ||
| 16.16 | 0.817781 | + | 2.51687i | 0.0601072 | − | 0.0827304i | −4.04784 | + | 2.94093i | −3.67505 | − | 1.19410i | 0.257376 | + | 0.0836266i | 1.36656 | + | 1.88091i | −6.43022 | − | 4.67183i | 0.923820 | + | 2.84322i | − | 10.2261i | |
| 135.1 | −2.20158 | + | 1.59954i | −2.67663 | + | 0.869690i | 1.67040 | − | 5.14095i | 0.525344 | − | 0.723074i | 4.50172 | − | 6.19609i | 1.60348 | + | 0.521001i | 2.86380 | + | 8.81387i | 3.98094 | − | 2.89232i | 2.43222i | ||
| 135.2 | −2.20158 | + | 1.59954i | 2.67663 | − | 0.869690i | 1.67040 | − | 5.14095i | −0.525344 | + | 0.723074i | −4.50172 | + | 6.19609i | −1.60348 | − | 0.521001i | 2.86380 | + | 8.81387i | 3.98094 | − | 2.89232i | − | 2.43222i | |
| 135.3 | −1.68340 | + | 1.22306i | −0.00997681 | + | 0.00324166i | 0.719917 | − | 2.21568i | 0.572549 | − | 0.788046i | 0.0128302 | − | 0.0176592i | −3.51500 | − | 1.14209i | 0.211997 | + | 0.652459i | −2.42696 | + | 1.76329i | 2.02686i | ||
| 135.4 | −1.68340 | + | 1.22306i | 0.00997681 | − | 0.00324166i | 0.719917 | − | 2.21568i | −0.572549 | + | 0.788046i | −0.0128302 | + | 0.0176592i | 3.51500 | + | 1.14209i | 0.211997 | + | 0.652459i | −2.42696 | + | 1.76329i | − | 2.02686i | |
| See all 64 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 11.c | even | 5 | 1 | inner |
| 17.b | even | 2 | 1 | inner |
| 187.j | even | 10 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 187.2.j.a | ✓ | 64 |
| 11.c | even | 5 | 1 | inner | 187.2.j.a | ✓ | 64 |
| 17.b | even | 2 | 1 | inner | 187.2.j.a | ✓ | 64 |
| 187.j | even | 10 | 1 | inner | 187.2.j.a | ✓ | 64 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 187.2.j.a | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
| 187.2.j.a | ✓ | 64 | 11.c | even | 5 | 1 | inner |
| 187.2.j.a | ✓ | 64 | 17.b | even | 2 | 1 | inner |
| 187.2.j.a | ✓ | 64 | 187.j | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(187, [\chi])\).