Properties

Label 2-1859-1.1-c3-0-281
Degree $2$
Conductor $1859$
Sign $1$
Analytic cond. $109.684$
Root an. cond. $10.4730$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.631·2-s + 9.24·3-s − 7.60·4-s + 19.0·5-s + 5.83·6-s + 25.4·7-s − 9.84·8-s + 58.4·9-s + 12.0·10-s − 11·11-s − 70.2·12-s + 16.0·14-s + 176.·15-s + 54.5·16-s + 31.0·17-s + 36.8·18-s − 73.2·19-s − 144.·20-s + 235.·21-s − 6.94·22-s − 95.8·23-s − 91.0·24-s + 237.·25-s + 290.·27-s − 193.·28-s + 227.·29-s + 111.·30-s + ⋯
L(s)  = 1  + 0.223·2-s + 1.77·3-s − 0.950·4-s + 1.70·5-s + 0.396·6-s + 1.37·7-s − 0.435·8-s + 2.16·9-s + 0.380·10-s − 0.301·11-s − 1.69·12-s + 0.306·14-s + 3.03·15-s + 0.853·16-s + 0.443·17-s + 0.482·18-s − 0.884·19-s − 1.61·20-s + 2.44·21-s − 0.0672·22-s − 0.868·23-s − 0.774·24-s + 1.90·25-s + 2.07·27-s − 1.30·28-s + 1.45·29-s + 0.676·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1859 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1859\)    =    \(11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(109.684\)
Root analytic conductor: \(10.4730\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1859,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.836879367\)
\(L(\frac12)\) \(\approx\) \(6.836879367\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + 11T \)
13 \( 1 \)
good2 \( 1 - 0.631T + 8T^{2} \)
3 \( 1 - 9.24T + 27T^{2} \)
5 \( 1 - 19.0T + 125T^{2} \)
7 \( 1 - 25.4T + 343T^{2} \)
17 \( 1 - 31.0T + 4.91e3T^{2} \)
19 \( 1 + 73.2T + 6.85e3T^{2} \)
23 \( 1 + 95.8T + 1.21e4T^{2} \)
29 \( 1 - 227.T + 2.43e4T^{2} \)
31 \( 1 - 5.28T + 2.97e4T^{2} \)
37 \( 1 + 304.T + 5.06e4T^{2} \)
41 \( 1 - 150.T + 6.89e4T^{2} \)
43 \( 1 + 172.T + 7.95e4T^{2} \)
47 \( 1 - 411.T + 1.03e5T^{2} \)
53 \( 1 - 185.T + 1.48e5T^{2} \)
59 \( 1 + 439.T + 2.05e5T^{2} \)
61 \( 1 + 507.T + 2.26e5T^{2} \)
67 \( 1 - 703.T + 3.00e5T^{2} \)
71 \( 1 - 519.T + 3.57e5T^{2} \)
73 \( 1 - 669.T + 3.89e5T^{2} \)
79 \( 1 + 42.5T + 4.93e5T^{2} \)
83 \( 1 + 57.1T + 5.71e5T^{2} \)
89 \( 1 + 521.T + 7.04e5T^{2} \)
97 \( 1 + 1.69e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.742429662441622196798782970221, −8.388988100778303649391240361968, −7.67775503598720319723585844340, −6.47098040199615001553658835884, −5.42087097158007325860189689248, −4.73921377007137518798262224112, −3.89507721758285843407195862468, −2.74358953395400774812304785736, −2.02087636543547109533500457193, −1.23933955005970867389491257830, 1.23933955005970867389491257830, 2.02087636543547109533500457193, 2.74358953395400774812304785736, 3.89507721758285843407195862468, 4.73921377007137518798262224112, 5.42087097158007325860189689248, 6.47098040199615001553658835884, 7.67775503598720319723585844340, 8.388988100778303649391240361968, 8.742429662441622196798782970221

Graph of the $Z$-function along the critical line