Properties

Label 1859.4.a.h.1.14
Level $1859$
Weight $4$
Character 1859.1
Self dual yes
Analytic conductor $109.685$
Analytic rank $0$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1859,4,Mod(1,1859)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1859.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1859, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [17,0,-6,50,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(0\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 93 x^{15} - 7 x^{14} + 3449 x^{13} + 406 x^{12} - 65242 x^{11} - 7942 x^{10} + 669163 x^{9} + \cdots - 2210688 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(3.17505\) of defining polynomial
Character \(\chi\) \(=\) 1859.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.17505 q^{2} -0.600459 q^{3} +2.08094 q^{4} -12.4679 q^{5} -1.90649 q^{6} -10.6254 q^{7} -18.7933 q^{8} -26.6394 q^{9} -39.5863 q^{10} -11.0000 q^{11} -1.24952 q^{12} -33.7362 q^{14} +7.48648 q^{15} -76.3172 q^{16} -62.9942 q^{17} -84.5816 q^{18} -140.455 q^{19} -25.9449 q^{20} +6.38012 q^{21} -34.9255 q^{22} +69.2931 q^{23} +11.2846 q^{24} +30.4490 q^{25} +32.2083 q^{27} -22.1108 q^{28} -138.264 q^{29} +23.7699 q^{30} +168.325 q^{31} -91.9643 q^{32} +6.60505 q^{33} -200.010 q^{34} +132.477 q^{35} -55.4350 q^{36} -236.618 q^{37} -445.953 q^{38} +234.314 q^{40} -207.596 q^{41} +20.2572 q^{42} -301.808 q^{43} -22.8903 q^{44} +332.138 q^{45} +220.009 q^{46} +343.732 q^{47} +45.8254 q^{48} -230.101 q^{49} +96.6770 q^{50} +37.8254 q^{51} +306.658 q^{53} +102.263 q^{54} +137.147 q^{55} +199.686 q^{56} +84.3378 q^{57} -438.995 q^{58} +266.382 q^{59} +15.5789 q^{60} -733.894 q^{61} +534.441 q^{62} +283.055 q^{63} +318.546 q^{64} +20.9714 q^{66} +180.668 q^{67} -131.087 q^{68} -41.6076 q^{69} +420.620 q^{70} +218.447 q^{71} +500.644 q^{72} +817.244 q^{73} -751.273 q^{74} -18.2834 q^{75} -292.279 q^{76} +116.879 q^{77} -289.899 q^{79} +951.517 q^{80} +699.925 q^{81} -659.128 q^{82} +971.055 q^{83} +13.2766 q^{84} +785.406 q^{85} -958.254 q^{86} +83.0219 q^{87} +206.727 q^{88} -1405.74 q^{89} +1054.56 q^{90} +144.194 q^{92} -101.072 q^{93} +1091.36 q^{94} +1751.19 q^{95} +55.2208 q^{96} -1720.37 q^{97} -730.582 q^{98} +293.034 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q - 6 q^{3} + 50 q^{4} + 24 q^{5} - 16 q^{6} + 62 q^{7} + 21 q^{8} + 135 q^{9} + 2 q^{10} - 187 q^{11} - 127 q^{12} + 148 q^{15} + 126 q^{16} - 74 q^{17} - 90 q^{18} + 159 q^{19} + 222 q^{20} + 184 q^{21}+ \cdots - 1485 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.17505 1.12255 0.561275 0.827630i \(-0.310311\pi\)
0.561275 + 0.827630i \(0.310311\pi\)
\(3\) −0.600459 −0.115558 −0.0577792 0.998329i \(-0.518402\pi\)
−0.0577792 + 0.998329i \(0.518402\pi\)
\(4\) 2.08094 0.260117
\(5\) −12.4679 −1.11516 −0.557582 0.830122i \(-0.688271\pi\)
−0.557582 + 0.830122i \(0.688271\pi\)
