Properties

Label 1859.4.a.h.1.4
Level $1859$
Weight $4$
Character 1859.1
Self dual yes
Analytic conductor $109.685$
Analytic rank $0$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1859,4,Mod(1,1859)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1859.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1859, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,0,-6,50,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(0\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 93 x^{15} - 7 x^{14} + 3449 x^{13} + 406 x^{12} - 65242 x^{11} - 7942 x^{10} + 669163 x^{9} + \cdots - 2210688 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-4.13824\) of defining polynomial
Character \(\chi\) \(=\) 1859.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.13824 q^{2} -5.47866 q^{3} +9.12507 q^{4} +3.23279 q^{5} +22.6720 q^{6} -3.07367 q^{7} -4.65582 q^{8} +3.01573 q^{9} -13.3781 q^{10} -11.0000 q^{11} -49.9932 q^{12} +12.7196 q^{14} -17.7114 q^{15} -53.7336 q^{16} +108.135 q^{17} -12.4798 q^{18} -92.3270 q^{19} +29.4995 q^{20} +16.8396 q^{21} +45.5207 q^{22} -110.402 q^{23} +25.5077 q^{24} -114.549 q^{25} +131.402 q^{27} -28.0475 q^{28} +7.82111 q^{29} +73.2940 q^{30} -96.9102 q^{31} +259.610 q^{32} +60.2653 q^{33} -447.489 q^{34} -9.93654 q^{35} +27.5187 q^{36} +234.183 q^{37} +382.072 q^{38} -15.0513 q^{40} -433.525 q^{41} -69.6864 q^{42} +132.932 q^{43} -100.376 q^{44} +9.74923 q^{45} +456.869 q^{46} +415.715 q^{47} +294.388 q^{48} -333.553 q^{49} +474.032 q^{50} -592.435 q^{51} +69.7025 q^{53} -543.772 q^{54} -35.5607 q^{55} +14.3105 q^{56} +505.828 q^{57} -32.3657 q^{58} -1.32853 q^{59} -161.618 q^{60} +243.415 q^{61} +401.038 q^{62} -9.26936 q^{63} -644.459 q^{64} -249.392 q^{66} -273.666 q^{67} +986.740 q^{68} +604.853 q^{69} +41.1198 q^{70} +1081.72 q^{71} -14.0407 q^{72} -99.5536 q^{73} -969.106 q^{74} +627.575 q^{75} -842.490 q^{76} +33.8104 q^{77} -1173.86 q^{79} -173.710 q^{80} -801.330 q^{81} +1794.03 q^{82} -468.226 q^{83} +153.663 q^{84} +349.578 q^{85} -550.106 q^{86} -42.8492 q^{87} +51.2140 q^{88} +1031.51 q^{89} -40.3447 q^{90} -1007.42 q^{92} +530.938 q^{93} -1720.33 q^{94} -298.474 q^{95} -1422.31 q^{96} +980.595 q^{97} +1380.32 q^{98} -33.1730 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q - 6 q^{3} + 50 q^{4} + 24 q^{5} - 16 q^{6} + 62 q^{7} + 21 q^{8} + 135 q^{9} + 2 q^{10} - 187 q^{11} - 127 q^{12} + 148 q^{15} + 126 q^{16} - 74 q^{17} - 90 q^{18} + 159 q^{19} + 222 q^{20} + 184 q^{21}+ \cdots - 1485 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.13824 −1.46309 −0.731545 0.681793i \(-0.761201\pi\)
−0.731545 + 0.681793i \(0.761201\pi\)
\(3\) −5.47866 −1.05437 −0.527184 0.849751i \(-0.676752\pi\)
−0.527184 + 0.849751i \(0.676752\pi\)
\(4\) 9.12507 1.14063
\(5\) 3.23279 0.289150 0.144575 0.989494i \(-0.453819\pi\)
0.144575 + 0.989494i \(0.453819\pi\)
\(6\) 22.6720 1.54264
\(7\) −3.07367 −0.165963 −0.0829813 0.996551i \(-0.526444\pi\)
−0.0829813 + 0.996551i \(0.526444\pi\)
\(8\) −4.65582 −0.205760
\(9\) 3.01573 0.111694
\(10\) −13.3781 −0.423052
\(11\) −11.0000 −0.301511
\(12\) −49.9932 −1.20265
\(13\) 0 0
\(14\) 12.7196 0.242818
\(15\) −17.7114 −0.304870
\(16\) −53.7336 −0.839588
\(17\) 108.135 1.54274 0.771370 0.636386i \(-0.219572\pi\)
0.771370 + 0.636386i \(0.219572\pi\)
\(18\) −12.4798 −0.163418
\(19\) −92.3270 −1.11480 −0.557401 0.830243i \(-0.688202\pi\)
−0.557401 + 0.830243i \(0.688202\pi\)
\(20\) 29.4995 0.329814
\(21\) 16.8396 0.174986
\(22\) 45.5207 0.441138
\(23\) −110.402 −1.00088 −0.500442 0.865770i \(-0.666829\pi\)
−0.500442 + 0.865770i \(0.666829\pi\)
\(24\) 25.5077 0.216947
\(25\) −114.549 −0.916392
\(26\) 0 0
\(27\) 131.402 0.936603
\(28\) −28.0475 −0.189303
\(29\) 7.82111 0.0500808 0.0250404 0.999686i \(-0.492029\pi\)
0.0250404 + 0.999686i \(0.492029\pi\)
\(30\) 73.2940 0.446053
\(31\) −96.9102 −0.561471 −0.280735 0.959785i \(-0.590578\pi\)
−0.280735 + 0.959785i \(0.590578\pi\)
\(32\) 259.610 1.43415
\(33\) 60.2653 0.317904
\(34\) −447.489 −2.25717
\(35\) −9.93654 −0.0479880
\(36\) 27.5187 0.127402
\(37\) 234.183 1.04053 0.520263 0.854006i \(-0.325834\pi\)
0.520263 + 0.854006i \(0.325834\pi\)
\(38\) 382.072 1.63106
\(39\) 0 0
\(40\) −15.0513 −0.0594955
\(41\) −433.525 −1.65135 −0.825673 0.564149i \(-0.809205\pi\)
−0.825673 + 0.564149i \(0.809205\pi\)
\(42\) −69.6864 −0.256020
\(43\) 132.932 0.471441 0.235720 0.971821i \(-0.424255\pi\)
0.235720 + 0.971821i \(0.424255\pi\)
\(44\) −100.376 −0.343914
\(45\) 9.74923 0.0322962
\(46\) 456.869 1.46438
\(47\) 415.715 1.29018 0.645088 0.764108i \(-0.276821\pi\)
0.645088 + 0.764108i \(0.276821\pi\)
\(48\) 294.388 0.885236
\(49\) −333.553 −0.972456
\(50\) 474.032 1.34077
\(51\) −592.435 −1.62662
\(52\) 0 0
\(53\) 69.7025 0.180648 0.0903242 0.995912i \(-0.471210\pi\)
0.0903242 + 0.995912i \(0.471210\pi\)
\(54\) −543.772 −1.37033
\(55\) −35.5607 −0.0871819
\(56\) 14.3105 0.0341485
\(57\) 505.828 1.17541
\(58\) −32.3657 −0.0732728
\(59\) −1.32853 −0.00293152 −0.00146576 0.999999i \(-0.500467\pi\)
