Properties

Label 1859.4.a.h.1.3
Level $1859$
Weight $4$
Character 1859.1
Self dual yes
Analytic conductor $109.685$
Analytic rank $0$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1859,4,Mod(1,1859)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1859.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1859, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,0,-6,50,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(0\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 93 x^{15} - 7 x^{14} + 3449 x^{13} + 406 x^{12} - 65242 x^{11} - 7942 x^{10} + 669163 x^{9} + \cdots - 2210688 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-4.15571\) of defining polynomial
Character \(\chi\) \(=\) 1859.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.15571 q^{2} +7.17608 q^{3} +9.26990 q^{4} +11.1721 q^{5} -29.8217 q^{6} +7.78423 q^{7} -5.27734 q^{8} +24.4962 q^{9} -46.4282 q^{10} -11.0000 q^{11} +66.5216 q^{12} -32.3490 q^{14} +80.1722 q^{15} -52.2281 q^{16} -11.1357 q^{17} -101.799 q^{18} +129.117 q^{19} +103.565 q^{20} +55.8602 q^{21} +45.7128 q^{22} +194.310 q^{23} -37.8707 q^{24} -0.183205 q^{25} -17.9678 q^{27} +72.1590 q^{28} -130.515 q^{29} -333.172 q^{30} -160.453 q^{31} +259.264 q^{32} -78.9369 q^{33} +46.2766 q^{34} +86.9665 q^{35} +227.077 q^{36} +91.1462 q^{37} -536.571 q^{38} -58.9593 q^{40} +298.478 q^{41} -232.139 q^{42} +111.893 q^{43} -101.969 q^{44} +273.675 q^{45} -807.495 q^{46} +247.250 q^{47} -374.793 q^{48} -282.406 q^{49} +0.761344 q^{50} -79.9105 q^{51} -353.642 q^{53} +74.6689 q^{54} -122.894 q^{55} -41.0800 q^{56} +926.552 q^{57} +542.384 q^{58} -162.588 q^{59} +743.189 q^{60} +194.676 q^{61} +666.797 q^{62} +190.684 q^{63} -659.598 q^{64} +328.039 q^{66} +956.307 q^{67} -103.227 q^{68} +1394.38 q^{69} -361.407 q^{70} +420.544 q^{71} -129.275 q^{72} +306.549 q^{73} -378.777 q^{74} -1.31469 q^{75} +1196.90 q^{76} -85.6265 q^{77} -545.170 q^{79} -583.500 q^{80} -790.335 q^{81} -1240.39 q^{82} +452.825 q^{83} +517.819 q^{84} -124.409 q^{85} -464.994 q^{86} -936.590 q^{87} +58.0508 q^{88} -282.957 q^{89} -1137.31 q^{90} +1801.23 q^{92} -1151.43 q^{93} -1027.50 q^{94} +1442.51 q^{95} +1860.50 q^{96} -213.494 q^{97} +1173.60 q^{98} -269.458 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q - 6 q^{3} + 50 q^{4} + 24 q^{5} - 16 q^{6} + 62 q^{7} + 21 q^{8} + 135 q^{9} + 2 q^{10} - 187 q^{11} - 127 q^{12} + 148 q^{15} + 126 q^{16} - 74 q^{17} - 90 q^{18} + 159 q^{19} + 222 q^{20} + 184 q^{21}+ \cdots - 1485 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.15571 −1.46926 −0.734632 0.678466i \(-0.762645\pi\)
−0.734632 + 0.678466i \(0.762645\pi\)
\(3\) 7.17608 1.38104 0.690519 0.723314i \(-0.257382\pi\)
0.690519 + 0.723314i \(0.257382\pi\)
\(4\) 9.26990 1.15874
\(5\) 11.1721 0.999267 0.499633 0.866237i \(-0.333468\pi\)
0.499633 + 0.866237i \(0.333468\pi\)
\(6\) −29.8217 −2.02911
\(7\) 7.78423 0.420309 0.210154 0.977668i \(-0.432603\pi\)
0.210154 + 0.977668i \(0.432603\pi\)
\(8\) −5.27734 −0.233228
\(9\) 24.4962 0.907265
\(10\) −46.4282 −1.46819
\(11\) −11.0000 −0.301511
\(12\) 66.5216 1.60026
\(13\) 0 0
\(14\) −32.3490 −0.617545
\(15\) 80.1722 1.38003
\(16\) −52.2281 −0.816064
\(17\) −11.1357 −0.158870 −0.0794352 0.996840i \(-0.525312\pi\)
−0.0794352 + 0.996840i \(0.525312\pi\)
\(18\) −101.799 −1.33301
\(19\) 129.117 1.55902 0.779510 0.626390i \(-0.215468\pi\)
0.779510 + 0.626390i \(0.215468\pi\)
\(20\) 103.565 1.15789
\(21\) 55.8602 0.580462
\(22\) 45.7128 0.443000
\(23\) 194.310 1.76158 0.880792 0.473504i \(-0.157011\pi\)
0.880792 + 0.473504i \(0.157011\pi\)
\(24\) −37.8707 −0.322097
\(25\) −0.183205 −0.00146564
\(26\) 0 0
\(27\) −17.9678 −0.128070
\(28\) 72.1590 0.487028
\(29\) −130.515 −0.835728 −0.417864 0.908510i \(-0.637221\pi\)
−0.417864 + 0.908510i \(0.637221\pi\)
\(30\) −333.172 −2.02762
\(31\) −160.453 −0.929621 −0.464810 0.885410i \(-0.653878\pi\)
−0.464810 + 0.885410i \(0.653878\pi\)
\(32\) 259.264 1.43224
\(33\) −78.9369 −0.416399
\(34\) 46.2766 0.233423
\(35\) 86.9665 0.420001
\(36\) 227.077 1.05128
\(37\) 91.1462 0.404982 0.202491 0.979284i \(-0.435096\pi\)
0.202491 + 0.979284i \(0.435096\pi\)
\(38\) −536.571 −2.29061
\(39\) 0 0
\(40\) −58.9593 −0.233057
\(41\) 298.478 1.13694 0.568469 0.822704i \(-0.307536\pi\)
0.568469 + 0.822704i \(0.307536\pi\)
\(42\) −232.139 −0.852852
\(43\) 111.893 0.396826 0.198413 0.980119i \(-0.436421\pi\)
0.198413 + 0.980119i \(0.436421\pi\)
\(44\) −101.969 −0.349373
\(45\) 273.675 0.906600
\(46\) −807.495 −2.58823
\(47\) 247.250 0.767342 0.383671 0.923470i \(-0.374660\pi\)
0.383671 + 0.923470i \(0.374660\pi\)
\(48\) −374.793 −1.12702
\(49\) −282.406 −0.823341
\(50\) 0.761344 0.00215341
\(51\) −79.9105 −0.219406
\(52\) 0 0
\(53\) −353.642 −0.916536 −0.458268 0.888814i \(-0.651530\pi\)
−0.458268 + 0.888814i \(0.651530\pi\)
\(54\) 74.6689 0.188169
\(55\) −122.894 −0.301290
\(56\) −41.0800 −0.0980277
\(57\) 926.552 2.15307
\(58\) 542.384 1.22791
\(59\) −162.588 −0.358764 −0.179382 0.983779i \(-0.557410\pi\)