\(6\) −1.90649 −0.129720
\(7\) −10.6254 −0.573717 −0.286859 0.957973i \(-0.592611\pi\)
−0.286859 + 0.957973i \(0.592611\pi\)
\(8\) −18.7933 −0.830555
\(9\) −26.6394 −0.986646
\(10\) −39.5863 −1.25183
\(11\) −11.0000 −0.301511
\(12\) −1.24952 −0.0300587
\(13\) 0 0
\(14\) −33.7362 −0.644026
\(15\) 7.48648 0.128867
\(16\) −76.3172 −1.19246
\(17\) −62.9942 −0.898725 −0.449363 0.893349i \(-0.648349\pi\)
−0.449363 + 0.893349i \(0.648349\pi\)
\(18\) −84.5816 −1.10756
\(19\) −140.455 −1.69593 −0.847966 0.530051i \(-0.822173\pi\)
−0.847966 + 0.530051i \(0.822173\pi\)
\(20\) −25.9449 −0.290073
\(21\) 6.38012 0.0662979
\(22\) −34.9255 −0.338461
\(23\) 69.2931 0.628200 0.314100 0.949390i \(-0.398297\pi\)
0.314100 + 0.949390i \(0.398297\pi\)
\(24\) 11.2846 0.0959776
\(25\) 30.4490 0.243592
\(26\) 0 0
\(27\) 32.2083 0.229574
\(28\) −22.1108 −0.149234
\(29\) −138.264 −0.885344 −0.442672 0.896684i \(-0.645969\pi\)
−0.442672 + 0.896684i \(0.645969\pi\)
\(30\) 23.7699 0.144659
\(31\) 168.325 0.975229 0.487614 0.873059i \(-0.337867\pi\)
0.487614 + 0.873059i \(0.337867\pi\)
\(32\) −91.9643 −0.508036
\(33\) 6.60505 0.0348422
\(34\) −200.010 −1.00886
\(35\) 132.477 0.639789
\(36\) −55.4350 −0.256643
\(37\) −236.618 −1.05134 −0.525672 0.850687i \(-0.676186\pi\)
−0.525672 + 0.850687i \(0.676186\pi\)
\(38\) −445.953 −1.90377
\(39\) 0 0
\(40\) 234.314 0.926206
\(41\) −207.596 −0.790758 −0.395379 0.918518i \(-0.629387\pi\)
−0.395379 + 0.918518i \(0.629387\pi\)
\(42\) 20.2572 0.0744226
\(43\) −301.808 −1.07035 −0.535177 0.844740i \(-0.679755\pi\)
−0.535177 + 0.844740i \(0.679755\pi\)
\(44\) −22.8903 −0.0784282
\(45\) 332.138 1.10027
\(46\) 220.009 0.705186
\(47\) 343.732 1.06677 0.533387 0.845871i \(-0.320919\pi\)
0.533387 + 0.845871i \(0.320919\pi\)
\(48\) 45.8254 0.137798
\(49\) −230.101 −0.670848
\(50\) 96.6770 0.273444
\(51\) 37.8254 0.103855
\(52\) 0 0
\(53\) 306.658 0.794769 0.397384 0.917652i \(-0.369918\pi\)
0.397384 + 0.917652i \(0.369918\pi\)
\(54\) 102.263 0.257708
\(55\) 137.147 0.336235
\(56\) 199.686 0.476504
\(57\) 84.3378 0.195979
\(58\) −438.995 −0.993843
\(59\) 266.382 0.587796 0.293898 0.955837i \(-0.405047\pi\)
0.293898 + 0.955837i \(0.405047\pi\)
\(60\) 15.5789 0.0335204
\(61\) −733.894 −1.54042 −0.770209 0.637792i \(-0.779848\pi\)
−0.770209 + 0.637792i \(0.779848\pi\)
\(62\) 534.441 1.09474
\(63\) 283.055 0.566056
\(64\) 318.546 0.622161
\(65\) 0 0
\(66\) 20.9714 0.0391121
\(67\) 180.668 0.329435 0.164718 0.986341i \(-0.447329\pi\)
0.164718 + 0.986341i \(0.447329\pi\)
\(68\) −131.087 −0.233774
\(69\) −41.6076 −0.0725938
\(70\) 420.620 0.718195
\(71\) 218.447 0.365139 0.182570 0.983193i \(-0.441558\pi\)
0.182570 + 0.983193i \(0.441558\pi\)
\(72\) 500.644 0.819464
\(73\) 817.244 1.31029 0.655145 0.755503i \(-0.272607\pi\)
0.655145 + 0.755503i \(0.272607\pi\)
\(74\) −751.273 −1.18019
\(75\) −18.2834 −0.0281491
\(76\) −292.279 −0.441141