−0.00146576 + 0.999999i \(0.500467\pi\)
\(60\) −161.618 −0.347746
\(61\) 243.415 0.510920 0.255460 0.966820i \(-0.417773\pi\)
0.255460 + 0.966820i \(0.417773\pi\)
\(62\) 401.038 0.821482
\(63\) −9.26936 −0.0185370
\(64\) −644.459 −1.25871
\(65\) 0 0
\(66\) −249.392 −0.465123
\(67\) −273.666 −0.499009 −0.249504 0.968374i \(-0.580268\pi\)
−0.249504 + 0.968374i \(0.580268\pi\)
\(68\) 986.740 1.75970
\(69\) 604.853 1.05530
\(70\) 41.1198 0.0702108
\(71\) 1081.72 1.80811 0.904057 0.427412i \(-0.140575\pi\)
0.904057 + 0.427412i \(0.140575\pi\)
\(72\) −14.0407 −0.0229821
\(73\) −99.5536 −0.159615 −0.0798073 0.996810i \(-0.525431\pi\)
−0.0798073 + 0.996810i \(0.525431\pi\)
\(74\) −969.106 −1.52238
\(75\) 627.575 0.966216
\(76\) −842.490 −1.27158
\(77\) 33.8104 0.0500396
\(78\) 0 0
\(79\) −1173.86 −1.67177 −0.835887 0.548902i \(-0.815046\pi\)
−0.835887 + 0.548902i \(0.815046\pi\)
\(80\) −173.710 −0.242767
\(81\) −801.330 −1.09922
\(82\) 1794.03 2.41607
\(83\) −468.226 −0.619211 −0.309605 0.950865i \(-0.600197\pi\)
−0.309605 + 0.950865i \(0.600197\pi\)
\(84\) 153.663 0.199595
\(85\) 349.578 0.446083
\(86\) −550.106 −0.689761
\(87\) −42.8492 −0.0528036
\(88\) 51.2140 0.0620390
\(89\) 1031.51 1.22853 0.614266 0.789099i \(-0.289452\pi\)
0.614266 + 0.789099i \(0.289452\pi\)
\(90\) −40.3447 −0.0472523
\(91\) 0 0
\(92\) −1007.42 −1.14164
\(93\) 530.938 0.591997
\(94\) −1720.33 −1.88765
\(95\) −298.474 −0.322345
\(96\) −1422.31 −1.51213
\(97\) 980.595 1.02644 0.513218 0.858258i \(-0.328453\pi\)
0.513218 + 0.858258i \(0.328453\pi\)
\(98\) 1380.32 1.42279
\(99\) −33.1730 −0.0336769
\(100\) −1045.27 −1.04527
\(101\) 187.734 0.184953 0.0924764 0.995715i \(-0.470522\pi\)
0.0924764 + 0.995715i \(0.470522\pi\)
\(102\) 2451.64 2.37989
\(103\) −400.158 −0.382803 −0.191402 0.981512i \(-0.561303\pi\)
−0.191402 + 0.981512i \(0.561303\pi\)
\(104\) 0 0
\(105\) 54.4389 0.0505971
\(106\) −288.446 −0.264305
\(107\) −335.665 −0.303271 −0.151635 0.988437i \(-0.548454\pi\)
−0.151635 + 0.988437i \(0.548454\pi\)
\(108\) 1199.05 1.06832
\(109\) −7.36478 −0.00647173 −0.00323586 0.999995i \(-0.501030\pi\)
−0.00323586 + 0.999995i \(0.501030\pi\)
\(110\) 147.159 0.127555
\(111\) −1283.01 −1.09710
\(112\) 165.159 0.139340
\(113\) −2227.71 −1.85456 −0.927279 0.374372i \(-0.877858\pi\)
−0.927279 + 0.374372i \(0.877858\pi\)
\(114\) −2093.24 −1.71974
\(115\) −356.905 −0.289405
\(116\) 71.3682 0.0571239
\(117\) 0 0
\(118\) 5.49777 0.00428907
\(119\) −332.371 −0.256037
\(120\) 82.4610 0.0627302
\(121\) 121.000 0.0909091
\(122\) −1007.31 −0.747522
\(123\) 2375.14 1.74113
\(124\) −884.313 −0.640432
\(125\) −774.412 −0.554124
\(126\) 38.3589 0.0271213
\(127\) −1126.12 −0.786825 −0.393412 0.919362i \(-0.628706\pi\)
−0.393412 + 0.919362i \(0.628706\pi\)
\(128\) 590.052 0.407451
\(129\) −728.290 −0.497073
\(130\) 0 0
\(131\) −1230.07 −0.820397 −0.410198 0.911996i \(-0.634541\pi\)
−0.410198 + 0.911996i \(0.634541\pi\)
\(132\) 549.925 0.362612
\(133\) 283.783 0.185016
\(134\) 1132.50 0.730095
\(135\) 424.794 0.270818
\(136\) −503.457 −0.317435
\(137\) −727.408 −0.453625 −0.226813 0.973938i \(-0.572831\pi\)
−0.226813 + 0.973938i \(0.572831\pi\)
\(138\) −2503.03 −1.54400
\(139\) −1204.06 −0.734726 −0.367363 0.930078i \(-0.619739\pi\)
−0.367363 + 0.930078i \(0.619739\pi\)
\(140\) −90.6716 −0.0547368
\(141\) −2277.56 −1.36032
\(142\) −4476.41 −2.64543
\(143\) 0 0
\(144\) −162.046 −0.0937767
\(145\) 25.2840 0.0144809
\(146\) 411.977 0.233531
\(147\) 1827.42 1.02533
\(148\) 2136.94 1.18686
\(149\) −1031.23 −0.566990 −0.283495 0.958974i \(-0.591494\pi\)
−0.283495 + 0.958974i \(0.591494\pi\)
\(150\) −2597.06 −1.41366
\(151\) −255.236 −0.137555 −0.0687774 0.997632i \(-0.521910\pi\)
−0.0687774 + 0.997632i \(0.521910\pi\)
\(152\) 429.858 0.229382
\(153\) 326.106 0.172314
\(154\) −139.916 −0.0732125
\(155\) −313.291 −0.162349
\(156\) 0 0
\(157\) −1516.26 −0.770770 −0.385385 0.922756i \(-0.625931\pi\)
−0.385385 + 0.922756i \(0.625931\pi\)
\(158\) 4857.74 2.44596
\(159\) −381.876 −0.190470
\(160\) 839.264 0.414685
\(161\) 339.338 0.166109
\(162\) 3316.10 1.60826
\(163\) −2615.63 −1.25689 −0.628443 0.777856i \(-0.716307\pi\)
−0.628443 + 0.777856i \(0.716307\pi\)
\(164\) −3955.95 −1.88358
\(165\) 194.825 0.0919219
\(166\) 1937.63 0.905961
\(167\) −1119.67 −0.518820 −0.259410 0.965767i \(-0.583528\pi\)
−0.259410 + 0.965767i \(0.583528\pi\)
\(168\) −78.4022 −0.0360051
\(169\) 0 0
\(170\) −1446.64 −0.652660
\(171\) −278.433 −0.124516
\(172\) 1213.02 0.537742
\(173\) −3927.62 −1.72608 −0.863039 0.505138i \(-0.831442\pi\)
−0.863039 + 0.505138i \(0.831442\pi\)
\(174\) 177.321 0.0772565
\(175\) 352.086 0.152087
\(176\) 591.070 0.253145
\(177\) 7.27855 0.00309090
\(178\) −4268.62 −1.79745
\(179\) −3795.33 −1.58478 −0.792392 0.610012i \(-0.791164\pi\)
−0.792392 + 0.610012i \(0.791164\pi\)
\(180\) 88.9624 0.0368381
\(181\) 3397.19 1.39509 0.697545 0.716541i \(-0.254276\pi\)
0.697545 + 0.716541i \(0.254276\pi\)
\(182\) 0 0
\(183\) −1333.59 −0.538698
\(184\) 514.010 0.205942
\(185\) 757.065 0.300868