−0.179382 + 0.983779i \(0.557410\pi\)
\(60\) 743.189 1.59909
\(61\) 194.676 0.408618 0.204309 0.978906i \(-0.434505\pi\)
0.204309 + 0.978906i \(0.434505\pi\)
\(62\) 666.797 1.36586
\(63\) 190.684 0.381331
\(64\) −659.598 −1.28828
\(65\) 0 0
\(66\) 328.039 0.611800
\(67\) 956.307 1.74375 0.871877 0.489725i \(-0.162903\pi\)
0.871877 + 0.489725i \(0.162903\pi\)
\(68\) −103.227 −0.184089
\(69\) 1394.38 2.43281
\(70\) −361.407 −0.617092
\(71\) 420.544 0.702949 0.351474 0.936197i \(-0.385680\pi\)
0.351474 + 0.936197i \(0.385680\pi\)
\(72\) −129.275 −0.211600
\(73\) 306.549 0.491491 0.245746 0.969334i \(-0.420967\pi\)
0.245746 + 0.969334i \(0.420967\pi\)
\(74\) −378.777 −0.595026
\(75\) −1.31469 −0.00202410
\(76\) 1196.90 1.80650
\(77\) −85.6265 −0.126728
\(78\) 0 0
\(79\) −545.170 −0.776410 −0.388205 0.921573i \(-0.626905\pi\)
−0.388205 + 0.921573i \(0.626905\pi\)
\(80\) −583.500 −0.815466
\(81\) −790.335 −1.08414
\(82\) −1240.39 −1.67046
\(83\) 452.825 0.598844 0.299422 0.954121i \(-0.403206\pi\)
0.299422 + 0.954121i \(0.403206\pi\)
\(84\) 517.819 0.672603
\(85\) −124.409 −0.158754
\(86\) −464.994 −0.583042
\(87\) −936.590 −1.15417
\(88\) 58.0508 0.0703209
\(89\) −282.957 −0.337005 −0.168502 0.985701i \(-0.553893\pi\)
−0.168502 + 0.985701i \(0.553893\pi\)
\(90\) −1137.31 −1.33204
\(91\) 0 0
\(92\) 1801.23 2.04121
\(93\) −1151.43 −1.28384
\(94\) −1027.50 −1.12743
\(95\) 1442.51 1.55788
\(96\) 1860.50 1.97798
\(97\) −213.494 −0.223475 −0.111737 0.993738i \(-0.535642\pi\)
−0.111737 + 0.993738i \(0.535642\pi\)
\(98\) 1173.60 1.20971
\(99\) −269.458 −0.273551
\(100\) −1.69829 −0.00169829
\(101\) 1725.15 1.69959 0.849795 0.527113i \(-0.176726\pi\)
0.849795 + 0.527113i \(0.176726\pi\)
\(102\) 332.085 0.322365
\(103\) 1416.79 1.35534 0.677672 0.735364i \(-0.262989\pi\)
0.677672 + 0.735364i \(0.262989\pi\)
\(104\) 0 0
\(105\) 624.079 0.580037
\(106\) 1469.63 1.34663
\(107\) −292.995 −0.264719 −0.132359 0.991202i \(-0.542255\pi\)
−0.132359 + 0.991202i \(0.542255\pi\)
\(108\) −166.560 −0.148400
\(109\) 180.669 0.158761 0.0793806 0.996844i \(-0.474706\pi\)
0.0793806 + 0.996844i \(0.474706\pi\)
\(110\) 510.710 0.442675
\(111\) 654.072 0.559296
\(112\) −406.555 −0.342999
\(113\) 996.141 0.829284 0.414642 0.909985i \(-0.363907\pi\)
0.414642 + 0.909985i \(0.363907\pi\)
\(114\) −3850.48 −3.16342
\(115\) 2170.86 1.76029
\(116\) −1209.87 −0.968390
\(117\) 0 0
\(118\) 675.666 0.527120
\(119\) −86.6826 −0.0667746
\(120\) −423.096 −0.321860
\(121\) 121.000 0.0909091
\(122\) −809.017 −0.600368
\(123\) 2141.91 1.57016
\(124\) −1487.39 −1.07719
\(125\) −1398.56 −1.00073
\(126\) −792.425 −0.560277
\(127\) 2271.17 1.58688 0.793440 0.608648i \(-0.208288\pi\)
0.793440 + 0.608648i \(0.208288\pi\)
\(128\) 666.990 0.460579
\(129\) 802.952 0.548031
\(130\) 0 0
\(131\) −1917.39 −1.27880 −0.639402 0.768872i \(-0.720818\pi\)
−0.639402 + 0.768872i \(0.720818\pi\)
\(132\) −731.737 −0.482497
\(133\) 1005.07 0.655270
\(134\) −3974.13 −2.56204
\(135\) −200.739 −0.127977
\(136\) 58.7668 0.0370530
\(137\) 1295.44 0.807858 0.403929 0.914790i \(-0.367644\pi\)
0.403929 + 0.914790i \(0.367644\pi\)
\(138\) −5794.65 −3.57445
\(139\) 2855.42 1.74240 0.871200 0.490928i \(-0.163342\pi\)
0.871200 + 0.490928i \(0.163342\pi\)
\(140\) 806.171 0.486671
\(141\) 1774.28 1.05973
\(142\) −1747.66 −1.03282
\(143\) 0 0
\(144\) −1279.39 −0.740387
\(145\) −1458.14 −0.835115
\(146\) −1273.93 −0.722131
\(147\) −2026.57 −1.13706
\(148\) 844.916 0.469268
\(149\) 628.990 0.345831 0.172916 0.984937i \(-0.444681\pi\)
0.172916 + 0.984937i \(0.444681\pi\)
\(150\) 5.46347 0.00297394
\(151\) 13.3455 0.00719233 0.00359617 0.999994i \(-0.498855\pi\)
0.00359617 + 0.999994i \(0.498855\pi\)
\(152\) −681.393 −0.363607
\(153\) −272.781 −0.144138
\(154\) 355.839 0.186197
\(155\) −1792.61 −0.928939
\(156\) 0 0
\(157\) −1586.13 −0.806288 −0.403144 0.915137i \(-0.632083\pi\)
−0.403144 + 0.915137i \(0.632083\pi\)
\(158\) 2265.57 1.14075
\(159\) −2537.76 −1.26577
\(160\) 2896.53 1.43119
\(161\) 1512.55 0.740409
\(162\) 3284.40 1.59288
\(163\) −608.074 −0.292197 −0.146098 0.989270i \(-0.546672\pi\)
−0.146098 + 0.989270i \(0.546672\pi\)
\(164\) 2766.87 1.31741
\(165\) −881.894 −0.416093
\(166\) −1881.81 −0.879860
\(167\) 1054.79 0.488757 0.244379 0.969680i \(-0.421416\pi\)
0.244379 + 0.969680i \(0.421416\pi\)
\(168\) −294.794 −0.135380
\(169\) 0 0
\(170\) 517.009 0.233251
\(171\) 3162.86 1.41444
\(172\) 1037.24 0.459817
\(173\) 3308.78 1.45411 0.727057 0.686577i \(-0.240887\pi\)
0.727057 + 0.686577i \(0.240887\pi\)
\(174\) 3892.19 1.69578
\(175\) −1.42611 −0.000616020 0
\(176\) 574.509 0.246053
\(177\) −1166.74 −0.495467
\(178\) 1175.89 0.495149
\(179\) −2055.31 −0.858216 −0.429108 0.903253i \(-0.641172\pi\)
−0.429108 + 0.903253i \(0.641172\pi\)
\(180\) 2536.94 1.05051
\(181\) −4694.21 −1.92772 −0.963862 0.266403i \(-0.914165\pi\)
−0.963862 + 0.266403i \(0.914165\pi\)
\(182\) 0 0
\(183\) 1397.01 0.564317
\(184\) −1025.44 −0.410850
\(185\) 1018.30 0.404685
\(186\) 4784.99 1.88630
