Properties

Label 187.2.j.a
Level 187
Weight 2
Character orbit 187.j
Analytic conductor 1.493
Analytic rank 0
Dimension 64
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 187 = 11 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 187.j (of order \(10\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(1.4932025178\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{10})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 64q - 8q^{2} - 20q^{4} - 4q^{8} + 30q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 64q - 8q^{2} - 20q^{4} - 4q^{8} + 30q^{9} - 4q^{13} - 34q^{15} - 16q^{16} - 14q^{17} + 10q^{18} - 72q^{21} + 36q^{25} + 22q^{26} - 8q^{30} + 84q^{32} - 44q^{33} - 44q^{34} + 18q^{35} - 32q^{36} - 60q^{38} - 10q^{42} + 32q^{43} + 16q^{47} - 18q^{49} + 4q^{50} - 2q^{51} + 44q^{52} - 16q^{53} + 22q^{55} - 50q^{59} + 68q^{60} - 80q^{64} - 172q^{66} + 40q^{67} + 18q^{68} + 6q^{69} + 128q^{70} + 186q^{72} - 116q^{76} - 30q^{77} + 48q^{81} - 12q^{83} + 68q^{84} - 108q^{85} - 16q^{86} + 92q^{87} - 40q^{89} - 80q^{93} - 188q^{94} + 72q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
16.1 −0.781136 2.40409i −0.850854 + 1.17110i −3.55144 + 2.58027i 2.42532 + 0.788033i 3.48006 + 1.13074i 0.460130 + 0.633314i 4.88728 + 3.55082i 0.279529 + 0.860301i 6.44624i
16.2 −0.781136 2.40409i 0.850854 1.17110i −3.55144 + 2.58027i −2.42532 0.788033i −3.48006 1.13074i −0.460130 0.633314i 4.88728 + 3.55082i 0.279529 + 0.860301i 6.44624i
16.3 −0.609729 1.87655i −1.09362 + 1.50523i −1.53164 + 1.11281i −2.63951 0.857628i 3.49146 + 1.13444i 1.01174 + 1.39254i −0.170457 0.123844i −0.142682 0.439131i 5.47610i
16.4 −0.609729 1.87655i 1.09362 1.50523i −1.53164 + 1.11281i 2.63951 + 0.857628i −3.49146 1.13444i −1.01174 1.39254i −0.170457 0.123844i −0.142682 0.439131i 5.47610i
16.5 −0.299814 0.922734i −0.345028 + 0.474890i 0.856485 0.622273i −2.20747 0.717252i 0.541642 + 0.175990i −2.36486 3.25494i −2.40083 1.74430i 0.820575 + 2.52547i 2.25195i
16.6 −0.299814 0.922734i 0.345028 0.474890i 0.856485 0.622273i 2.20747 + 0.717252i −0.541642 0.175990i 2.36486 + 3.25494i −2.40083 1.74430i 0.820575 + 2.52547i 2.25195i
16.7 −0.150351 0.462733i −1.01595 + 1.39834i 1.42652 1.03643i 0.411135 + 0.133586i 0.799806 + 0.259873i 1.36610 + 1.88027i −1.48131 1.07624i 0.00385940 + 0.0118780i 0.210330i
16.8 −0.150351 0.462733i 1.01595 1.39834i 1.42652 1.03643i −0.411135 0.133586i −0.799806 0.259873i −1.36610 1.88027i −1.48131 1.07624i 0.00385940 + 0.0118780i 0.210330i
16.9 0.0862831 + 0.265552i −1.41541 + 1.94814i 1.55496 1.12975i 3.81388 + 1.23921i −0.639458 0.207772i −2.14946 2.95848i 0.885957 + 0.643686i −0.864821 2.66164i 1.11971i
16.10 0.0862831 + 0.265552i 1.41541 1.94814i 1.55496 1.12975i −3.81388 1.23921i 0.639458 + 0.207772i 2.14946 + 2.95848i 0.885957 + 0.643686i −0.864821 2.66164i 1.11971i
16.11 0.418751 + 1.28878i −0.465953 + 0.641330i 0.132428 0.0962145i 0.416272 + 0.135255i −1.02165 0.331955i 0.474970 + 0.653740i 2.37206 + 1.72340i 0.732860 + 2.25551i 0.593122i
16.12 0.418751 + 1.28878i 0.465953 0.641330i 0.132428 0.0962145i −0.416272 0.135255i 1.02165 + 0.331955i −0.474970 0.653740i 2.37206 + 1.72340i 0.732860 + 2.25551i 0.593122i
16.13 0.636250 + 1.95818i −1.78295 + 2.45402i −1.81160 + 1.31621i −0.308808 0.100338i −5.93981 1.92996i 0.911451 + 1.25450i −0.398550 0.289564i −1.91626 5.89763i 0.668541i
16.14 0.636250 + 1.95818i 1.78295 2.45402i −1.81160 + 1.31621i 0.308808 + 0.100338i 5.93981 + 1.92996i −0.911451 1.25450i −0.398550 0.289564i −1.91626 5.89763i 0.668541i
16.15 0.817781 + 2.51687i −0.0601072 + 0.0827304i −4.04784 + 2.94093i 3.67505 + 1.19410i −0.257376 0.0836266i −1.36656 1.88091i −6.43022 4.67183i 0.923820 + 2.84322i 10.2261i
16.16 0.817781 + 2.51687i 0.0601072 0.0827304i −4.04784 + 2.94093i −3.67505 1.19410i 0.257376 + 0.0836266i 1.36656 + 1.88091i −6.43022 4.67183i 0.923820 + 2.84322i 10.2261i
135.1 −2.20158 + 1.59954i −2.67663 + 0.869690i 1.67040 5.14095i 0.525344 0.723074i 4.50172 6.19609i 1.60348 + 0.521001i 2.86380 + 8.81387i 3.98094 2.89232i 2.43222i
135.2 −2.20158 + 1.59954i 2.67663 0.869690i 1.67040 5.14095i −0.525344 + 0.723074i −4.50172 + 6.19609i −1.60348 0.521001i 2.86380 + 8.81387i 3.98094 2.89232i 2.43222i
135.3 −1.68340 + 1.22306i −0.00997681 + 0.00324166i 0.719917 2.21568i 0.572549 0.788046i 0.0128302 0.0176592i −3.51500 1.14209i 0.211997 + 0.652459i −2.42696 + 1.76329i 2.02686i
135.4 −1.68340 + 1.22306i 0.00997681 0.00324166i 0.719917 2.21568i −0.572549 + 0.788046i −0.0128302 + 0.0176592i 3.51500 + 1.14209i 0.211997 + 0.652459i −2.42696 + 1.76329i 2.02686i
See all 64 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 169.16
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Hecke kernels

There are no other newforms in \(S_{2}^{\mathrm{new}}(187, [\chi])\).