\(186\) −2197.15 −0.866145
\(187\) −1189.49 −0.465154
\(188\) 3793.43 1.47162
\(189\) −403.885 −0.155441
\(190\) 1235.16 0.471620
\(191\) 3666.36 1.38895 0.694473 0.719519i \(-0.255638\pi\)
0.694473 + 0.719519i \(0.255638\pi\)
\(192\) 3530.77 1.32714
\(193\) 3787.38 1.41255 0.706274 0.707939i \(-0.250375\pi\)
0.706274 + 0.707939i \(0.250375\pi\)
\(194\) −4057.94 −1.50177
\(195\) 0 0
\(196\) −3043.69 −1.10922
\(197\) 1094.19 0.395724 0.197862 0.980230i \(-0.436600\pi\)
0.197862 + 0.980230i \(0.436600\pi\)
\(198\) 137.278 0.0492724
\(199\) −2686.39 −0.956950 −0.478475 0.878101i \(-0.658810\pi\)
−0.478475 + 0.878101i \(0.658810\pi\)
\(200\) 533.320 0.188557
\(201\) 1499.32 0.526139
\(202\) −776.889 −0.270603
\(203\) −24.0395 −0.00831154
\(204\) −5406.01 −1.85538
\(205\) −1401.50 −0.477486
\(206\) 1655.95 0.560076
\(207\) −332.941 −0.111792
\(208\) 0 0
\(209\) 1015.60 0.336126
\(210\) −225.282 −0.0740281
\(211\) −652.196 −0.212792 −0.106396 0.994324i \(-0.533931\pi\)
−0.106396 + 0.994324i \(0.533931\pi\)
\(212\) 636.040 0.206054
\(213\) −5926.36 −1.90642
\(214\) 1389.06 0.443712
\(215\) 429.742 0.136317
\(216\) −611.783 −0.192716
\(217\) 297.870 0.0931831
\(218\) 30.4773 0.00946872
\(219\) 545.421 0.168293
\(220\) −324.494 −0.0994427
\(221\) 0 0
\(222\) 5309.40 1.60515
\(223\) −1279.96 −0.384359 −0.192180 0.981360i \(-0.561556\pi\)
−0.192180 + 0.981360i \(0.561556\pi\)
\(224\) −797.954 −0.238016
\(225\) −345.449 −0.102355
\(226\) 9218.79 2.71339
\(227\) 767.048 0.224276 0.112138 0.993693i \(-0.464230\pi\)
0.112138 + 0.993693i \(0.464230\pi\)
\(228\) 4615.72 1.34072
\(229\) −1294.52 −0.373555 −0.186778 0.982402i \(-0.559804\pi\)
−0.186778 + 0.982402i \(0.559804\pi\)
\(230\) 1476.96 0.423426
\(231\) −185.236 −0.0527602
\(232\) −36.4137 −0.0103046
\(233\) 6247.63 1.75663 0.878317 0.478079i \(-0.158667\pi\)
0.878317 + 0.478079i \(0.158667\pi\)
\(234\) 0 0
\(235\) 1343.92 0.373054
\(236\) −12.1229 −0.00334379
\(237\) 6431.21 1.76267
\(238\) 1375.43 0.374606
\(239\) 5367.13 1.45260 0.726299 0.687379i \(-0.241239\pi\)
0.726299 + 0.687379i \(0.241239\pi\)
\(240\) 951.697 0.255966
\(241\) −327.766 −0.0876070 −0.0438035 0.999040i \(-0.513948\pi\)
−0.0438035 + 0.999040i \(0.513948\pi\)
\(242\) −500.728 −0.133008
\(243\) 842.370 0.222379
\(244\) 2221.18 0.582772
\(245\) −1078.31 −0.281186
\(246\) −9828.89 −2.54743
\(247\) 0 0
\(248\) 451.197 0.115528
\(249\) 2565.25 0.652876
\(250\) 3204.71 0.810734
\(251\) 4172.03 1.04915 0.524575 0.851364i \(-0.324224\pi\)
0.524575 + 0.851364i \(0.324224\pi\)
\(252\) −84.5835 −0.0211439
\(253\) 1214.42 0.301778
\(254\) 4660.15 1.15120
\(255\) −1915.22 −0.470336
\(256\) 2713.89 0.662571
\(257\) −484.450 −0.117584 −0.0587921 0.998270i \(-0.518725\pi\)
−0.0587921 + 0.998270i \(0.518725\pi\)
\(258\) 3013.84 0.727262
\(259\) −719.801 −0.172688
\(260\) 0 0
\(261\) 23.5863 0.00559371
\(262\) 5090.34 1.20031
\(263\) −7426.95 −1.74131 −0.870656 0.491892i \(-0.836305\pi\)
−0.870656 + 0.491892i \(0.836305\pi\)
\(264\) −280.584 −0.0654120
\(265\) 225.334 0.0522345
\(266\) −1174.36 −0.270695
\(267\) −5651.27 −1.29533
\(268\) −2497.22 −0.569186
\(269\) −7383.59 −1.67355 −0.836776 0.547545i \(-0.815562\pi\)
−0.836776 + 0.547545i \(0.815562\pi\)
\(270\) −1757.90 −0.396232
\(271\) 3292.47 0.738019 0.369010 0.929426i \(-0.379697\pi\)
0.369010 + 0.929426i \(0.379697\pi\)
\(272\) −5810.49 −1.29527
\(273\) 0 0
\(274\) 3010.19 0.663695
\(275\) 1260.04 0.276303
\(276\) 5519.33 1.20371
\(277\) 3111.37 0.674889 0.337445 0.941345i \(-0.390437\pi\)
0.337445 + 0.941345i \(0.390437\pi\)
\(278\) 4982.69 1.07497
\(279\) −292.255 −0.0627127
\(280\) 46.2627 0.00987403
\(281\) 7334.55 1.55709 0.778545 0.627589i \(-0.215958\pi\)
0.778545 + 0.627589i \(0.215958\pi\)
\(282\) 9425.12 1.99027
\(283\) −2665.32 −0.559848 −0.279924 0.960022i \(-0.590309\pi\)
−0.279924 + 0.960022i \(0.590309\pi\)
\(284\) 9870.74 2.06240
\(285\) 1635.24 0.339871
\(286\) 0 0
\(287\) 1332.51 0.274062
\(288\) 782.912 0.160186
\(289\) 6780.18 1.38005
\(290\) −104.631 −0.0211868
\(291\) −5372.35 −1.08224
\(292\) −908.434 −0.182062
\(293\) −1182.67 −0.235810 −0.117905 0.993025i \(-0.537618\pi\)
−0.117905 + 0.993025i \(0.537618\pi\)
\(294\) −7562.32 −1.50015
\(295\) −4.29485 −0.000847647 0
\(296\) −1090.31 −0.214099
\(297\) −1445.42 −0.282396
\(298\) 4267.48 0.829558
\(299\) 0 0
\(300\) 5726.67 1.10210
\(301\) −408.590 −0.0782416
\(302\) 1056.23 0.201255
\(303\) −1028.53 −0.195008
\(304\) 4961.06 0.935975
\(305\) 786.910 0.147732
\(306\) −1349.51 −0.252112
\(307\) −5375.34 −0.999306 −0.499653 0.866226i \(-0.666539\pi\)
−0.499653 + 0.866226i \(0.666539\pi\)
\(308\) 308.522 0.0570769
\(309\) 2192.33 0.403616
\(310\) 1296.47 0.237531
\(311\) −1510.90 −0.275483 −0.137741 0.990468i \(-0.543984\pi\)
−0.137741 + 0.990468i \(0.543984\pi\)
\(312\) 0 0
\(313\) 9251.65 1.67072 0.835358 0.549706i \(-0.185260\pi\)
0.835358 + 0.549706i \(0.185260\pi\)
\(314\) 6274.67 1.12771
\(315\) −29.9659 −0.00535996
\(316\) −10711.6 −1.90688
\(317\) 333.065 0.0590120 0.0295060 0.999565i \(-0.490607\pi\)