\(187\) 122.492 0.0479012
\(188\) 2291.98 0.889148
\(189\) −139.865 −0.0538291
\(190\) −5994.65 −2.28893
\(191\) −1623.56 −0.615060 −0.307530 0.951538i \(-0.599502\pi\)
−0.307530 + 0.951538i \(0.599502\pi\)
\(192\) −4733.33 −1.77916
\(193\) −5166.40 −1.92687 −0.963435 0.267943i \(-0.913656\pi\)
−0.963435 + 0.267943i \(0.913656\pi\)
\(194\) 887.219 0.328343
\(195\) 0 0
\(196\) −2617.87 −0.954036
\(197\) −897.994 −0.324769 −0.162384 0.986728i \(-0.551918\pi\)
−0.162384 + 0.986728i \(0.551918\pi\)
\(198\) 1119.79 0.401918
\(199\) −33.6671 −0.0119930 −0.00599648 0.999982i \(-0.501909\pi\)
−0.00599648 + 0.999982i \(0.501909\pi\)
\(200\) 0.966833 0.000341827 0
\(201\) 6862.54 2.40819
\(202\) −7169.21 −2.49715
\(203\) −1015.96 −0.351264
\(204\) −740.762 −0.254234
\(205\) 3334.64 1.13611
\(206\) −5887.76 −1.99136
\(207\) 4759.85 1.59822
\(208\) 0 0
\(209\) −1420.28 −0.470062
\(210\) −2593.49 −0.852227
\(211\) 4628.15 1.51002 0.755012 0.655711i \(-0.227631\pi\)
0.755012 + 0.655711i \(0.227631\pi\)
\(212\) −3278.22 −1.06203
\(213\) 3017.86 0.970799
\(214\) 1217.60 0.388942
\(215\) 1250.08 0.396535
\(216\) 94.8222 0.0298696
\(217\) −1249.00 −0.390728
\(218\) −750.808 −0.233262
\(219\) 2199.82 0.678768
\(220\) −1139.21 −0.349116
\(221\) 0 0
\(222\) −2718.13 −0.821753
\(223\) 1929.94 0.579546 0.289773 0.957095i \(-0.406420\pi\)
0.289773 + 0.957095i \(0.406420\pi\)
\(224\) 2018.17 0.601984
\(225\) −4.48781 −0.00132972
\(226\) −4139.67 −1.21844
\(227\) −1651.71 −0.482941 −0.241470 0.970408i \(-0.577630\pi\)
−0.241470 + 0.970408i \(0.577630\pi\)
\(228\) 8589.04 2.49484
\(229\) −5935.63 −1.71283 −0.856414 0.516290i \(-0.827313\pi\)
−0.856414 + 0.516290i \(0.827313\pi\)
\(230\) −9021.45 −2.58633
\(231\) −614.463 −0.175016
\(232\) 688.775 0.194915
\(233\) −1019.92 −0.286770 −0.143385 0.989667i \(-0.545799\pi\)
−0.143385 + 0.989667i \(0.545799\pi\)
\(234\) 0 0
\(235\) 2762.31 0.766779
\(236\) −1507.17 −0.415714
\(237\) −3912.18 −1.07225
\(238\) 360.227 0.0981095
\(239\) −3250.81 −0.879821 −0.439911 0.898042i \(-0.644990\pi\)
−0.439911 + 0.898042i \(0.644990\pi\)
\(240\) −4187.24 −1.12619
\(241\) −3012.71 −0.805252 −0.402626 0.915365i \(-0.631902\pi\)
−0.402626 + 0.915365i \(0.631902\pi\)
\(242\) −502.841 −0.133569
\(243\) −5186.38 −1.36916
\(244\) 1804.63 0.473482
\(245\) −3155.08 −0.822737
\(246\) −8901.13 −2.30697
\(247\) 0 0
\(248\) 846.767 0.216814
\(249\) 3249.51 0.827026
\(250\) 5812.03 1.47034
\(251\) 5777.09 1.45277 0.726387 0.687286i \(-0.241198\pi\)
0.726387 + 0.687286i \(0.241198\pi\)
\(252\) 1767.62 0.441863
\(253\) −2137.41 −0.531137
\(254\) −9438.32 −2.33155
\(255\) −892.771 −0.219245
\(256\) 2504.97 0.611566
\(257\) −7933.34 −1.92556 −0.962779 0.270291i \(-0.912880\pi\)
−0.962779 + 0.270291i \(0.912880\pi\)
\(258\) −3336.84 −0.805203
\(259\) 709.502 0.170218
\(260\) 0 0
\(261\) −3197.13 −0.758227
\(262\) 7968.12 1.87890
\(263\) 3683.45 0.863617 0.431808 0.901965i \(-0.357876\pi\)
0.431808 + 0.901965i \(0.357876\pi\)
\(264\) 416.577 0.0971158
\(265\) −3950.94 −0.915864
\(266\) −4176.79 −0.962765
\(267\) −2030.53 −0.465416
\(268\) 8864.87 2.02055
\(269\) −2590.92 −0.587253 −0.293626 0.955920i \(-0.594862\pi\)
−0.293626 + 0.955920i \(0.594862\pi\)
\(270\) 834.211 0.188031
\(271\) 6212.12 1.39247 0.696235 0.717814i \(-0.254857\pi\)
0.696235 + 0.717814i \(0.254857\pi\)
\(272\) 581.595 0.129648
\(273\) 0 0
\(274\) −5383.45 −1.18696
\(275\) 2.01525 0.000441906 0
\(276\) 12925.8 2.81899
\(277\) −4428.12 −0.960506 −0.480253 0.877130i \(-0.659455\pi\)
−0.480253 + 0.877130i \(0.659455\pi\)
\(278\) −11866.3 −2.56005
\(279\) −3930.49 −0.843412
\(280\) −458.952 −0.0979558
\(281\) 3913.26 0.830766 0.415383 0.909647i \(-0.363648\pi\)
0.415383 + 0.909647i \(0.363648\pi\)
\(282\) −7373.40 −1.55702
\(283\) 3130.23 0.657501 0.328751 0.944417i \(-0.393372\pi\)
0.328751 + 0.944417i \(0.393372\pi\)
\(284\) 3898.40 0.814533
\(285\) 10351.6 2.15149
\(286\) 0 0
\(287\) 2323.42 0.477865
\(288\) 6350.96 1.29942
\(289\) −4789.00 −0.974760
\(290\) 6059.59 1.22701
\(291\) −1532.05 −0.308627
\(292\) 2841.68 0.569510
\(293\) −549.608 −0.109585 −0.0547926 0.998498i \(-0.517450\pi\)
−0.0547926 + 0.998498i \(0.517450\pi\)
\(294\) 8421.82 1.67065
\(295\) −1816.45 −0.358501
\(296\) −481.010 −0.0944531
\(297\) 197.646 0.0386147
\(298\) −2613.90 −0.508118
\(299\) 0 0
\(300\) −12.1871 −0.00234540
\(301\) 870.999 0.166789
\(302\) −55.4600 −0.0105674
\(303\) 12379.8 2.34720
\(304\) −6743.52 −1.27226
\(305\) 2174.95 0.408319
\(306\) 1133.60 0.211776
\(307\) 9304.94 1.72984 0.864920 0.501909i \(-0.167369\pi\)
0.864920 + 0.501909i \(0.167369\pi\)
\(308\) −793.749 −0.146844
\(309\) 10167.0 1.87178
\(310\) 7449.55 1.36486
\(311\) −10035.9 −1.82985 −0.914927 0.403620i \(-0.867752\pi\)
−0.914927 + 0.403620i \(0.867752\pi\)
\(312\) 0 0
\(313\) 3971.28 0.717156 0.358578 0.933500i \(-0.383262\pi\)
0.358578 + 0.933500i \(0.383262\pi\)
\(314\) 6591.51 1.18465
\(315\) 2130.34 0.381052
\(316\) −5053.67 −0.899655
\(317\) 1403.12 0.248603 0.124302 0.992244i \(-0.460331\pi\)