\(77\) 116.879 0.172982
\(78\) 0 0
\(79\) −289.899 −0.412863 −0.206432 0.978461i \(-0.566185\pi\)
−0.206432 + 0.978461i \(0.566185\pi\)
\(80\) 951.517 1.32978
\(81\) 699.925 0.960117
\(82\) −659.128 −0.887665
\(83\) 971.055 1.28418 0.642091 0.766628i \(-0.278067\pi\)
0.642091 + 0.766628i \(0.278067\pi\)
\(84\) 13.2766 0.0172452
\(85\) 785.406 1.00223
\(86\) −958.254 −1.20153
\(87\) 83.0219 0.102309
\(88\) 206.727 0.250422
\(89\) −1405.74 −1.67424 −0.837122 0.547016i \(-0.815764\pi\)
−0.837122 + 0.547016i \(0.815764\pi\)
\(90\) 1054.56 1.23511
\(91\) 0 0
\(92\) 144.194 0.163405
\(93\) −101.072 −0.112696
\(94\) 1091.36 1.19751
\(95\) 1751.19 1.89124
\(96\) 55.2208 0.0587078
\(97\) −1720.37 −1.80080 −0.900399 0.435066i \(-0.856725\pi\)
−0.900399 + 0.435066i \(0.856725\pi\)
\(98\) −730.582 −0.753060
\(99\) 293.034 0.297485
\(100\) 63.3624 0.0633624
\(101\) −1711.22 −1.68587 −0.842936 0.538014i \(-0.819175\pi\)
−0.842936 + 0.538014i \(0.819175\pi\)
\(102\) 120.098 0.116583
\(103\) −755.128 −0.722378 −0.361189 0.932493i \(-0.617629\pi\)
−0.361189 + 0.932493i \(0.617629\pi\)
\(104\) 0 0
\(105\) −79.5468 −0.0739330
\(106\) 973.655 0.892167
\(107\) 250.109 0.225971 0.112986 0.993597i \(-0.463959\pi\)
0.112986 + 0.993597i \(0.463959\pi\)
\(108\) 67.0234 0.0597160
\(109\) 290.883 0.255611 0.127805 0.991799i \(-0.459207\pi\)
0.127805 + 0.991799i \(0.459207\pi\)
\(110\) 435.449 0.377440
\(111\) 142.079 0.121492
\(112\) 810.900 0.684133
\(113\) 361.698 0.301113 0.150556 0.988601i \(-0.451894\pi\)
0.150556 + 0.988601i \(0.451894\pi\)
\(114\) 267.777 0.219996
\(115\) −863.940 −0.700546
\(116\) −287.719 −0.230293
\(117\) 0 0
\(118\) 845.775 0.659830
\(119\) 669.338 0.515614
\(120\) −140.696 −0.107031
\(121\) 121.000 0.0909091
\(122\) −2330.15 −1.72919
\(123\) 124.653 0.0913787
\(124\) 350.274 0.253674
\(125\) 1178.85 0.843519
\(126\) 898.712 0.635426
\(127\) 553.305 0.386597 0.193299 0.981140i \(-0.438081\pi\)
0.193299 + 0.981140i \(0.438081\pi\)
\(128\) 1747.11 1.20644
\(129\) 181.223 0.123688
\(130\) 0 0
\(131\) 1473.00 0.982420 0.491210 0.871041i \(-0.336555\pi\)
0.491210 + 0.871041i \(0.336555\pi\)
\(132\) 13.7447 0.00906304
\(133\) 1492.40 0.972985
\(134\) 573.631 0.369807
\(135\) −401.570 −0.256012
\(136\) 1183.87 0.746441
\(137\) 1390.89 0.867384 0.433692 0.901061i \(-0.357211\pi\)
0.433692 + 0.901061i \(0.357211\pi\)
\(138\) −132.106 −0.0814901
\(139\) 1886.90 1.15140 0.575702 0.817660i \(-0.304729\pi\)
0.575702 + 0.817660i \(0.304729\pi\)
\(140\) 275.675 0.166420
\(141\) −206.397 −0.123275
\(142\) 693.580 0.409887
\(143\) 0 0
\(144\) 2033.05 1.17653
\(145\) 1723.86 0.987305
\(146\) 2594.79 1.47087
\(147\) 138.166 0.0775222
\(148\) −492.386 −0.273472
\(149\) −2331.13 −1.28170 −0.640850 0.767666i \(-0.721418\pi\)
−0.640850 + 0.767666i \(0.721418\pi\)
\(150\) −58.0506 −0.0315987
\(151\) −2342.83 −1.26263 −0.631313 0.775528i \(-0.717484\pi\)