0.0295060 + 0.999565i \(0.490607\pi\)
\(318\) 1580.30 0.278675
\(319\) −86.0322 −0.0150999
\(320\) −2083.40 −0.363955
\(321\) 1838.99 0.319759
\(322\) −1404.26 −0.243033
\(323\) −9983.78 −1.71985
\(324\) −7312.19 −1.25381
\(325\) 0 0
\(326\) 10824.1 1.83894
\(327\) 40.3492 0.00682359
\(328\) 2018.41 0.339781
\(329\) −1277.77 −0.214121
\(330\) −806.234 −0.134490
\(331\) 1866.39 0.309927 0.154964 0.987920i \(-0.450474\pi\)
0.154964 + 0.987920i \(0.450474\pi\)
\(332\) −4272.60 −0.706293
\(333\) 706.232 0.116220
\(334\) 4633.48 0.759080
\(335\) −884.704 −0.144288
\(336\) −904.853 −0.146916
\(337\) 8318.96 1.34470 0.672348 0.740235i \(-0.265286\pi\)
0.672348 + 0.740235i \(0.265286\pi\)
\(338\) 0 0
\(339\) 12204.8 1.95539
\(340\) 3189.92 0.508818
\(341\) 1066.01 0.169290
\(342\) 1152.22 0.182179
\(343\) 2079.50 0.327354
\(344\) −618.908 −0.0970038
\(345\) 1955.36 0.305140
\(346\) 16253.4 2.52541
\(347\) −2059.59 −0.318630 −0.159315 0.987228i \(-0.550929\pi\)
−0.159315 + 0.987228i \(0.550929\pi\)
\(348\) −391.002 −0.0602296
\(349\) −1417.89 −0.217472 −0.108736 0.994071i \(-0.534680\pi\)
−0.108736 + 0.994071i \(0.534680\pi\)
\(350\) −1457.02 −0.222517
\(351\) 0 0
\(352\) −2855.71 −0.432414
\(353\) 4950.04 0.746357 0.373178 0.927760i \(-0.378268\pi\)
0.373178 + 0.927760i \(0.378268\pi\)
\(354\) −30.1204 −0.00452226
\(355\) 3496.96 0.522816
\(356\) 9412.56 1.40131
\(357\) 1820.95 0.269958
\(358\) 15706.0 2.31868
\(359\) 344.471 0.0506420 0.0253210 0.999679i \(-0.491939\pi\)
0.0253210 + 0.999679i \(0.491939\pi\)
\(360\) −45.3907 −0.00664527
\(361\) 1665.27 0.242786
\(362\) −14058.4 −2.04114
\(363\) −662.918 −0.0958517
\(364\) 0 0
\(365\) −321.836 −0.0461525
\(366\) 5518.72 0.788164
\(367\) −3595.14 −0.511348 −0.255674 0.966763i \(-0.582297\pi\)
−0.255674 + 0.966763i \(0.582297\pi\)
\(368\) 5932.28 0.840330
\(369\) −1307.39 −0.184445
\(370\) −3132.92 −0.440196
\(371\) −214.242 −0.0299809
\(372\) 4844.85 0.675252
\(373\) 6206.27 0.861525 0.430762 0.902465i \(-0.358245\pi\)
0.430762 + 0.902465i \(0.358245\pi\)
\(374\) 4922.38 0.680562
\(375\) 4242.74 0.584251
\(376\) −1935.50 −0.265467
\(377\) 0 0
\(378\) 1671.38 0.227424
\(379\) 10764.9 1.45899 0.729493 0.683988i \(-0.239756\pi\)
0.729493 + 0.683988i \(0.239756\pi\)
\(380\) −2723.60 −0.367678
\(381\) 6169.62 0.829604
\(382\) −15172.3 −2.03215
\(383\) −13739.1 −1.83298 −0.916492 0.400053i \(-0.868992\pi\)
−0.916492 + 0.400053i \(0.868992\pi\)
\(384\) −3232.69 −0.429603
\(385\) 109.302 0.0144689
\(386\) −15673.1 −2.06669
\(387\) 400.887 0.0526570
\(388\) 8948.00 1.17079
\(389\) −10629.5 −1.38544 −0.692721 0.721206i \(-0.743588\pi\)
−0.692721 + 0.721206i \(0.743588\pi\)
\(390\) 0 0
\(391\) −11938.3 −1.54410
\(392\) 1552.96 0.200093
\(393\) 6739.15 0.865001
\(394\) −4528.02 −0.578981
\(395\) −3794.86 −0.483393
\(396\) −302.706 −0.0384130
\(397\) 14762.8 1.86631 0.933155 0.359475i \(-0.117044\pi\)
0.933155 + 0.359475i \(0.117044\pi\)
\(398\) 11116.9 1.40010
\(399\) −1554.75 −0.195075
\(400\) 6155.14 0.769392
\(401\) −5159.90 −0.642576 −0.321288 0.946981i \(-0.604116\pi\)
−0.321288 + 0.946981i \(0.604116\pi\)
\(402\) −6204.56 −0.769789
\(403\) 0 0
\(404\) 1713.09 0.210963
\(405\) −2590.53 −0.317839
\(406\) 99.4814 0.0121605
\(407\) −2576.01 −0.313730
\(408\) 2758.27 0.334693
\(409\) 11113.5 1.34359 0.671795 0.740737i \(-0.265524\pi\)
0.671795 + 0.740737i \(0.265524\pi\)
\(410\) 5799.73 0.698606
\(411\) 3985.22 0.478288
\(412\) −3651.47 −0.436638
\(413\) 4.08345 0.000486522 0
\(414\) 1377.79 0.163562
\(415\) −1513.68 −0.179045
\(416\) 0 0
\(417\) 6596.63 0.774673
\(418\) −4202.79 −0.491782
\(419\) 9745.59 1.13628 0.568142 0.822930i \(-0.307662\pi\)
0.568142 + 0.822930i \(0.307662\pi\)
\(420\) 496.759 0.0577128
\(421\) 7072.29 0.818722 0.409361 0.912372i \(-0.365752\pi\)
0.409361 + 0.912372i \(0.365752\pi\)
\(422\) 2698.95 0.311334
\(423\) 1253.68 0.144105
\(424\) −324.522 −0.0371703
\(425\) −12386.8 −1.41376
\(426\) 24524.7 2.78926
\(427\) −748.177 −0.0847935
\(428\) −3062.97 −0.345921
\(429\) 0 0
\(430\) −1778.38 −0.199444
\(431\) 8471.03 0.946717 0.473358 0.880870i \(-0.343042\pi\)
0.473358 + 0.880870i \(0.343042\pi\)
\(432\) −7060.69 −0.786360
\(433\) −8332.03 −0.924739 −0.462370 0.886687i \(-0.653001\pi\)
−0.462370 + 0.886687i \(0.653001\pi\)
\(434\) −1232.66 −0.136335
\(435\) −138.523 −0.0152682
\(436\) −67.2042 −0.00738187
\(437\) 10193.0 1.11579
\(438\) −2257.08 −0.246228
\(439\) 16042.2 1.74408 0.872041 0.489433i \(-0.162796\pi\)
0.872041 + 0.489433i \(0.162796\pi\)
\(440\) 165.564 0.0179386
\(441\) −1005.90 −0.108617
\(442\) 0 0
\(443\) 498.063 0.0534169 0.0267085 0.999643i \(-0.491497\pi\)
0.0267085 + 0.999643i \(0.491497\pi\)
\(444\) −11707.5 −1.25139
\(445\) 3334.64 0.355230
\(446\) 5296.77 0.562352
\(447\) 5649.75 0.597817
\(448\) 1980.85 0.208899
\(449\) −9530.13 −1.00168 −0.500840 0.865540i \(-0.666976\pi\)
−0.500840 + 0.865540i \(0.666976\pi\)
\(450\) 1429.55 0.149755
\(451\) 4768.77 0.497900
\(452\) −20328.0 −2.11537
\(453\) 1398.35 0.145034