0.124302 + 0.992244i \(0.460331\pi\)
\(318\) 10546.2 1.85975
\(319\) 1435.67 0.251982
\(320\) −7369.13 −1.28733
\(321\) −2102.56 −0.365586
\(322\) −6285.72 −1.08786
\(323\) −1437.80 −0.247682
\(324\) −7326.32 −1.25623
\(325\) 0 0
\(326\) 2526.98 0.429314
\(327\) 1296.50 0.219255
\(328\) −1575.17 −0.265166
\(329\) 1924.65 0.322520
\(330\) 3664.90 0.611351
\(331\) −2298.36 −0.381660 −0.190830 0.981623i \(-0.561118\pi\)
−0.190830 + 0.981623i \(0.561118\pi\)
\(332\) 4197.65 0.693903
\(333\) 2232.73 0.367426
\(334\) −4383.42 −0.718114
\(335\) 10684.0 1.74248
\(336\) −2917.48 −0.473694
\(337\) 6515.63 1.05320 0.526601 0.850112i \(-0.323466\pi\)
0.526601 + 0.850112i \(0.323466\pi\)
\(338\) 0 0
\(339\) 7148.39 1.14527
\(340\) −1153.26 −0.183954
\(341\) 1764.99 0.280291
\(342\) −13143.9 −2.07819
\(343\) −4868.30 −0.766366
\(344\) −590.497 −0.0925508
\(345\) 15578.3 2.43103
\(346\) −13750.3 −2.13648
\(347\) 10362.0 1.60306 0.801528 0.597958i \(-0.204021\pi\)
0.801528 + 0.597958i \(0.204021\pi\)
\(348\) −8682.10 −1.33738
\(349\) −155.253 −0.0238123 −0.0119061 0.999929i \(-0.503790\pi\)
−0.0119061 + 0.999929i \(0.503790\pi\)
\(350\) 5.92648 0.000905096 0
\(351\) 0 0
\(352\) −2851.90 −0.431837
\(353\) 5156.65 0.777509 0.388755 0.921341i \(-0.372905\pi\)
0.388755 + 0.921341i \(0.372905\pi\)
\(354\) 4848.64 0.727972
\(355\) 4698.38 0.702434
\(356\) −2622.99 −0.390500
\(357\) −622.041 −0.0922182
\(358\) 8541.25 1.26095
\(359\) 48.8381 0.00717987 0.00358994 0.999994i \(-0.498857\pi\)
0.00358994 + 0.999994i \(0.498857\pi\)
\(360\) −1444.28 −0.211444
\(361\) 9812.11 1.43054
\(362\) 19507.8 2.83234
\(363\) 868.306 0.125549
\(364\) 0 0
\(365\) 3424.81 0.491131
\(366\) −5805.57 −0.829131
\(367\) 9434.90 1.34196 0.670978 0.741477i \(-0.265874\pi\)
0.670978 + 0.741477i \(0.265874\pi\)
\(368\) −10148.4 −1.43757
\(369\) 7311.57 1.03150
\(370\) −4231.75 −0.594590
\(371\) −2752.83 −0.385228
\(372\) −10673.6 −1.48764
\(373\) −4554.73 −0.632265 −0.316132 0.948715i \(-0.602384\pi\)
−0.316132 + 0.948715i \(0.602384\pi\)
\(374\) −509.042 −0.0703796
\(375\) −10036.2 −1.38205
\(376\) −1304.82 −0.178965
\(377\) 0 0
\(378\) 581.239 0.0790892
\(379\) −8350.92 −1.13182 −0.565908 0.824469i \(-0.691474\pi\)
−0.565908 + 0.824469i \(0.691474\pi\)
\(380\) 13371.9 1.80517
\(381\) 16298.1 2.19154
\(382\) 6747.03 0.903686
\(383\) 10610.0 1.41553 0.707764 0.706449i \(-0.249704\pi\)
0.707764 + 0.706449i \(0.249704\pi\)
\(384\) 4786.37 0.636077
\(385\) −956.631 −0.126635
\(386\) 21470.1 2.83108
\(387\) 2740.95 0.360026
\(388\) −1979.07 −0.258948
\(389\) 197.769 0.0257771 0.0128886 0.999917i \(-0.495897\pi\)
0.0128886 + 0.999917i \(0.495897\pi\)
\(390\) 0 0
\(391\) −2163.77 −0.279863
\(392\) 1490.35 0.192026
\(393\) −13759.4 −1.76608
\(394\) 3731.80 0.477171
\(395\) −6090.71 −0.775841
\(396\) −2497.85 −0.316974
\(397\) 6788.75 0.858230 0.429115 0.903250i \(-0.358825\pi\)
0.429115 + 0.903250i \(0.358825\pi\)
\(398\) 139.911 0.0176208
\(399\) 7212.49 0.904952
\(400\) 9.56843 0.00119605
\(401\) −10404.0 −1.29564 −0.647818 0.761795i \(-0.724318\pi\)
−0.647818 + 0.761795i \(0.724318\pi\)
\(402\) −28518.7 −3.53827
\(403\) 0 0
\(404\) 15991.9 1.96938
\(405\) −8829.73 −1.08334
\(406\) 4222.04 0.516099
\(407\) −1002.61 −0.122107
\(408\) 421.715 0.0511716
\(409\) 7889.90 0.953864 0.476932 0.878940i \(-0.341749\pi\)
0.476932 + 0.878940i \(0.341749\pi\)
\(410\) −13857.8 −1.66924
\(411\) 9296.15 1.11568
\(412\) 13133.5 1.57049
\(413\) −1265.62 −0.150792
\(414\) −19780.5 −2.34821
\(415\) 5059.03 0.598405
\(416\) 0 0
\(417\) 20490.7 2.40632
\(418\) 5902.28 0.690646
\(419\) −7322.27 −0.853738 −0.426869 0.904313i \(-0.640384\pi\)
−0.426869 + 0.904313i \(0.640384\pi\)
\(420\) 5785.15 0.672110
\(421\) 12052.1 1.39521 0.697605 0.716482i \(-0.254249\pi\)
0.697605 + 0.716482i \(0.254249\pi\)
\(422\) −19233.2 −2.21862
\(423\) 6056.66 0.696182
\(424\) 1866.29 0.213762
\(425\) 2.04010 0.000232846 0
\(426\) −12541.3 −1.42636
\(427\) 1515.40 0.171746
\(428\) −2716.03 −0.306739
\(429\) 0 0
\(430\) −5194.98 −0.582614
\(431\) 3557.05 0.397534 0.198767 0.980047i \(-0.436306\pi\)
0.198767 + 0.980047i \(0.436306\pi\)
\(432\) 938.424 0.104514
\(433\) 5437.16 0.603449 0.301724 0.953395i \(-0.402438\pi\)
0.301724 + 0.953395i \(0.402438\pi\)
\(434\) 5190.49 0.574082
\(435\) −10463.7 −1.15333
\(436\) 1674.79 0.183963
\(437\) 25088.6 2.74634
\(438\) −9141.82 −0.997290
\(439\) −2203.18 −0.239526 −0.119763 0.992803i \(-0.538213\pi\)
−0.119763 + 0.992803i \(0.538213\pi\)
\(440\) 648.552 0.0702693
\(441\) −6917.86 −0.746988
\(442\) 0 0
\(443\) 14546.1 1.56006 0.780028 0.625744i \(-0.215205\pi\)
0.780028 + 0.625744i \(0.215205\pi\)
\(444\) 6063.19 0.648077
\(445\) −3161.24 −0.336758
\(446\) −8020.29 −0.851506
\(447\) 4513.68 0.477606
\(448\) −5134.46 −0.541474
\(449\) 4374.02 0.459739 0.229870 0.973221i \(-0.426170\pi\)
0.229870 + 0.973221i \(0.426170\pi\)
\(450\) 18.6500 0.00195371
\(451\) −3283.26 −0.342800
\(452\) 9234.13 0.960923
\(453\) 95.7684 0.00993288
\(454\) 6864.01 0.709568
