Properties

Label 1859.4.a.h
Level $1859$
Weight $4$
Character orbit 1859.a
Self dual yes
Analytic conductor $109.685$
Analytic rank $0$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1859,4,Mod(1,1859)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1859.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1859, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,0,-6,50,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(0\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 93 x^{15} - 7 x^{14} + 3449 x^{13} + 406 x^{12} - 65242 x^{11} - 7942 x^{10} + 669163 x^{9} + \cdots - 2210688 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{16}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - \beta_{6} q^{3} + (\beta_{2} + 3) q^{4} + ( - \beta_{7} + 1) q^{5} + ( - \beta_{5} - \beta_1 - 1) q^{6} + (\beta_{10} + 4) q^{7} + (\beta_{3} + 3 \beta_1 + 1) q^{8} + (\beta_{14} - \beta_{7} + \beta_{6} + \cdots + 7) q^{9}+ \cdots + ( - 11 \beta_{14} + 11 \beta_{7} + \cdots - 77) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q - 6 q^{3} + 50 q^{4} + 24 q^{5} - 16 q^{6} + 62 q^{7} + 21 q^{8} + 135 q^{9} + 2 q^{10} - 187 q^{11} - 127 q^{12} + 148 q^{15} + 126 q^{16} - 74 q^{17} - 90 q^{18} + 159 q^{19} + 222 q^{20} + 184 q^{21}+ \cdots - 1485 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{17} - 93 x^{15} - 7 x^{14} + 3449 x^{13} + 406 x^{12} - 65242 x^{11} - 7942 x^{10} + 669163 x^{9} + \cdots - 2210688 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 11 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 19\nu - 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 41310869995 \nu^{16} + 278727206397 \nu^{15} - 4357449870192 \nu^{14} + \cdots + 19\!\cdots\!24 ) / 12\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 22792255353 \nu^{16} - 173935419925 \nu^{15} - 1445507747716 \nu^{14} + \cdots - 92\!\cdots\!40 ) / 424284949467392 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 124885018663 \nu^{16} + 68376766059 \nu^{15} + 11092500475884 \nu^{14} + \cdots - 31\!\cdots\!20 ) / 12\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 294827222141 \nu^{16} + 219464620161 \nu^{15} + 25860702212988 \nu^{14} + \cdots - 63\!\cdots\!08 ) / 25\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 177480472921 \nu^{16} - 398292066701 \nu^{15} - 14709832798652 \nu^{14} + \cdots + 13\!\cdots\!48 ) / 848569898934784 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 183146367977 \nu^{16} - 411803762979 \nu^{15} + 17660657765996 \nu^{14} + \cdots - 68\!\cdots\!80 ) / 848569898934784 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 278509815379 \nu^{16} + 240283192845 \nu^{15} - 25773301577160 \nu^{14} + \cdots + 10\!\cdots\!16 ) / 12\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 719004694813 \nu^{16} - 1831736510361 \nu^{15} - 59159334330924 \nu^{14} + \cdots + 60\!\cdots\!52 ) / 25\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 483443617781 \nu^{16} - 896950422627 \nu^{15} + 47322682896696 \nu^{14} + \cdots - 21\!\cdots\!52 ) / 12\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 508877270167 \nu^{16} - 1725555260937 \nu^{15} + 52228351735548 \nu^{14} + \cdots - 29\!\cdots\!36 ) / 12\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 675317839955 \nu^{16} + 243395485401 \nu^{15} - 61841470872860 \nu^{14} + \cdots + 20\!\cdots\!52 ) / 848569898934784 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 1065195885323 \nu^{16} + 1645100590137 \nu^{15} - 102145188288576 \nu^{14} + \cdots + 42\!\cdots\!80 ) / 12\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 545813418179 \nu^{16} + 175570637925 \nu^{15} - 49939980916872 \nu^{14} + \cdots + 18\!\cdots\!36 ) / 636427424201088 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 11 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 19\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{14} + \beta_{12} - \beta_{10} - \beta_{8} - \beta_{6} - \beta_{5} - \beta_{4} + 26\beta_{2} + 4\beta _1 + 207 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 2 \beta_{16} + 2 \beta_{14} - \beta_{13} + \beta_{12} - \beta_{11} + \beta_{10} + 4 \beta_{9} + \cdots + 63 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{15} + 36 \beta_{14} + \beta_{13} + 40 \beta_{12} + 8 \beta_{11} - 37 \beta_{10} - 8 \beta_{9} + \cdots + 4479 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 88 \beta_{16} + 16 \beta_{15} + 77 \beta_{14} - 28 \beta_{13} + 43 \beta_{12} - 44 \beta_{11} + \cdots + 2488 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 2 \beta_{16} + 70 \beta_{15} + 1024 \beta_{14} + 65 \beta_{13} + 1243 \beta_{12} + 411 \beta_{11} + \cdots + 103475 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 2892 \beta_{16} + 887 \beta_{15} + 2231 \beta_{14} - 603 \beta_{13} + 1393 \beta_{12} - 1450 \beta_{11} + \cdots + 82167 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 154 \beta_{16} + 2932 \beta_{15} + 27330 \beta_{14} + 2713 \beta_{13} + 35465 \beta_{12} + \cdots + 2487570 