−0.631313 + 0.775528i \(0.717484\pi\)
\(152\) 2639.62 1.40856
\(153\) 1678.13 0.886724
\(154\) 371.098 0.194181
\(155\) −2098.66 −1.08754
\(156\) 0 0
\(157\) 2276.13 1.15704 0.578518 0.815670i \(-0.303631\pi\)
0.578518 + 0.815670i \(0.303631\pi\)
\(158\) −920.444 −0.463459
\(159\) −184.136 −0.0918422
\(160\) 1146.60 0.566543
\(161\) −736.266 −0.360409
\(162\) 2222.30 1.07778
\(163\) −1016.82 −0.488609 −0.244305 0.969699i \(-0.578560\pi\)
−0.244305 + 0.969699i \(0.578560\pi\)
\(164\) −431.994 −0.205690
\(165\) −82.3512 −0.0388548
\(166\) 3083.15 1.44156
\(167\) 2071.03 0.959648 0.479824 0.877365i \(-0.340701\pi\)
0.479824 + 0.877365i \(0.340701\pi\)
\(168\) −119.904 −0.0550640
\(169\) 0 0
\(170\) 2493.70 1.12505
\(171\) 3741.66 1.67328
\(172\) −628.042 −0.278417
\(173\) −1980.96 −0.870575 −0.435288 0.900291i \(-0.643353\pi\)
−0.435288 + 0.900291i \(0.643353\pi\)
\(174\) 263.599 0.114847
\(175\) −323.533 −0.139753
\(176\) 839.489 0.359539
\(177\) −159.951 −0.0679248
\(178\) −4463.28 −1.87942
\(179\) −3440.83 −1.43676 −0.718380 0.695651i \(-0.755116\pi\)
−0.718380 + 0.695651i \(0.755116\pi\)
\(180\) 691.159 0.286200
\(181\) −2545.54 −1.04535 −0.522676 0.852532i \(-0.675066\pi\)
−0.522676 + 0.852532i \(0.675066\pi\)
\(182\) 0 0
\(183\) 440.673 0.178008
\(184\) −1302.25 −0.521755
\(185\) 2950.13 1.17242
\(186\) −320.910 −0.126507
\(187\) 692.936 0.270976
\(188\) 715.283 0.277486
\(189\) −342.226 −0.131710
\(190\) 5560.11 2.12301
\(191\) −1700.45 −0.644191 −0.322096 0.946707i \(-0.604387\pi\)
−0.322096 + 0.946707i \(0.604387\pi\)
\(192\) −191.274 −0.0718960
\(193\) −3538.34 −1.31966 −0.659832 0.751413i \(-0.729373\pi\)
−0.659832 + 0.751413i \(0.729373\pi\)
\(194\) −5462.27 −2.02148
\(195\) 0 0
\(196\) −478.825 −0.174499
\(197\) 2590.46 0.936867 0.468434 0.883499i \(-0.344819\pi\)
0.468434 + 0.883499i \(0.344819\pi\)
\(198\) 930.397 0.333942
\(199\) −4681.28 −1.66757 −0.833786 0.552087i \(-0.813832\pi\)
−0.833786 + 0.552087i \(0.813832\pi\)
\(200\) −572.238 −0.202317
\(201\) −108.484 −0.0380690
\(202\) −5433.22 −1.89247
\(203\) 1469.11 0.507937
\(204\) 78.7123 0.0270145
\(205\) 2588.29 0.881825
\(206\) −2397.57 −0.810905
\(207\) −1845.93 −0.619811
\(208\) 0 0
\(209\) 1545.01 0.511343
\(210\) −252.565 −0.0829935
\(211\) 4948.59 1.61457 0.807286 0.590160i \(-0.200936\pi\)
0.807286 + 0.590160i \(0.200936\pi\)
\(212\) 638.136 0.206733
\(213\) −131.169 −0.0421949
\(214\) 794.108 0.253664
\(215\) 3762.91 1.19362
\(216\) −605.301 −0.190674
\(217\) −1788.52 −0.559506
\(218\) 923.568 0.286935
\(219\) −490.722 −0.151415
\(220\) 285.394 0.0874604
\(221\) 0 0
\(222\) 451.109 0.136380
\(223\) −141.065 −0.0423606 −0.0211803 0.999776i \(-0.506742\pi\)
−0.0211803 + 0.999776i \(0.506742\pi\)
\(224\) 977.157 0.291469
\(225\) −811.144 −0.240339
\(226\) 1148.41 0.338014
\(227\) 1870.17 0.546818 0.273409 0.961898i \(-0.411849\pi\)