\(455\) 0 0
\(456\) −4889.73 −0.502155
\(457\) −8968.91 −0.918048 −0.459024 0.888424i \(-0.651801\pi\)
−0.459024 + 0.888424i \(0.651801\pi\)
\(458\) 24666.7 2.51660
\(459\) 200.083 0.0203466
\(460\) 20123.6 2.03972
\(461\) −9349.49 −0.944575 −0.472287 0.881445i \(-0.656572\pi\)
−0.472287 + 0.881445i \(0.656572\pi\)
\(462\) 2553.53 0.257145
\(463\) 12529.4 1.25764 0.628821 0.777550i \(-0.283538\pi\)
0.628821 + 0.777550i \(0.283538\pi\)
\(464\) 6816.58 0.682008
\(465\) −12863.9 −1.28290
\(466\) 4238.50 0.421341
\(467\) −14842.5 −1.47073 −0.735363 0.677673i \(-0.762988\pi\)
−0.735363 + 0.677673i \(0.762988\pi\)
\(468\) 0 0
\(469\) 7444.11 0.732915
\(470\) −11479.3 −1.12660
\(471\) −11382.2 −1.11351
\(472\) 858.031 0.0836739
\(473\) −1230.82 −0.119647
\(474\) 16257.9 1.57542
\(475\) −23.6548 −0.00228496
\(476\) −803.539 −0.0773743
\(477\) −8662.86 −0.831541
\(478\) 13509.4 1.29269
\(479\) −10474.9 −0.999189 −0.499595 0.866259i \(-0.666518\pi\)
−0.499595 + 0.866259i \(0.666518\pi\)
\(480\) 20785.7 1.97653
\(481\) 0 0
\(482\) 12519.9 1.18313
\(483\) 10854.2 1.02253
\(484\) 1121.66 0.105340
\(485\) −2385.19 −0.223311
\(486\) 21553.1 2.01166
\(487\) 14509.5 1.35008 0.675041 0.737780i \(-0.264126\pi\)
0.675041 + 0.737780i \(0.264126\pi\)
\(488\) −1027.37 −0.0953012
\(489\) −4363.59 −0.403535
\(490\) 13111.6 1.20882
\(491\) −6113.34 −0.561896 −0.280948 0.959723i \(-0.590649\pi\)
−0.280948 + 0.959723i \(0.590649\pi\)
\(492\) 19855.3 1.81940
\(493\) 1453.38 0.132772
\(494\) 0 0
\(495\) −3010.42 −0.273350
\(496\) 8380.17 0.758630
\(497\) 3273.61 0.295455
\(498\) −13504.0 −1.21512
\(499\) −6673.94 −0.598731 −0.299365 0.954139i \(-0.596775\pi\)
−0.299365 + 0.954139i \(0.596775\pi\)
\(500\) −12964.6 −1.15959
\(501\) 7569.29 0.674992
\(502\) −24007.9 −2.13451
\(503\) −21506.6 −1.90642 −0.953211 0.302304i \(-0.902244\pi\)
−0.953211 + 0.302304i \(0.902244\pi\)
\(504\) −1006.30 −0.0889371
\(505\) 19273.6 1.69834
\(506\) 8882.45 0.780381
\(507\) 0 0
\(508\) 21053.5 1.83878
\(509\) −164.953 −0.0143643 −0.00718214 0.999974i \(-0.502286\pi\)
−0.00718214 + 0.999974i \(0.502286\pi\)
\(510\) 3710.10 0.322129
\(511\) 2386.25 0.206578
\(512\) −15745.9 −1.35913
\(513\) −2319.94 −0.199664
\(514\) 32968.6 2.82915
\(515\) 15828.6 1.35435
\(516\) 7443.29 0.635024
\(517\) −2719.75 −0.231362
\(518\) −2948.48 −0.250095
\(519\) 23744.1 2.00819
\(520\) 0 0
\(521\) 6259.09 0.526325 0.263163 0.964751i \(-0.415234\pi\)
0.263163 + 0.964751i \(0.415234\pi\)
\(522\) 13286.3 1.11404
\(523\) −11948.5 −0.998988 −0.499494 0.866317i \(-0.666481\pi\)
−0.499494 + 0.866317i \(0.666481\pi\)
\(524\) −17774.0 −1.48180
\(525\) −10.2338 −0.000850746 0
\(526\) −15307.3 −1.26888
\(527\) 1786.75 0.147689
\(528\) 4122.73 0.339808
\(529\) 25589.3 2.10318
\(530\) 16418.9 1.34565
\(531\) −3982.77 −0.325494
\(532\) 9316.93 0.759286
\(533\) 0 0
\(534\) 8438.27 0.683819
\(535\) −3273.38 −0.264525
\(536\) −5046.76 −0.406692
\(537\) −14749.0 −1.18523
\(538\) 10767.1 0.862830
\(539\) 3106.46 0.248247
\(540\) −1860.83 −0.148291
\(541\) 6559.40 0.521277 0.260638 0.965436i \(-0.416067\pi\)
0.260638 + 0.965436i \(0.416067\pi\)
\(542\) −25815.7 −2.04591
\(543\) −33686.0 −2.66226
\(544\) −2887.07 −0.227541
\(545\) 2018.46 0.158645
\(546\) 0 0
\(547\) −7968.14 −0.622839 −0.311420 0.950273i \(-0.600804\pi\)
−0.311420 + 0.950273i \(0.600804\pi\)
\(548\) 12008.6 0.936096
\(549\) 4768.82 0.370725
\(550\) −8.37479 −0.000649277 0
\(551\) −16851.7 −1.30292
\(552\) −7358.65 −0.567400
\(553\) −4243.72 −0.326332
\(554\) 18402.0 1.41124
\(555\) 7307.39 0.558886
\(556\) 26469.5 2.01899
\(557\) −12153.6 −0.924530 −0.462265 0.886742i \(-0.652963\pi\)
−0.462265 + 0.886742i \(0.652963\pi\)
\(558\) 16334.0 1.23920
\(559\) 0 0
\(560\) −4542.10 −0.342747
\(561\) 879.015 0.0661534
\(562\) −16262.3 −1.22062
\(563\) 23955.4 1.79325 0.896623 0.442794i \(-0.146013\pi\)
0.896623 + 0.442794i \(0.146013\pi\)
\(564\) 16447.4 1.22795
\(565\) 11129.0 0.828676
\(566\) −13008.3 −0.966043
\(567\) −6152.14 −0.455671
\(568\) −2219.35 −0.163947
\(569\) −2272.47 −0.167429 −0.0837143 0.996490i \(-0.526678\pi\)
−0.0837143 + 0.996490i \(0.526678\pi\)
\(570\) −43018.1 −3.16110
\(571\) 5926.97 0.434389 0.217195 0.976128i \(-0.430309\pi\)
0.217195 + 0.976128i \(0.430309\pi\)
\(572\) 0 0
\(573\) −11650.8 −0.849421
\(574\) −9655.46 −0.702110
\(575\) −35.5985 −0.00258184
\(576\) −16157.6 −1.16881
\(577\) −23464.6 −1.69297 −0.846487 0.532410i \(-0.821287\pi\)
−0.846487 + 0.532410i \(0.821287\pi\)
\(578\) 19901.7 1.43218
\(579\) −37074.5 −2.66108
\(580\) −13516.8 −0.967680
\(581\) 3524.89 0.251699
\(582\) 6366.75 0.453454
\(583\) 3890.06 0.276346
\(584\) −1617.77 −0.114629
\(585\) 0 0
\(586\) 2284.01 0.161010
\(587\) 19561.0 1.37541 0.687707 0.725988i \(-0.258617\pi\)
0.687707 + 0.725988i \(0.258617\pi\)
\(588\) −18786.1 −1.31756
\(589\) −20717.2 −1.44930
\(590\) 7548.64 0.526733
\(591\) −6444.08 −0.448518
\(592\) −4760.39 −0.330492
\(593\) 26822.1 1.85742 0.928710 0.370807i \(-0.120919\pi\)