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 85404 \beta_{16} + 33111 \beta_{15} + 59472 \beta_{14} - 11917 \beta_{13} + 40444 \beta_{12} + \cdots + 2465723 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 7496 \beta_{16} + 99188 \beta_{15} + 714934 \beta_{14} + 93336 \beta_{13} + 973360 \beta_{12} + \cdots + 61381628 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 2395480 \beta_{16} + 1052466 \beta_{15} + 1542287 \beta_{14} - 225820 \beta_{13} + 1112321 \beta_{12} + \cdots + 69948387 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 295642 \beta_{16} + 3011076 \beta_{15} + 18586881 \beta_{14} + 2905893 \beta_{13} + 26170874 \beta_{12} + \cdots + 1541335383 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 65313734 \beta_{16} + 30847469 \beta_{15} + 39648325 \beta_{14} - 4120830 \beta_{13} + \cdots + 1916892151 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 10358698 \beta_{16} + 86056501 \beta_{15} + 482470073 \beta_{14} + 85537486 \beta_{13} + \cdots + 39163943496 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.11519
−4.19083
−4.15571
−4.13824
−2.78419
−1.88904
−1.41378
−0.991815
0.631226
0.664163
1.06843
1.71387
3.12700
3.17505
4.11212
5.08131
5.10562
−5.11519 −3.58195 18.1651 2.16776 18.3223 −20.9807 −51.9966 −14.1696 −11.0885
1.2 −4.19083 4.70544 9.56305 −14.4259 −19.7197 34.7012 −6.55048 −4.85885 60.4566
1.3 −4.15571 7.17608 9.26990 11.1721 −29.8217 7.78423 −5.27734 24.4962 −46.4282
1.4 −4.13824 −5.47866 9.12507 3.23279 22.6720 −3.07367 −4.65582 3.01573 −13.3781
1.5 −2.78419 −8.94641 −0.248293 17.0433 24.9085 30.9353 22.9648 53.0382 −47.4517
1.6 −1.88904 1.56640 −4.43152 −2.20557 −2.95900 1.80472 23.4837 −24.5464 4.16640
1.7 −1.41378 5.76511 −6.00123 4.58681 −8.15059 −36.4239 19.7947 6.23646 −6.48474
1.8 −0.991815 −5.36099 −7.01630 −18.5970 5.31711 13.4049 14.8934 1.74021 18.4447
1.9 0.631226 9.24271 −7.60155 19.0524 5.83424 25.4436 −9.84810 58.4278 12.0263
1.10 0.664163 −0.846704 −7.55889 8.92433 −0.562349 −3.53056 −10.3336 −26.2831 5.92721
1.11 1.06843 −9.85108 −6.85846 −2.35929 −10.5252 −12.2506 −15.8752 70.0437 −2.52073
1.12 1.71387 7.58218 −5.06264 −12.0244 12.9949 −1.14865 −22.3877 30.4895 −20.6082
1.13 3.12700 −0.537604 1.77811 0.516265 −1.68109 34.6419 −19.4558 −26.7110 1.61436
1.14 3.17505 −0.600459 2.08094 −12.4679 −1.90649 −10.6254 −18.7933 −26.6394 −39.5863
1.15 4.11212 −4.01551 8.90957 12.3424 −16.5123 −29.6370 3.74025 −10.8757 50.7537
1.16 5.08131 −7.39360 17.8197 −8.39690 −37.5692 14.1925 49.8972 27.6653 −42.6673
1.17 5.10562 4.57504 18.0674 15.4387 23.3584 16.7622 51.4001 −6.06900 78.8244
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.17
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1859.4.a.h 17
13.b even 2 1 1859.4.a.g 17
13.e even 6 2 143.4.e.b 34
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
143.4.e.b 34 13.e even 6 2
1859.4.a.g 17 13.b even 2 1
1859.4.a.h 17 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{17} - 93 T_{2}^{15} - 7 T_{2}^{14} + 3449 T_{2}^{13} + 406 T_{2}^{12} - 65242 T_{2}^{11} + \cdots - 2210688 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1859))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{17} - 93 T^{15} + \cdots - 2210688 \) Copy content Toggle raw display
$3$ \( T^{17} + \cdots - 7355831456 \) Copy content Toggle raw display
$5$ \( T^{17} + \cdots + 179912814666900 \) Copy content Toggle raw display
$7$ \( T^{17} + \cdots - 15\!\cdots\!24 \) Copy content Toggle raw display
$11$ \( (T + 11)^{17} \) Copy content Toggle raw display
$13$ \( T^{17} \) Copy content Toggle raw display
$17$ \( T^{17} + \cdots + 20\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{17} + \cdots - 20\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T^{17} + \cdots + 38\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{17} + \cdots + 17\!\cdots\!77 \) Copy content Toggle raw display
$31$ \( T^{17} + \cdots - 11\!\cdots\!16 \) Copy content Toggle raw display
$37$ \( T^{17} + \cdots - 60\!\cdots\!98 \) Copy content Toggle raw display
$41$ \( T^{17} + \cdots - 56\!\cdots\!50 \) Copy content Toggle raw display
$43$ \( T^{17} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{17} + \cdots + 24\!\cdots\!72 \) Copy content Toggle raw display
$53$ \( T^{17} + \cdots - 60\!\cdots\!50 \) Copy content Toggle raw display
$59$ \( T^{17} + \cdots - 23\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{17} + \cdots - 28\!\cdots\!14 \) Copy content Toggle raw display
$67$ \( T^{17} + \cdots + 56\!\cdots\!48 \) Copy content Toggle raw display
$71$ \( T^{17} + \cdots + 60\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{17} + \cdots + 66\!\cdots\!32 \) Copy content Toggle raw display
$79$ \( T^{17} + \cdots - 82\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{17} + \cdots + 65\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{17} + \cdots - 19\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( T^{17} + \cdots + 46\!\cdots\!84 \) Copy content Toggle raw display
show more
show less