0.273409 + 0.961898i \(0.411849\pi\)
\(228\) 175.501 0.0509775
\(229\) −3641.42 −1.05079 −0.525397 0.850857i \(-0.676083\pi\)
−0.525397 + 0.850857i \(0.676083\pi\)
\(230\) −2743.05 −0.786398
\(231\) −70.1813 −0.0199896
\(232\) 2598.44 0.735327
\(233\) 520.689 0.146401 0.0732006 0.997317i \(-0.476679\pi\)
0.0732006 + 0.997317i \(0.476679\pi\)
\(234\) 0 0
\(235\) −4285.62 −1.18963
\(236\) 554.323 0.152896
\(237\) 174.073 0.0477098
\(238\) 2125.18 0.578802
\(239\) 1128.38 0.305392 0.152696 0.988273i \(-0.451204\pi\)
0.152696 + 0.988273i \(0.451204\pi\)
\(240\) −571.347 −0.153668
\(241\) 317.382 0.0848314 0.0424157 0.999100i \(-0.486495\pi\)
0.0424157 + 0.999100i \(0.486495\pi\)
\(242\) 384.181 0.102050
\(243\) −1289.90 −0.340523
\(244\) −1527.19 −0.400689
\(245\) 2868.88 0.748106
\(246\) 395.779 0.102577
\(247\) 0 0
\(248\) −3163.39 −0.809981
\(249\) −583.079 −0.148398
\(250\) 3742.92 0.946892
\(251\) 3603.60 0.906204 0.453102 0.891459i \(-0.350317\pi\)
0.453102 + 0.891459i \(0.350317\pi\)
\(252\) 589.019 0.147241
\(253\) −762.224 −0.189409
\(254\) 1756.77 0.433975
\(255\) −471.604 −0.115816
\(256\) 2998.80 0.732130
\(257\) −4545.48 −1.10326 −0.551632 0.834087i \(-0.685995\pi\)
−0.551632 + 0.834087i \(0.685995\pi\)
\(258\) 575.393 0.138846
\(259\) 2514.16 0.603174
\(260\) 0 0
\(261\) 3683.28 0.873522
\(262\) 4676.86 1.10281
\(263\) 1247.98 0.292599 0.146299 0.989240i \(-0.453264\pi\)
0.146299 + 0.989240i \(0.453264\pi\)
\(264\) −124.131 −0.0289383
\(265\) −3823.39 −0.886298
\(266\) 4738.43 1.09222
\(267\) 844.087 0.193473
\(268\) 375.959 0.0856917
\(269\) −4206.71 −0.953486 −0.476743 0.879043i \(-0.658183\pi\)
−0.476743 + 0.879043i \(0.658183\pi\)
\(270\) −1275.01 −0.287387
\(271\) 6741.39 1.51111 0.755554 0.655086i \(-0.227368\pi\)
0.755554 + 0.655086i \(0.227368\pi\)
\(272\) 4807.54 1.07169
\(273\) 0 0
\(274\) 4416.14 0.973682
\(275\) −334.939 −0.0734457
\(276\) −86.5828 −0.0188829
\(277\) 627.466 0.136104 0.0680519 0.997682i \(-0.478322\pi\)
0.0680519 + 0.997682i \(0.478322\pi\)
\(278\) 5991.02 1.29251
\(279\) −4484.09 −0.962206
\(280\) −2489.67 −0.531380
\(281\) −8848.01 −1.87839 −0.939195 0.343383i \(-0.888427\pi\)
−0.939195 + 0.343383i \(0.888427\pi\)
\(282\) −655.320 −0.138382
\(283\) −8304.85 −1.74442 −0.872212 0.489128i \(-0.837315\pi\)
−0.872212 + 0.489128i \(0.837315\pi\)
\(284\) 454.574 0.0949789
\(285\) −1051.52 −0.218549
\(286\) 0 0
\(287\) 2205.79 0.453672
\(288\) 2449.88 0.501251
\(289\) −944.736 −0.192293
\(290\) 5473.35 1.10830
\(291\) 1033.01 0.208097
\(292\) 1700.63 0.340829
\(293\) 1448.89 0.288891 0.144446 0.989513i \(-0.453860\pi\)
0.144446 + 0.989513i \(0.453860\pi\)
\(294\) 438.685 0.0870225
\(295\) −3321.23 −0.655489
\(296\) 4446.83 0.873199
\(297\) −354.291 −0.0692191
\(298\) −7401.44 −1.43877
\(299\) 0 0
\(300\) −38.0465 −0.00732206
\(301\) 3206.83 0.614081
\(302\) −7438.59 −1.41736