\(454\) −3174.23 −0.328137
\(455\) 0 0
\(456\) −2355.05 −0.241853
\(457\) 6589.12 0.674455 0.337227 0.941423i \(-0.390511\pi\)
0.337227 + 0.941423i \(0.390511\pi\)
\(458\) 5357.03 0.546545
\(459\) 14209.1 1.44493
\(460\) −3256.79 −0.330105
\(461\) 10954.4 1.10671 0.553357 0.832944i \(-0.313346\pi\)
0.553357 + 0.832944i \(0.313346\pi\)
\(462\) 766.550 0.0771929
\(463\) 12996.6 1.30454 0.652270 0.757987i \(-0.273817\pi\)
0.652270 + 0.757987i \(0.273817\pi\)
\(464\) −420.257 −0.0420473
\(465\) 1716.41 0.171176
\(466\) −25854.2 −2.57011
\(467\) 15442.2 1.53015 0.765073 0.643943i \(-0.222703\pi\)
0.765073 + 0.643943i \(0.222703\pi\)
\(468\) 0 0
\(469\) 841.158 0.0828168
\(470\) −5561.48 −0.545812
\(471\) 8307.09 0.812676
\(472\) 6.18538 0.000603189 0
\(473\) −1462.25 −0.142145
\(474\) −26613.9 −2.57894
\(475\) 10576.0 1.02160
\(476\) −3032.91 −0.292045
\(477\) 210.204 0.0201773
\(478\) −22210.5 −2.12528
\(479\) −14879.9 −1.41937 −0.709687 0.704517i \(-0.751164\pi\)
−0.709687 + 0.704517i \(0.751164\pi\)
\(480\) −4598.04 −0.437231
\(481\) 0 0
\(482\) 1356.38 0.128177
\(483\) −1859.12 −0.175140
\(484\) 1104.13 0.103694
\(485\) 3170.06 0.296794
\(486\) −3485.93 −0.325360
\(487\) −11602.3 −1.07957 −0.539784 0.841803i \(-0.681494\pi\)
−0.539784 + 0.841803i \(0.681494\pi\)
\(488\) −1133.30 −0.105127
\(489\) 14330.2 1.32522
\(490\) 4462.29 0.411400
\(491\) 7050.00 0.647988 0.323994 0.946059i \(-0.394974\pi\)
0.323994 + 0.946059i \(0.394974\pi\)
\(492\) 21673.3 1.98599
\(493\) 845.736 0.0772617
\(494\) 0 0
\(495\) −107.241 −0.00973767
\(496\) 5207.34 0.471404
\(497\) −3324.84 −0.300079
\(498\) −10615.6 −0.955217
\(499\) −18183.7 −1.63129 −0.815646 0.578552i \(-0.803618\pi\)
−0.815646 + 0.578552i \(0.803618\pi\)
\(500\) −7066.57 −0.632053
\(501\) 6134.31 0.547027
\(502\) −17264.9 −1.53500
\(503\) 14372.9 1.27407 0.637034 0.770836i \(-0.280161\pi\)
0.637034 + 0.770836i \(0.280161\pi\)
\(504\) 43.1565 0.00381417
\(505\) 606.905 0.0534790
\(506\) −5025.56 −0.441528
\(507\) 0 0
\(508\) −10275.9 −0.897479
\(509\) 1165.95 0.101532 0.0507661 0.998711i \(-0.483834\pi\)
0.0507661 + 0.998711i \(0.483834\pi\)
\(510\) 7925.65 0.688144
\(511\) 305.995 0.0264901
\(512\) −15951.2 −1.37685
\(513\) −12131.9 −1.04413
\(514\) 2004.77 0.172036
\(515\) −1293.63 −0.110687
\(516\) −6645.70 −0.566978
\(517\) −4572.87 −0.389003
\(518\) 2978.71 0.252659
\(519\) 21518.1 1.81992
\(520\) 0 0
\(521\) 2969.89 0.249737 0.124869 0.992173i \(-0.460149\pi\)
0.124869 + 0.992173i \(0.460149\pi\)
\(522\) −97.6061 −0.00818410
\(523\) −4360.27 −0.364553 −0.182277 0.983247i \(-0.558347\pi\)
−0.182277 + 0.983247i \(0.558347\pi\)
\(524\) −11224.5 −0.935772
\(525\) −1928.96 −0.160356
\(526\) 30734.5 2.54770
\(527\) −10479.4 −0.866204
\(528\) −3238.27 −0.266909
\(529\) 21.5082 0.00176775
\(530\) −932.485 −0.0764237
\(531\) −4.00647 −0.000327432 0
\(532\) 2589.54 0.211035
\(533\) 0 0
\(534\) 23386.3 1.89518
\(535\) −1085.14 −0.0876906
\(536\) 1274.14 0.102676
\(537\) 20793.3 1.67095
\(538\) 30555.1 2.44856
\(539\) 3669.08 0.293207
\(540\) 3876.28 0.308905
\(541\) −17242.0 −1.37023 −0.685113 0.728437i \(-0.740247\pi\)
−0.685113 + 0.728437i \(0.740247\pi\)
\(542\) −13625.0 −1.07979
\(543\) −18612.1 −1.47094
\(544\) 28072.9 2.21253
\(545\) −23.8088 −0.00187130
\(546\) 0 0
\(547\) −2415.39 −0.188802 −0.0944008 0.995534i \(-0.530094\pi\)
−0.0944008 + 0.995534i \(0.530094\pi\)
\(548\) −6637.65 −0.517420
\(549\) 734.074 0.0570665
\(550\) −5214.35 −0.404256
\(551\) −722.099 −0.0558302
\(552\) −2816.09 −0.217139
\(553\) 3608.07 0.277452
\(554\) −12875.6 −0.987424
\(555\) −4147.70 −0.317225
\(556\) −10987.1 −0.838054
\(557\) −20942.6 −1.59312 −0.796559 0.604560i \(-0.793349\pi\)
−0.796559 + 0.604560i \(0.793349\pi\)
\(558\) 1209.42 0.0917544
\(559\) 0 0
\(560\) 533.926 0.0402902
\(561\) 6516.79 0.490444
\(562\) −30352.1 −2.27816
\(563\) −6176.56 −0.462364 −0.231182 0.972910i \(-0.574259\pi\)
−0.231182 + 0.972910i \(0.574259\pi\)
\(564\) −20782.9 −1.55163
\(565\) −7201.71 −0.536245
\(566\) 11029.8 0.819109
\(567\) 2463.02 0.182429
\(568\) −5036.28 −0.372038
\(569\) 4914.15 0.362059 0.181030 0.983478i \(-0.442057\pi\)
0.181030 + 0.983478i \(0.442057\pi\)
\(570\) −6767.01 −0.497261
\(571\) 13116.8 0.961332 0.480666 0.876904i \(-0.340395\pi\)
0.480666 + 0.876904i \(0.340395\pi\)
\(572\) 0 0
\(573\) −20086.8 −1.46446
\(574\) −5514.26 −0.400977
\(575\) 12646.4 0.917202
\(576\) −1943.51 −0.140590
\(577\) −1409.16 −0.101671 −0.0508353 0.998707i \(-0.516188\pi\)
−0.0508353 + 0.998707i \(0.516188\pi\)
\(578\) −28058.1 −2.01914
\(579\) −20749.8 −1.48935
\(580\) 230.719 0.0165174
\(581\) 1439.17 0.102766
\(582\) 22232.1 1.58342
\(583\) −766.727 −0.0544676
\(584\) 463.504 0.0328423
\(585\) 0 0
\(586\) 4894.18 0.345011
\(587\) 12830.0 0.902133 0.451066 0.892490i \(-0.351044\pi\)
0.451066 + 0.892490i \(0.351044\pi\)
\(588\) 16675.4 1.16952
\(589\) 8947.42 0.625929
\(590\) 17.7731 0.00124018
\(591\) −5994.69 −0.417239
\(592\) −12583.5 −0.873612
\(593\) −14238.3 −0.986000 −0.493000 0.870029i \(-0.664100\pi\)