0.928710 + 0.370807i \(0.120919\pi\)
\(594\) −821.358 −0.0567352
\(595\) −968.430 −0.0667256
\(596\) 5830.68 0.400728
\(597\) −241.598 −0.0165627
\(598\) 0 0
\(599\) −13911.1 −0.948902 −0.474451 0.880282i \(-0.657353\pi\)
−0.474451 + 0.880282i \(0.657353\pi\)
\(600\) 6.93808 0.000472076 0
\(601\) 11982.3 0.813261 0.406630 0.913593i \(-0.366704\pi\)
0.406630 + 0.913593i \(0.366704\pi\)
\(602\) −3619.62 −0.245057
\(603\) 23425.8 1.58205
\(604\) 123.712 0.00833403
\(605\) 1351.83 0.0908424
\(606\) −51446.8 −3.44865
\(607\) −21834.1 −1.46000 −0.729999 0.683448i \(-0.760479\pi\)
−0.729999 + 0.683448i \(0.760479\pi\)
\(608\) 33475.2 2.23290
\(609\) −7290.63 −0.485108
\(610\) −9038.45 −0.599928
\(611\) 0 0
\(612\) −2528.65 −0.167018
\(613\) 28040.3 1.84753 0.923765 0.382961i \(-0.125096\pi\)
0.923765 + 0.382961i \(0.125096\pi\)
\(614\) −38668.6 −2.54159
\(615\) 23929.7 1.56900
\(616\) 451.880 0.0295565
\(617\) −26865.7 −1.75295 −0.876476 0.481445i \(-0.840112\pi\)
−0.876476 + 0.481445i \(0.840112\pi\)
\(618\) −42251.1 −2.75014
\(619\) 3647.24 0.236826 0.118413 0.992964i \(-0.462219\pi\)
0.118413 + 0.992964i \(0.462219\pi\)
\(620\) −16617.3 −1.07640
\(621\) −3491.32 −0.225607
\(622\) 41706.3 2.68854
\(623\) −2202.60 −0.141646
\(624\) 0 0
\(625\) −15602.1 −0.998532
\(626\) −16503.5 −1.05369
\(627\) −10192.1 −0.649174
\(628\) −14703.3 −0.934276
\(629\) −1014.97 −0.0643397
\(630\) −8853.09 −0.559866
\(631\) 29088.6 1.83518 0.917590 0.397528i \(-0.130132\pi\)
0.917590 + 0.397528i \(0.130132\pi\)
\(632\) 2877.05 0.181080
\(633\) 33212.0 2.08540
\(634\) −5830.97 −0.365264
\(635\) 25373.8 1.58572
\(636\) −23524.8 −1.46670
\(637\) 0 0
\(638\) −5966.23 −0.370227
\(639\) 10301.7 0.637761
\(640\) 7451.70 0.460241
\(641\) −12306.8 −0.758330 −0.379165 0.925329i \(-0.623789\pi\)
−0.379165 + 0.925329i \(0.623789\pi\)
\(642\) 8737.61 0.537143
\(643\) 15877.3 0.973778 0.486889 0.873464i \(-0.338132\pi\)
0.486889 + 0.873464i \(0.338132\pi\)
\(644\) 14021.2 0.857940
\(645\) 8970.70 0.547629
\(646\) 5975.08 0.363911
\(647\) −15202.0 −0.923731 −0.461866 0.886950i \(-0.652820\pi\)
−0.461866 + 0.886950i \(0.652820\pi\)
\(648\) 4170.87 0.252851
\(649\) 1788.46 0.108172
\(650\) 0 0
\(651\) −8962.95 −0.539610
\(652\) −5636.79 −0.338579
\(653\) −11161.0 −0.668858 −0.334429 0.942421i \(-0.608543\pi\)
−0.334429 + 0.942421i \(0.608543\pi\)
\(654\) −5387.86 −0.322144
\(655\) −21421.4 −1.27787
\(656\) −15589.0 −0.927815
\(657\) 7509.28 0.445913
\(658\) −7998.27 −0.473868
\(659\) −25379.2 −1.50020 −0.750101 0.661323i \(-0.769995\pi\)
−0.750101 + 0.661323i \(0.769995\pi\)
\(660\) −8175.08 −0.482143
\(661\) 15953.5 0.938758 0.469379 0.882997i \(-0.344478\pi\)
0.469379 + 0.882997i \(0.344478\pi\)
\(662\) 9551.31 0.560759
\(663\) 0 0
\(664\) −2389.72 −0.139667
\(665\) 11228.8 0.654789
\(666\) −9278.58 −0.539846
\(667\) −25360.5 −1.47220
\(668\) 9777.84 0.566342
\(669\) 13849.4 0.800374
\(670\) −44399.6 −2.56016
\(671\) −2141.44 −0.123203
\(672\) 14482.5 0.831362
\(673\) 12238.2 0.700965 0.350483 0.936569i \(-0.386018\pi\)
0.350483 + 0.936569i \(0.386018\pi\)
\(674\) −27077.1 −1.54743
\(675\) 3.29178 0.000187705 0
\(676\) 0 0
\(677\) −11536.2 −0.654905 −0.327453 0.944868i \(-0.606190\pi\)
−0.327453 + 0.944868i \(0.606190\pi\)
\(678\) −29706.6 −1.68271
\(679\) −1661.89 −0.0939283
\(680\) 656.551 0.0370258
\(681\) −11852.8 −0.666959
\(682\) −7334.76 −0.411822
\(683\) 331.665 0.0185810 0.00929048 0.999957i \(-0.497043\pi\)
0.00929048 + 0.999957i \(0.497043\pi\)
\(684\) 29319.4 1.63897
\(685\) 14472.8 0.807266
\(686\) 20231.2 1.12599
\(687\) −42594.6 −2.36548
\(688\) −5843.95 −0.323835
\(689\) 0 0
\(690\) −64738.7 −3.57183
\(691\) −6796.51 −0.374170 −0.187085 0.982344i \(-0.559904\pi\)
−0.187085 + 0.982344i \(0.559904\pi\)
\(692\) 30672.1 1.68494
\(693\) −2097.52 −0.114976
\(694\) −43061.4 −2.35531
\(695\) 31901.2 1.74112
\(696\) 4942.71 0.269185
\(697\) −3323.76 −0.180626
\(698\) 645.185 0.0349866
\(699\) −7319.05 −0.396040
\(700\) −13.2199 −0.000713805 0
\(701\) −8381.34 −0.451582 −0.225791 0.974176i \(-0.572497\pi\)
−0.225791 + 0.974176i \(0.572497\pi\)
\(702\) 0 0
\(703\) 11768.5 0.631375
\(704\) 7255.58 0.388430
\(705\) 19822.5 1.05895
\(706\) −21429.5 −1.14237
\(707\) 13428.9 0.714352
\(708\) −10815.6 −0.574116
\(709\) 1621.90 0.0859124 0.0429562 0.999077i \(-0.486322\pi\)
0.0429562 + 0.999077i \(0.486322\pi\)
\(710\) −19525.1 −1.03206
\(711\) −13354.6 −0.704410
\(712\) 1493.26 0.0785989
\(713\) −31177.6 −1.63760
\(714\) 2585.02 0.135493
\(715\) 0 0
\(716\) −19052.5 −0.994448
\(717\) −23328.1 −1.21507
\(718\) −202.957 −0.0105491
\(719\) 16139.1 0.837118 0.418559 0.908190i \(-0.362535\pi\)
0.418559 + 0.908190i \(0.362535\pi\)
\(720\) −14293.5 −0.739844
\(721\) 11028.6 0.569663
\(722\) −40776.2 −2.10185
\(723\) −21619.5 −1.11208
\(724\) −43514.9 −2.23373
\(725\) 23.9110 0.00122487
\(726\) −3608.43 −0.184464
\(727\) −4250.84 −0.216857 −0.108428 0.994104i \(-0.534582\pi\)
−0.108428 + 0.994104i \(0.534582\pi\)
\(728\) 0 0
\(729\) −15878.8 −0.806728