\(303\) 1027.52 0.194817
\(304\) 10719.2 2.02232
\(305\) 9150.13 1.71782
\(306\) 5328.14 0.995391
\(307\) 3135.48 0.582904 0.291452 0.956585i \(-0.405862\pi\)
0.291452 + 0.956585i \(0.405862\pi\)
\(308\) 243.218 0.0449956
\(309\) 453.423 0.0834769
\(310\) −6663.36 −1.22082
\(311\) −6381.54 −1.16355 −0.581775 0.813350i \(-0.697642\pi\)
−0.581775 + 0.813350i \(0.697642\pi\)
\(312\) 0 0
\(313\) −895.167 −0.161654 −0.0808272 0.996728i \(-0.525756\pi\)
−0.0808272 + 0.996728i \(0.525756\pi\)
\(314\) 7226.81 1.29883
\(315\) −3529.10 −0.631246
\(316\) −603.261 −0.107393
\(317\) −1411.07 −0.250011 −0.125005 0.992156i \(-0.539895\pi\)
−0.125005 + 0.992156i \(0.539895\pi\)
\(318\) −584.640 −0.103097
\(319\) 1520.90 0.266941
\(320\) −3971.61 −0.693812
\(321\) −150.180 −0.0261129
\(322\) −2337.68 −0.404577
\(323\) 8847.87 1.52418
\(324\) 1456.50 0.249743
\(325\) 0 0
\(326\) −3228.44 −0.548488
\(327\) −174.663 −0.0295380
\(328\) 3901.42 0.656768
\(329\) −3652.28 −0.612027
\(330\) −261.469 −0.0436164
\(331\) 358.291 0.0594968 0.0297484 0.999557i \(-0.490529\pi\)
0.0297484 + 0.999557i \(0.490529\pi\)
\(332\) 2020.70 0.334038
\(333\) 6303.37 1.03730
\(334\) 6575.63 1.07725
\(335\) −2252.56 −0.367375
\(336\) −486.913 −0.0790573
\(337\) 583.989 0.0943973 0.0471986 0.998886i \(-0.484971\pi\)
0.0471986 + 0.998886i \(0.484971\pi\)
\(338\) 0 0
\(339\) −217.185 −0.0347961
\(340\) 1634.38 0.260696
\(341\) −1851.58 −0.294043
\(342\) 11879.9 1.87834
\(343\) 6089.42 0.958595
\(344\) 5671.97 0.888989
\(345\) 518.761 0.0809540
\(346\) −6289.64 −0.977264
\(347\) 2653.34 0.410486 0.205243 0.978711i \(-0.434202\pi\)
0.205243 + 0.978711i \(0.434202\pi\)
\(348\) 172.763 0.0266123
\(349\) 2697.04 0.413665 0.206833 0.978376i \(-0.433684\pi\)
0.206833 + 0.978376i \(0.433684\pi\)
\(350\) −1027.23 −0.156880
\(351\) 0 0
\(352\) 1011.61 0.153179
\(353\) 439.546 0.0662739 0.0331370 0.999451i \(-0.489450\pi\)
0.0331370 + 0.999451i \(0.489450\pi\)
\(354\) −507.853 −0.0762489
\(355\) −2723.58 −0.407190
\(356\) −2925.25 −0.435499
\(357\) −401.910 −0.0595836
\(358\) −10924.8 −1.61283
\(359\) −4427.30 −0.650874 −0.325437 0.945564i \(-0.605511\pi\)
−0.325437 + 0.945564i \(0.605511\pi\)
\(360\) −6241.98 −0.913837
\(361\) 12868.7 1.87618
\(362\) −8082.22 −1.17346
\(363\) −72.6556 −0.0105053
\(364\) 0 0
\(365\) −10189.3 −1.46119
\(366\) 1399.16 0.199823
\(367\) −10299.4 −1.46491 −0.732455 0.680816i \(-0.761625\pi\)
−0.732455 + 0.680816i \(0.761625\pi\)
\(368\) −5288.25 −0.749101
\(369\) 5530.25 0.780198
\(370\) 9366.81 1.31610
\(371\) −3258.36 −0.455973
\(372\) −210.325 −0.0293141
\(373\) −7178.91 −0.996541 −0.498270 0.867022i \(-0.666031\pi\)
−0.498270 + 0.867022i \(0.666031\pi\)
\(374\) 2200.10 0.304184
\(375\) −707.854 −0.0974758
\(376\) −6459.86 −0.886015
\(377\) 0 0
\(378\) −1086.58 −0.147851
\(379\) 4214.23 0.571163 0.285581 0.958354i \(-0.407813\pi\)