−0.493000 + 0.870029i \(0.664100\pi\)
\(594\) 5981.50 0.413171
\(595\) −1074.49 −0.0740331
\(596\) −9410.04 −0.646728
\(597\) 14717.8 1.00898
\(598\) 0 0
\(599\) −20160.7 −1.37520 −0.687599 0.726090i \(-0.741335\pi\)
−0.687599 + 0.726090i \(0.741335\pi\)
\(600\) −2921.88 −0.198809
\(601\) 6735.55 0.457153 0.228576 0.973526i \(-0.426593\pi\)
0.228576 + 0.973526i \(0.426593\pi\)
\(602\) 1690.84 0.114474
\(603\) −825.302 −0.0557361
\(604\) −2329.04 −0.156900
\(605\) 391.168 0.0262863
\(606\) 4256.31 0.285315
\(607\) −5795.95 −0.387562 −0.193781 0.981045i \(-0.562075\pi\)
−0.193781 + 0.981045i \(0.562075\pi\)
\(608\) −23969.0 −1.59880
\(609\) 131.704 0.00876343
\(610\) −3256.43 −0.216146
\(611\) 0 0
\(612\) 2975.74 0.196548
\(613\) 9402.80 0.619536 0.309768 0.950812i \(-0.399749\pi\)
0.309768 + 0.950812i \(0.399749\pi\)
\(614\) 22244.5 1.46208
\(615\) 7678.32 0.503447
\(616\) −157.415 −0.0102962
\(617\) −10512.7 −0.685943 −0.342972 0.939346i \(-0.611433\pi\)
−0.342972 + 0.939346i \(0.611433\pi\)
\(618\) −9072.40 −0.590527
\(619\) 18242.8 1.18455 0.592277 0.805735i \(-0.298229\pi\)
0.592277 + 0.805735i \(0.298229\pi\)
\(620\) −2858.80 −0.185181
\(621\) −14507.0 −0.937430
\(622\) 6252.46 0.403056
\(623\) −3170.51 −0.203890
\(624\) 0 0
\(625\) 11815.1 0.756168
\(626\) −38285.6 −2.44441
\(627\) −5564.11 −0.354401
\(628\) −13836.0 −0.879167
\(629\) 25323.4 1.60526
\(630\) 124.006 0.00784211
\(631\) 110.633 0.00697979 0.00348989 0.999994i \(-0.498889\pi\)
0.00348989 + 0.999994i \(0.498889\pi\)
\(632\) 5465.30 0.343984
\(633\) 3573.16 0.224361
\(634\) −1378.31 −0.0863400
\(635\) −3640.50 −0.227510
\(636\) −3484.65 −0.217257
\(637\) 0 0
\(638\) 356.022 0.0220926
\(639\) 3262.16 0.201955
\(640\) 1907.52 0.117814
\(641\) 21133.5 1.30222 0.651110 0.758984i \(-0.274304\pi\)
0.651110 + 0.758984i \(0.274304\pi\)
\(642\) −7610.21 −0.467837
\(643\) −6375.60 −0.391025 −0.195513 0.980701i \(-0.562637\pi\)
−0.195513 + 0.980701i \(0.562637\pi\)
\(644\) 3096.48 0.189470
\(645\) −2354.41 −0.143728
\(646\) 41315.3 2.51630
\(647\) 16370.2 0.994715 0.497357 0.867546i \(-0.334304\pi\)
0.497357 + 0.867546i \(0.334304\pi\)
\(648\) 3730.85 0.226175
\(649\) 14.6138 0.000883885 0
\(650\) 0 0
\(651\) −1631.93 −0.0982494
\(652\) −23867.9 −1.43365
\(653\) −8137.20 −0.487647 −0.243823 0.969820i \(-0.578402\pi\)
−0.243823 + 0.969820i \(0.578402\pi\)
\(654\) −166.975 −0.00998353
\(655\) −3976.57 −0.237218
\(656\) 23294.9 1.38645
\(657\) −300.227 −0.0178279
\(658\) 5287.73 0.313279
\(659\) −1457.24 −0.0861398 −0.0430699 0.999072i \(-0.513714\pi\)
−0.0430699 + 0.999072i \(0.513714\pi\)
\(660\) 1777.79 0.104849
\(661\) 2974.15 0.175009 0.0875046 0.996164i \(-0.472111\pi\)
0.0875046 + 0.996164i \(0.472111\pi\)
\(662\) −7723.56 −0.453451
\(663\) 0 0
\(664\) 2179.98 0.127409
\(665\) 917.410 0.0534972
\(666\) −2922.56 −0.170040
\(667\) −863.463 −0.0501251
\(668\) −10217.1 −0.591783
\(669\) 7012.44 0.405256
\(670\) 3661.12 0.211107
\(671\) −2677.57 −0.154048
\(672\) 4371.72 0.250957
\(673\) 18003.1 1.03115 0.515577 0.856843i \(-0.327578\pi\)
0.515577 + 0.856843i \(0.327578\pi\)
\(674\) −34425.9 −1.96741
\(675\) −15051.9 −0.858295
\(676\) 0 0
\(677\) −7063.81 −0.401011 −0.200505 0.979693i \(-0.564258\pi\)
−0.200505 + 0.979693i \(0.564258\pi\)
\(678\) −50506.7 −2.86091
\(679\) −3014.03 −0.170350
\(680\) −1627.57 −0.0917861
\(681\) −4202.39 −0.236470
\(682\) −4411.42 −0.247686
\(683\) 6111.70 0.342398 0.171199 0.985236i \(-0.445236\pi\)
0.171199 + 0.985236i \(0.445236\pi\)
\(684\) −2540.72 −0.142028
\(685\) −2351.56 −0.131166
\(686\) −8605.48 −0.478949
\(687\) 7092.23 0.393865
\(688\) −7142.93 −0.395816
\(689\) 0 0
\(690\) −8091.77 −0.446447
\(691\) −28998.0 −1.59644 −0.798218 0.602369i \(-0.794223\pi\)
−0.798218 + 0.602369i \(0.794223\pi\)
\(692\) −35839.8 −1.96882
\(693\) 101.963 0.00558911
\(694\) 8523.09 0.466184
\(695\) −3892.47 −0.212446
\(696\) 199.498 0.0108649
\(697\) −46879.2 −2.54760
\(698\) 5867.57 0.318182
\(699\) −34228.6 −1.85214
\(700\) 3212.81 0.173475
\(701\) 22908.1 1.23428 0.617139 0.786854i \(-0.288292\pi\)
0.617139 + 0.786854i \(0.288292\pi\)
\(702\) 0 0
\(703\) −21621.4 −1.15998
\(704\) 7089.05 0.379515
\(705\) −7362.89 −0.393337
\(706\) −20484.5 −1.09199
\(707\) −577.032 −0.0306952
\(708\) 66.4172 0.00352558
\(709\) 14733.6 0.780440 0.390220 0.920722i \(-0.372399\pi\)
0.390220 + 0.920722i \(0.372399\pi\)
\(710\) −14471.3 −0.764927
\(711\) −3540.06 −0.186726
\(712\) −4802.50 −0.252783
\(713\) 10699.0 0.561967
\(714\) −7535.54 −0.394973
\(715\) 0 0
\(716\) −34632.7 −1.80766
\(717\) −29404.7 −1.53157
\(718\) −1425.50 −0.0740938
\(719\) 13173.8 0.683308 0.341654 0.939826i \(-0.389013\pi\)
0.341654 + 0.939826i \(0.389013\pi\)
\(720\) −523.861 −0.0271155
\(721\) 1229.95 0.0635310
\(722\) −6891.28 −0.355217
\(723\) 1795.72 0.0923701
\(724\) 30999.6 1.59129
\(725\) −895.901 −0.0458937
\(726\) 2743.32 0.140240
\(727\) 36109.7 1.84214 0.921068 0.389401i \(-0.127318\pi\)
0.921068 + 0.389401i \(0.127318\pi\)
\(728\) 0 0