\(730\) −14232.5 −0.721601
\(731\) −1246.00 −0.0630438
\(732\) 12950.2 0.653896
\(733\) 25348.0 1.27729 0.638643 0.769503i \(-0.279496\pi\)
0.638643 + 0.769503i \(0.279496\pi\)
\(734\) −39208.7 −1.97169
\(735\) −22641.1 −1.13623
\(736\) 50377.5 2.52301
\(737\) −10519.4 −0.525762
\(738\) −30384.8 −1.51555
\(739\) 1476.69 0.0735059 0.0367530 0.999324i \(-0.488299\pi\)
0.0367530 + 0.999324i \(0.488299\pi\)
\(740\) 9439.53 0.468924
\(741\) 0 0
\(742\) 11439.9 0.566002
\(743\) 11223.5 0.554174 0.277087 0.960845i \(-0.410631\pi\)
0.277087 + 0.960845i \(0.410631\pi\)
\(744\) 6076.47 0.299428
\(745\) 7027.17 0.345578
\(746\) 18928.1 0.928964
\(747\) 11092.5 0.543310
\(748\) 1135.49 0.0555050
\(749\) −2280.74 −0.111264
\(750\) 41707.6 2.03059
\(751\) −3823.76 −0.185793 −0.0928967 0.995676i \(-0.529613\pi\)
−0.0928967 + 0.995676i \(0.529613\pi\)
\(752\) −12913.4 −0.626200
\(753\) 41456.8 2.00634
\(754\) 0 0
\(755\) 149.098 0.00718706
\(756\) −1296.54 −0.0623738
\(757\) 1210.99 0.0581427 0.0290714 0.999577i \(-0.490745\pi\)
0.0290714 + 0.999577i \(0.490745\pi\)
\(758\) 34704.0 1.66294
\(759\) −15338.2 −0.733521
\(760\) −7612.62 −0.363341
\(761\) −35356.7 −1.68420 −0.842101 0.539320i \(-0.818681\pi\)
−0.842101 + 0.539320i \(0.818681\pi\)
\(762\) −67730.2 −3.21995
\(763\) 1406.37 0.0667287
\(764\) −15050.2 −0.712693
\(765\) −3047.55 −0.144032
\(766\) −44092.2 −2.07978
\(767\) 0 0
\(768\) 17975.9 0.844596
\(769\) −18680.1 −0.875972 −0.437986 0.898982i \(-0.644308\pi\)
−0.437986 + 0.898982i \(0.644308\pi\)
\(770\) 3975.48 0.186060
\(771\) −56930.3 −2.65927
\(772\) −47892.0 −2.23274
\(773\) −26899.2 −1.25161 −0.625807 0.779978i \(-0.715230\pi\)
−0.625807 + 0.779978i \(0.715230\pi\)
\(774\) −11390.6 −0.528973
\(775\) 29.3958 0.00136249
\(776\) 1126.68 0.0521205
\(777\) 5091.45 0.235077
\(778\) −821.872 −0.0378734
\(779\) 38538.5 1.77251
\(780\) 0 0
\(781\) −4625.98 −0.211947
\(782\) 8992.00 0.411193
\(783\) 2345.07 0.107032
\(784\) 14749.5 0.671899
\(785\) −17720.5 −0.805697
\(786\) 57179.9 2.59483
\(787\) −12613.5 −0.571313 −0.285657 0.958332i \(-0.592212\pi\)
−0.285657 + 0.958332i \(0.592212\pi\)
\(788\) −8324.32 −0.376322
\(789\) 26432.7 1.19269
\(790\) 25311.2 1.13992
\(791\) 7754.19 0.348555
\(792\) 1422.02 0.0637997
\(793\) 0 0
\(794\) −28212.0 −1.26097
\(795\) −28352.2 −1.26484
\(796\) −312.091 −0.0138967
\(797\) 6998.03 0.311020 0.155510 0.987834i \(-0.450298\pi\)
0.155510 + 0.987834i \(0.450298\pi\)
\(798\) −29973.0 −1.32961
\(799\) −2753.29 −0.121908
\(800\) −47.4983 −0.00209915
\(801\) −6931.37 −0.305753
\(802\) 43235.9 1.90363
\(803\) −3372.04 −0.148190
\(804\) 63615.1 2.79046
\(805\) 16898.5 0.739866
\(806\) 0 0
\(807\) −18592.6 −0.811018
\(808\) −9104.20 −0.396392
\(809\) −11996.1 −0.521336 −0.260668 0.965428i \(-0.583943\pi\)
−0.260668 + 0.965428i \(0.583943\pi\)
\(810\) 36693.8 1.59171
\(811\) 33568.2 1.45344 0.726719 0.686935i \(-0.241044\pi\)
0.726719 + 0.686935i \(0.241044\pi\)
\(812\) −9417.87 −0.407023
\(813\) 44578.7 1.92305
\(814\) 4166.55 0.179407
\(815\) −6793.49 −0.291982
\(816\) 4173.57 0.179049
\(817\) 14447.2 0.618659
\(818\) −32788.1 −1.40148
\(819\) 0 0
\(820\) 30911.8 1.31645
\(821\) −37248.2 −1.58340 −0.791701 0.610909i \(-0.790804\pi\)
−0.791701 + 0.610909i \(0.790804\pi\)
\(822\) −38632.1 −1.63923
\(823\) 44135.3 1.86933 0.934665 0.355529i \(-0.115699\pi\)
0.934665 + 0.355529i \(0.115699\pi\)
\(824\) −7476.89 −0.316104
\(825\) 14.4616 0.000610289 0
\(826\) 5259.54 0.221553
\(827\) −6716.66 −0.282420 −0.141210 0.989980i \(-0.545099\pi\)
−0.141210 + 0.989980i \(0.545099\pi\)
\(828\) 44123.3 1.85192
\(829\) −34024.0 −1.42546 −0.712728 0.701441i \(-0.752540\pi\)
−0.712728 + 0.701441i \(0.752540\pi\)
\(830\) −21023.8 −0.879215
\(831\) −31776.6 −1.32649
\(832\) 0 0
\(833\) 3144.78 0.130804
\(834\) −85153.5 −3.53552
\(835\) 11784.3 0.488399
\(836\) −13165.9 −0.544679
\(837\) 2882.99 0.119057
\(838\) 30429.2 1.25437
\(839\) −9241.26 −0.380267 −0.190133 0.981758i \(-0.560892\pi\)
−0.190133 + 0.981758i \(0.560892\pi\)
\(840\) −3293.48 −0.135281
\(841\) −7354.71 −0.301558
\(842\) −50085.0 −2.04993
\(843\) 28081.8 1.14732
\(844\) 42902.5 1.74972
\(845\) 0 0
\(846\) −25169.7 −1.02288
\(847\) 941.891 0.0382099
\(848\) 18470.0 0.747953
\(849\) 22462.8 0.908034
\(850\) −8.47808 −0.000342113 0
\(851\) 17710.6 0.713410
\(852\) 27975.2 1.12490
\(853\) 47127.6 1.89170 0.945849 0.324607i \(-0.105232\pi\)
0.945849 + 0.324607i \(0.105232\pi\)
\(854\) −6297.57 −0.252340
\(855\) 35335.9 1.41341
\(856\) 1546.24 0.0617398
\(857\) 24176.7 0.963665 0.481833 0.876263i \(-0.339971\pi\)
0.481833 + 0.876263i \(0.339971\pi\)
\(858\) 0 0
\(859\) −797.373 −0.0316717 −0.0158359 0.999875i \(-0.505041\pi\)
−0.0158359 + 0.999875i \(0.505041\pi\)
\(860\) 11588.1 0.459480
\(861\) 16673.1 0.659950
\(862\) −14782.1 −0.584083
\(863\) −27776.1 −1.09561 −0.547805 0.836606i \(-0.684536\pi\)
−0.547805 + 0.836606i \(0.684536\pi\)
\(864\) −4658.39 −0.183428
\(865\) 36966.2 1.45305
\(866\) −22595.3 −0.886626
\(867\) −34366.2 −1.34618