0.285581 + 0.958354i \(0.407813\pi\)
\(380\) 3644.11 0.491944
\(381\) −332.237 −0.0446746
\(382\) −5399.03 −0.723137
\(383\) −6506.29 −0.868031 −0.434015 0.900905i \(-0.642904\pi\)
−0.434015 + 0.900905i \(0.642904\pi\)
\(384\) −1049.07 −0.139415
\(385\) −1457.24 −0.192904
\(386\) −11234.4 −1.48139
\(387\) 8039.99 1.05606
\(388\) −3579.98 −0.468418
\(389\) −10872.8 −1.41715 −0.708577 0.705633i \(-0.750663\pi\)
−0.708577 + 0.705633i \(0.750663\pi\)
\(390\) 0 0
\(391\) −4365.06 −0.564579
\(392\) 4324.36 0.557177
\(393\) −884.479 −0.113527
\(394\) 8224.85 1.05168
\(395\) 3614.44 0.460410
\(396\) 609.785 0.0773809
\(397\) 9020.48 1.14037 0.570183 0.821518i \(-0.306872\pi\)
0.570183 + 0.821518i \(0.306872\pi\)
\(398\) −14863.3 −1.87193
\(399\) −896.122 −0.112437
\(400\) −2323.78 −0.290473
\(401\) 607.247 0.0756221 0.0378111 0.999285i \(-0.487961\pi\)
0.0378111 + 0.999285i \(0.487961\pi\)
\(402\) −344.442 −0.0427344
\(403\) 0 0
\(404\) −3560.95 −0.438524
\(405\) −8726.61 −1.07069
\(406\) 4664.50 0.570185
\(407\) 2602.80 0.316992
\(408\) −710.865 −0.0862575
\(409\) 14792.5 1.78836 0.894181 0.447707i \(-0.147759\pi\)
0.894181 + 0.447707i \(0.147759\pi\)
\(410\) 8217.96 0.989892
\(411\) −835.172 −0.100234
\(412\) −1571.37 −0.187903
\(413\) −2830.41 −0.337229
\(414\) −5860.91 −0.695769
\(415\) −12107.0 −1.43208
\(416\) 0 0
\(417\) −1133.01 −0.133054
\(418\) 4905.48 0.574007
\(419\) −8676.69 −1.01166 −0.505828 0.862634i \(-0.668813\pi\)
−0.505828 + 0.862634i \(0.668813\pi\)
\(420\) −165.532 −0.0192312
\(421\) −9185.80 −1.06339 −0.531697 0.846935i \(-0.678445\pi\)
−0.531697 + 0.846935i \(0.678445\pi\)
\(422\) 15712.0 1.81244
\(423\) −9156.82 −1.05253
\(424\) −5763.12 −0.660099
\(425\) −1918.11 −0.218922
\(426\) −416.467 −0.0473659
\(427\) 7797.91 0.883764
\(428\) 520.460 0.0587790
\(429\) 0 0
\(430\) 11947.4 1.33990
\(431\) −12680.2 −1.41713 −0.708565 0.705646i \(-0.750657\pi\)
−0.708565 + 0.705646i \(0.750657\pi\)
\(432\) −2458.05 −0.273757
\(433\) −713.344 −0.0791712 −0.0395856 0.999216i \(-0.512604\pi\)
−0.0395856 + 0.999216i \(0.512604\pi\)
\(434\) −5678.64 −0.628073
\(435\) −1035.11 −0.114091
\(436\) 605.309 0.0664886
\(437\) −9732.59 −1.06538
\(438\) −1558.07 −0.169971
\(439\) −14808.1 −1.60992 −0.804958 0.593332i \(-0.797812\pi\)
−0.804958 + 0.593332i \(0.797812\pi\)
\(440\) −2577.45 −0.279262
\(441\) 6129.76 0.661890
\(442\) 0 0
\(443\) 2373.33 0.254538 0.127269 0.991868i \(-0.459379\pi\)
0.127269 + 0.991868i \(0.459379\pi\)
\(444\) 295.658 0.0316020
\(445\) 17526.6 1.86706
\(446\) −447.888 −0.0475519
\(447\) 1399.75 0.148111
\(448\) −3384.68 −0.356945
\(449\) −6893.13 −0.724515 −0.362257 0.932078i \(-0.617994\pi\)
−0.362257 + 0.932078i \(0.617994\pi\)
\(450\) −2575.42 −0.269792
\(451\) 2283.56 0.238423
\(452\) 752.671 0.0783245
\(453\) 1406.77 0.145907
\(454\) 5937.89 0.613830
\(455\) 0 0
\(456\) −1584.99 −0.162772