\(729\) 17020.9 0.864749
\(730\) 1331.84 0.0675253
\(731\) 14374.6 0.727311
\(732\) −12169.1 −0.614457
\(733\) 828.387 0.0417424 0.0208712 0.999782i \(-0.493356\pi\)
0.0208712 + 0.999782i \(0.493356\pi\)
\(734\) 14877.6 0.748149
\(735\) 5907.67 0.296473
\(736\) −28661.3 −1.43542
\(737\) 3010.32 0.150457
\(738\) 5410.31 0.269860
\(739\) 29665.0 1.47665 0.738324 0.674446i \(-0.235617\pi\)
0.738324 + 0.674446i \(0.235617\pi\)
\(740\) 6908.27 0.343180
\(741\) 0 0
\(742\) 886.587 0.0438647
\(743\) −5579.15 −0.275477 −0.137738 0.990469i \(-0.543983\pi\)
−0.137738 + 0.990469i \(0.543983\pi\)
\(744\) −2471.95 −0.121809
\(745\) −3333.75 −0.163945
\(746\) −25683.1 −1.26049
\(747\) −1412.04 −0.0691619
\(748\) −10854.1 −0.530570
\(749\) 1031.72 0.0503316
\(750\) −17557.5 −0.854813
\(751\) 12726.3 0.618363 0.309182 0.951003i \(-0.399945\pi\)
0.309182 + 0.951003i \(0.399945\pi\)
\(752\) −22337.9 −1.08322
\(753\) −22857.2 −1.10619
\(754\) 0 0
\(755\) −825.124 −0.0397740
\(756\) −3685.48 −0.177301
\(757\) 4558.65 0.218873 0.109437 0.993994i \(-0.465095\pi\)
0.109437 + 0.993994i \(0.465095\pi\)
\(758\) −44547.8 −2.13463
\(759\) −6653.38 −0.318185
\(760\) 1389.64 0.0663258
\(761\) −33224.3 −1.58263 −0.791315 0.611409i \(-0.790603\pi\)
−0.791315 + 0.611409i \(0.790603\pi\)
\(762\) −25531.4 −1.21379
\(763\) 22.6369 0.00107406
\(764\) 33455.8 1.58428
\(765\) 1054.23 0.0498247
\(766\) 56855.6 2.68182
\(767\) 0 0
\(768\) −14868.5 −0.698594
\(769\) 27508.8 1.28998 0.644990 0.764191i \(-0.276862\pi\)
0.644990 + 0.764191i \(0.276862\pi\)
\(770\) −452.318 −0.0211694
\(771\) 2654.13 0.123977
\(772\) 34560.1 1.61120
\(773\) 39561.8 1.84080 0.920400 0.390979i \(-0.127863\pi\)
0.920400 + 0.390979i \(0.127863\pi\)
\(774\) −1658.97 −0.0770419
\(775\) 11101.0 0.514527
\(776\) −4565.48 −0.211200
\(777\) 3943.55 0.182077
\(778\) 43987.5 2.02703
\(779\) 40026.0 1.84093
\(780\) 0 0
\(781\) −11898.9 −0.545167
\(782\) 49403.5 2.25916
\(783\) 1027.71 0.0469058
\(784\) 17923.0 0.816463
\(785\) −4901.76 −0.222868
\(786\) −27888.3 −1.26557
\(787\) 36638.5 1.65949 0.829747 0.558140i \(-0.188485\pi\)
0.829747 + 0.558140i \(0.188485\pi\)
\(788\) 9984.55 0.451377
\(789\) 40689.7 1.83599
\(790\) 15704.1 0.707247
\(791\) 6847.23 0.307787
\(792\) 154.448 0.00692937
\(793\) 0 0
\(794\) −61092.2 −2.73058
\(795\) −1234.53 −0.0550744
\(796\) −24513.5 −1.09153
\(797\) −18061.1 −0.802707 −0.401354 0.915923i \(-0.631460\pi\)
−0.401354 + 0.915923i \(0.631460\pi\)
\(798\) 6433.93 0.285412
\(799\) 44953.4 1.99041
\(800\) −29738.0 −1.31425
\(801\) 3110.74 0.137219
\(802\) 21352.9 0.940147
\(803\) 1095.09 0.0481256
\(804\) 13681.4 0.600132
\(805\) 1097.01 0.0480304
\(806\) 0 0
\(807\) 40452.2 1.76454
\(808\) −874.056 −0.0380559
\(809\) −39470.6 −1.71534 −0.857672 0.514198i \(-0.828090\pi\)
−0.857672 + 0.514198i \(0.828090\pi\)
\(810\) 10720.3 0.465027
\(811\) −34401.6 −1.48952 −0.744762 0.667330i \(-0.767437\pi\)
−0.744762 + 0.667330i \(0.767437\pi\)
\(812\) −219.362 −0.00948043
\(813\) −18038.3 −0.778145
\(814\) 10660.2 0.459016
\(815\) −8455.80 −0.363428
\(816\) 31833.7 1.36569
\(817\) −12273.2 −0.525564
\(818\) −45990.5 −1.96579
\(819\) 0 0
\(820\) −12788.8 −0.544637
\(821\) 21908.0 0.931298 0.465649 0.884970i \(-0.345821\pi\)
0.465649 + 0.884970i \(0.345821\pi\)
\(822\) −16491.8 −0.699779
\(823\) −18545.6 −0.785493 −0.392746 0.919647i \(-0.628475\pi\)
−0.392746 + 0.919647i \(0.628475\pi\)
\(824\) 1863.06 0.0787657
\(825\) −6903.33 −0.291325
\(826\) −16.8983 −0.000711825 0
\(827\) 35014.8 1.47229 0.736144 0.676825i \(-0.236644\pi\)
0.736144 + 0.676825i \(0.236644\pi\)
\(828\) −3038.11 −0.127514
\(829\) −39014.7 −1.63454 −0.817271 0.576253i \(-0.804514\pi\)
−0.817271 + 0.576253i \(0.804514\pi\)
\(830\) 6263.97 0.261958
\(831\) −17046.2 −0.711582
\(832\) 0 0
\(833\) −36068.7 −1.50025
\(834\) −27298.5 −1.13342
\(835\) −3619.67 −0.150017
\(836\) 9267.39 0.383396
\(837\) −12734.2 −0.525875
\(838\) −40329.7 −1.66249
\(839\) −22077.8 −0.908473 −0.454237 0.890881i \(-0.650088\pi\)
−0.454237 + 0.890881i \(0.650088\pi\)
\(840\) −253.458 −0.0104109
\(841\) −24327.8 −0.997492
\(842\) −29266.8 −1.19786
\(843\) −40183.5 −1.64175
\(844\) −5951.34 −0.242717
\(845\) 0 0
\(846\) −5188.05 −0.210838
\(847\) −371.914 −0.0150875
\(848\) −3745.37 −0.151670
\(849\) 14602.4 0.590287
\(850\) 51259.5 2.06845
\(851\) −25854.2 −1.04144
\(852\) −54078.4 −2.17453
\(853\) 32422.4 1.30143 0.650716 0.759321i \(-0.274469\pi\)
0.650716 + 0.759321i \(0.274469\pi\)
\(854\) 3096.14 0.124061
\(855\) −900.116 −0.0360039
\(856\) 1562.80 0.0624010
\(857\) 21775.5 0.867955 0.433977 0.900924i \(-0.357110\pi\)
0.433977 + 0.900924i \(0.357110\pi\)
\(858\) 0 0
\(859\) −19742.5 −0.784172 −0.392086 0.919929i \(-0.628246\pi\)
−0.392086 + 0.919929i \(0.628246\pi\)
\(860\) 3921.43 0.155488
\(861\) −7300.38 −0.288962
\(862\) −35055.2 −1.38513
\(863\) 4855.49 0.191521 0.0957607 0.995404i \(-0.469472\pi\)
0.0957607 + 0.995404i \(0.469472\pi\)
\(864\) 34113.1 1.34323
\(865\) −12697.2 −0.499095
\(866\) 34480.0 1.35298