\(868\) −11578.1 −0.452751
\(869\) 5996.87 0.234096
\(870\) 43484.1 1.69454
\(871\) 0 0
\(872\) −953.453 −0.0370275
\(873\) −5229.78 −0.202751
\(874\) −104261. −4.03511
\(875\) −10886.7 −0.420616
\(876\) 20392.1 0.786514
\(877\) 10727.4 0.413043 0.206522 0.978442i \(-0.433786\pi\)
0.206522 + 0.978442i \(0.433786\pi\)
\(878\) 9155.76 0.351927
\(879\) −3944.03 −0.151341
\(880\) 6418.50 0.245872
\(881\) 10155.1 0.388349 0.194174 0.980967i \(-0.437797\pi\)
0.194174 + 0.980967i \(0.437797\pi\)
\(882\) 28748.6 1.09752
\(883\) −40449.8 −1.54161 −0.770806 0.637070i \(-0.780146\pi\)
−0.770806 + 0.637070i \(0.780146\pi\)
\(884\) 0 0
\(885\) −13035.0 −0.495104
\(886\) −60449.3 −2.29214
\(887\) −15719.7 −0.595056 −0.297528 0.954713i \(-0.596162\pi\)
−0.297528 + 0.954713i \(0.596162\pi\)
\(888\) −3451.77 −0.130443
\(889\) 17679.3 0.666980
\(890\) 13137.2 0.494786
\(891\) 8693.68 0.326879
\(892\) 17890.4 0.671541
\(893\) 31924.0 1.19630
\(894\) −18757.6 −0.701730
\(895\) −22962.2 −0.857587
\(896\) 5192.00 0.193585
\(897\) 0 0
\(898\) −18177.2 −0.675478
\(899\) 20941.6 0.776910
\(900\) −41.6015 −0.00154080
\(901\) 3938.04 0.145610
\(902\) 13644.3 0.503664
\(903\) 6250.36 0.230342
\(904\) −5256.98 −0.193412
\(905\) −52444.4 −1.92631
\(906\) −397.986 −0.0145940
\(907\) 51799.5 1.89633 0.948166 0.317776i \(-0.102936\pi\)
0.948166 + 0.317776i \(0.102936\pi\)
\(908\) −15311.2 −0.559602
\(909\) 42259.5 1.54198
\(910\) 0 0
\(911\) −13518.0 −0.491628 −0.245814 0.969317i \(-0.579055\pi\)
−0.245814 + 0.969317i \(0.579055\pi\)
\(912\) −48392.1 −1.75704
\(913\) −4981.08 −0.180558
\(914\) 37272.2 1.34885
\(915\) 15607.6 0.563904
\(916\) −55022.7 −1.98472
\(917\) −14925.4 −0.537493
\(918\) −831.488 −0.0298945
\(919\) −3727.19 −0.133785 −0.0668926 0.997760i \(-0.521308\pi\)
−0.0668926 + 0.997760i \(0.521308\pi\)
\(920\) −11456.4 −0.410549
\(921\) 66773.0 2.38898
\(922\) 38853.7 1.38783
\(923\) 0 0
\(924\) −5696.01 −0.202798
\(925\) −16.6984 −0.000593556 0
\(926\) −52068.3 −1.84781
\(927\) 34705.9 1.22966
\(928\) −33837.9 −1.19697
\(929\) −27859.8 −0.983909 −0.491955 0.870621i \(-0.663717\pi\)
−0.491955 + 0.870621i \(0.663717\pi\)
\(930\) 53458.6 1.88492
\(931\) −36463.3 −1.28360
\(932\) −9454.58 −0.332291
\(933\) −72018.5 −2.52710
\(934\) 61681.1 2.16089
\(935\) 1368.50 0.0478661
\(936\) 0 0
\(937\) −6058.26 −0.211222 −0.105611 0.994408i \(-0.533680\pi\)
−0.105611 + 0.994408i \(0.533680\pi\)
\(938\) −30935.5 −1.07685
\(939\) 28498.2 0.990419
\(940\) 25606.3 0.888496
\(941\) −50684.6 −1.75587 −0.877934 0.478781i \(-0.841079\pi\)
−0.877934 + 0.478781i \(0.841079\pi\)
\(942\) 47301.2 1.63605
\(943\) 57997.3 2.00281
\(944\) 8491.64 0.292775
\(945\) −1562.60 −0.0537897
\(946\) 5114.93 0.175794
\(947\) 26010.4 0.892529 0.446265 0.894901i \(-0.352754\pi\)
0.446265 + 0.894901i \(0.352754\pi\)
\(948\) −36265.5 −1.24246
\(949\) 0 0
\(950\) 98.3022 0.00335721
\(951\) 10068.9 0.343331
\(952\) 457.454 0.0155737
\(953\) 16634.8 0.565428 0.282714 0.959204i \(-0.408765\pi\)
0.282714 + 0.959204i \(0.408765\pi\)
\(954\) 36000.3 1.22175
\(955\) −18138.6 −0.614609
\(956\) −30134.7 −1.01948
\(957\) 10302.5 0.347996
\(958\) 43530.7 1.46807
\(959\) 10084.0 0.339550
\(960\) −52881.5 −1.77786
\(961\) −4045.77 −0.135805
\(962\) 0 0
\(963\) −7177.25 −0.240170
\(964\) −27927.5 −0.933076
\(965\) −57719.8 −1.92546
\(966\) −45106.9 −1.50237
\(967\) −26428.0 −0.878870 −0.439435 0.898274i \(-0.644821\pi\)
−0.439435 + 0.898274i \(0.644821\pi\)
\(968\) −638.559 −0.0212025
\(969\) −10317.8 −0.342058
\(970\) 9912.13 0.328103
\(971\) −49893.0 −1.64896 −0.824481 0.565889i \(-0.808533\pi\)
−0.824481 + 0.565889i \(0.808533\pi\)
\(972\) −48077.2 −1.58650
\(973\) 22227.2 0.732346
\(974\) −60297.4 −1.98363
\(975\) 0 0
\(976\) −10167.6 −0.333459
\(977\) 1030.29 0.0337379 0.0168690 0.999858i \(-0.494630\pi\)
0.0168690 + 0.999858i \(0.494630\pi\)
\(978\) 18133.8 0.592899
\(979\) 3112.53 0.101611
\(980\) −29247.3 −0.953337
\(981\) 4425.70 0.144038
\(982\) 25405.2 0.825574
\(983\) 1300.89 0.0422095 0.0211047 0.999777i \(-0.493282\pi\)
0.0211047 + 0.999777i \(0.493282\pi\)
\(984\) −11303.6 −0.366204
\(985\) −10032.5 −0.324531
\(986\) −6039.81 −0.195078
\(987\) 13811.4 0.445413
\(988\) 0 0
\(989\) 21741.9 0.699041
\(990\) 12510.4 0.401624
\(991\) 44003.6 1.41052 0.705258 0.708951i \(-0.250831\pi\)
0.705258 + 0.708951i \(0.250831\pi\)
\(992\) −41599.7 −1.33144
\(993\) −16493.2 −0.527086
\(994\) −13604.2 −0.434102
\(995\) −376.134 −0.0119842
\(996\) 30122.7 0.958306
\(997\) −53373.6 −1.69545 −0.847723 0.530439i \(-0.822027\pi\)
−0.847723 + 0.530439i \(0.822027\pi\)
\(998\) 27734.9 0.879694
\(999\) −1637.70 −0.0518663
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1859.4.a.h.1.3 17
13.4 even 6 143.4.e.b.133.3 yes 34
13.10 even 6 143.4.e.b.100.3 34
13.12 even 2 1859.4.a.g.1.15 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.4.e.b.100.3 34 13.10 even 6
143.4.e.b.133.3 yes 34 13.4 even 6
1859.4.a.g.1.15 17 13.12 even 2
1859.4.a.h.1.3 17 1.1 even 1 trivial