\(867\) −37146.3 −1.45508
\(868\) 2718.09 0.106288
\(869\) 12912.5 0.504059
\(870\) 573.240 0.0223387
\(871\) 0 0
\(872\) 34.2891 0.00133162
\(873\) 2957.21 0.114646
\(874\) −42181.3 −1.63250
\(875\) 2380.29 0.0919639
\(876\) 4977.00 0.191960
\(877\) 41748.5 1.60746 0.803732 0.594991i \(-0.202844\pi\)
0.803732 + 0.594991i \(0.202844\pi\)
\(878\) −66386.5 −2.55175
\(879\) 6479.45 0.248631
\(880\) 1910.81 0.0731969
\(881\) −25509.0 −0.975504 −0.487752 0.872982i \(-0.662183\pi\)
−0.487752 + 0.872982i \(0.662183\pi\)
\(882\) 4162.68 0.158917
\(883\) −11347.1 −0.432456 −0.216228 0.976343i \(-0.569375\pi\)
−0.216228 + 0.976343i \(0.569375\pi\)
\(884\) 0 0
\(885\) 23.5300 0.000893732 0
\(886\) −2061.11 −0.0781538
\(887\) −33485.6 −1.26757 −0.633786 0.773509i \(-0.718500\pi\)
−0.633786 + 0.773509i \(0.718500\pi\)
\(888\) 5973.46 0.225739
\(889\) 3461.31 0.130583
\(890\) −13799.6 −0.519733
\(891\) 8814.63 0.331427
\(892\) −11679.7 −0.438413
\(893\) −38381.7 −1.43829
\(894\) −23380.1 −0.874660
\(895\) −12269.5 −0.458240
\(896\) −1813.62 −0.0676216
\(897\) 0 0
\(898\) 39438.0 1.46555
\(899\) −757.945 −0.0281189
\(900\) −3152.25 −0.116750
\(901\) 7537.28 0.278694
\(902\) −19734.4 −0.728472
\(903\) 2238.52 0.0824955
\(904\) 10371.8 0.381594
\(905\) 10982.4 0.403390
\(906\) −5786.72 −0.212197
\(907\) 39391.1 1.44207 0.721036 0.692898i \(-0.243666\pi\)
0.721036 + 0.692898i \(0.243666\pi\)
\(908\) 6999.37 0.255817
\(909\) 566.155 0.0206581
\(910\) 0 0
\(911\) 46463.7 1.68981 0.844903 0.534920i \(-0.179658\pi\)
0.844903 + 0.534920i \(0.179658\pi\)
\(912\) −27180.0 −0.986863
\(913\) 5150.49 0.186699
\(914\) −27267.4 −0.986788
\(915\) −4311.21 −0.155764
\(916\) −11812.6 −0.426090
\(917\) 3780.84 0.136155
\(918\) −58800.8 −2.11407
\(919\) −23792.0 −0.853999 −0.426999 0.904252i \(-0.640429\pi\)
−0.426999 + 0.904252i \(0.640429\pi\)
\(920\) 1661.69 0.0595481
\(921\) 29449.7 1.05364
\(922\) −45331.8 −1.61922
\(923\) 0 0
\(924\) −1690.29 −0.0601801
\(925\) −26825.4 −0.953529
\(926\) −53783.0 −1.90866
\(927\) −1206.77 −0.0427567
\(928\) 2030.43 0.0718236
\(929\) 26570.3 0.938367 0.469184 0.883101i \(-0.344548\pi\)
0.469184 + 0.883101i \(0.344548\pi\)
\(930\) −7102.94 −0.250446
\(931\) 30795.9 1.08410
\(932\) 57010.0 2.00368
\(933\) 8277.69 0.290460
\(934\) −63903.5 −2.23874
\(935\) −3845.36 −0.134499
\(936\) 0 0
\(937\) 24444.0 0.852241 0.426121 0.904666i \(-0.359880\pi\)
0.426121 + 0.904666i \(0.359880\pi\)
\(938\) −3480.92 −0.121168
\(939\) −50686.6 −1.76155
\(940\) 12263.4 0.425518
\(941\) 25795.7 0.893642 0.446821 0.894623i \(-0.352556\pi\)
0.446821 + 0.894623i \(0.352556\pi\)
\(942\) −34376.8 −1.18902
\(943\) 47861.8 1.65281
\(944\) 71.3866 0.00246127
\(945\) −1305.68 −0.0449457
\(946\) 6051.16 0.207971
\(947\) 12957.3 0.444621 0.222310 0.974976i \(-0.428640\pi\)
0.222310 + 0.974976i \(0.428640\pi\)
\(948\) 58685.2 2.01056
\(949\) 0 0
\(950\) −43765.9 −1.49469
\(951\) −1824.75 −0.0622205
\(952\) 1547.46 0.0526823
\(953\) 30774.4 1.04604 0.523022 0.852319i \(-0.324805\pi\)
0.523022 + 0.852319i \(0.324805\pi\)
\(954\) −869.874 −0.0295212
\(955\) 11852.6 0.401613
\(956\) 48975.4 1.65688
\(957\) 471.341 0.0159209
\(958\) 61576.7 2.07667
\(959\) 2235.81 0.0752848
\(960\) 11414.3 0.383743
\(961\) −20399.4 −0.684751
\(962\) 0 0
\(963\) −1012.27 −0.0338734
\(964\) −2990.89 −0.0999275
\(965\) 12243.8 0.408438
\(966\) 7693.49 0.256246
\(967\) 29279.8 0.973708 0.486854 0.873483i \(-0.338144\pi\)
0.486854 + 0.873483i \(0.338144\pi\)
\(968\) −563.354 −0.0187055
\(969\) 54697.7 1.81336
\(970\) −13118.5 −0.434236
\(971\) −6849.41 −0.226373 −0.113186 0.993574i \(-0.536106\pi\)
−0.113186 + 0.993574i \(0.536106\pi\)
\(972\) 7686.69 0.253653
\(973\) 3700.88 0.121937
\(974\) 48013.1 1.57951
\(975\) 0 0
\(976\) −13079.6 −0.428962
\(977\) 24532.8 0.803350 0.401675 0.915782i \(-0.368428\pi\)
0.401675 + 0.915782i \(0.368428\pi\)
\(978\) −59301.8 −1.93892
\(979\) −11346.6 −0.370416
\(980\) −9839.62 −0.320730
\(981\) −22.2102 −0.000722851 0
\(982\) −29174.6 −0.948065
\(983\) 13378.6 0.434089 0.217045 0.976162i \(-0.430358\pi\)
0.217045 + 0.976162i \(0.430358\pi\)
\(984\) −11058.2 −0.358255
\(985\) 3537.28 0.114424
\(986\) −3499.86 −0.113041
\(987\) 7000.48 0.225763
\(988\) 0 0
\(989\) −14675.9 −0.471857
\(990\) 443.791 0.0142471
\(991\) −23347.0 −0.748377 −0.374189 0.927353i \(-0.622079\pi\)
−0.374189 + 0.927353i \(0.622079\pi\)
\(992\) −25158.8 −0.805235
\(993\) −10225.3 −0.326777
\(994\) 13759.0 0.439043
\(995\) −8684.54 −0.276702
\(996\) 23408.1 0.744693
\(997\) 15451.7 0.490833 0.245417 0.969418i \(-0.421075\pi\)
0.245417 + 0.969418i \(0.421075\pi\)
\(998\) 75248.6 2.38673
\(999\) 30772.0 0.974558
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1859.4.a.h.1.4 17
13.4 even 6 143.4.e.b.133.4 yes 34
13.10 even 6 143.4.e.b.100.4 34
13.12 even 2 1859.4.a.g.1.14 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.4.e.b.100.4 34 13.10 even 6
143.4.e.b.133.4 yes 34 13.4 even 6
1859.4.a.g.1.14 17 13.12 even 2
1859.4.a.h.1.4 17 1.1 even 1 trivial