\(457\) 494.530 0.0506196 0.0253098 0.999680i \(-0.491943\pi\)
0.0253098 + 0.999680i \(0.491943\pi\)
\(458\) −11561.7 −1.17957
\(459\) −2028.93 −0.206324
\(460\) −1797.80 −0.182224
\(461\) −8827.06 −0.891794 −0.445897 0.895084i \(-0.647115\pi\)
−0.445897 + 0.895084i \(0.647115\pi\)
\(462\) −222.829 −0.0224393
\(463\) 16787.9 1.68510 0.842551 0.538617i \(-0.181053\pi\)
0.842551 + 0.538617i \(0.181053\pi\)
\(464\) 10551.9 1.05573
\(465\) 1260.16 0.125674
\(466\) 1653.21 0.164343
\(467\) −7114.94 −0.705011 −0.352506 0.935810i \(-0.614670\pi\)
−0.352506 + 0.935810i \(0.614670\pi\)
\(468\) 0 0
\(469\) −1919.67 −0.189003
\(470\) −13607.0 −1.33542
\(471\) −1366.72 −0.133705
\(472\) −5006.20 −0.488197
\(473\) 3319.88 0.322724
\(474\) 552.689 0.0535566
\(475\) −4276.73 −0.413115
\(476\) 1392.85 0.134120
\(477\) −8169.20 −0.784156
\(478\) 3582.65 0.342817
\(479\) 18089.7 1.72555 0.862775 0.505588i \(-0.168724\pi\)
0.862775 + 0.505588i \(0.168724\pi\)
\(480\) −688.488 −0.0654688
\(481\) 0 0
\(482\) 1007.70 0.0952275
\(483\) 442.098 0.0416483
\(484\) 251.793 0.0236470
\(485\) 21449.5 2.00819
\(486\) −4095.50 −0.382254
\(487\) 8829.17 0.821536 0.410768 0.911740i \(-0.365261\pi\)
0.410768 + 0.911740i \(0.365261\pi\)
\(488\) 13792.3 1.27940
\(489\) 610.557 0.0564629
\(490\) 9108.83 0.839786
\(491\) 15260.5 1.40264 0.701321 0.712845i \(-0.252594\pi\)
0.701321 + 0.712845i \(0.252594\pi\)
\(492\) 259.395 0.0237692
\(493\) 8709.83 0.795681
\(494\) 0 0
\(495\) −3653.52 −0.331745
\(496\) −12846.1 −1.16292
\(497\) −2321.09 −0.209487
\(498\) −1851.30 −0.166584
\(499\) −6698.24 −0.600911 −0.300455 0.953796i \(-0.597139\pi\)
−0.300455 + 0.953796i \(0.597139\pi\)
\(500\) 2453.12 0.219414
\(501\) −1243.57 −0.110895
\(502\) 11441.6 1.01726
\(503\) 1941.27 0.172082 0.0860409 0.996292i \(-0.472578\pi\)
0.0860409 + 0.996292i \(0.472578\pi\)
\(504\) −5319.54 −0.470141
\(505\) 21335.4 1.88002
\(506\) −2420.10 −0.212621
\(507\) 0 0
\(508\) 1151.39 0.100561
\(509\) −7599.74 −0.661793 −0.330896 0.943667i \(-0.607351\pi\)
−0.330896 + 0.943667i \(0.607351\pi\)
\(510\) −1497.37 −0.130009
\(511\) −8683.54 −0.751737
\(512\) −4455.57 −0.384590
\(513\) −4523.83 −0.389341
\(514\) −14432.1 −1.23847
\(515\) 9414.87 0.805571
\(516\) 377.114 0.0321735
\(517\) −3781.05 −0.321645
\(518\) 7982.57 0.677093
\(519\) 1189.49 0.100602
\(520\) 0 0
\(521\) −7464.85 −0.627718 −0.313859 0.949470i \(-0.601622\pi\)
−0.313859 + 0.949470i \(0.601622\pi\)
\(522\) 11694.6 0.980571
\(523\) 17020.9 1.42308 0.711542 0.702643i \(-0.247997\pi\)
0.711542 + 0.702643i \(0.247997\pi\)
\(524\) 3065.23 0.255544
\(525\) 194.268 0.0161496
\(526\) 3962.38 0.328456
\(527\) −10603.5 −0.876463
\(528\) −504.079 −0.0415478
\(529\) −7365.47 −0.605365
\(530\) −12139.4 −0.994913
\(531\) −7096.26 −0.579947
\(532\) 3105.58 0.253090
\(533\) 0 0
\(534\) 2680.02 0.217183
\(535\) −3118.34 −0.251995
\(536\) −3395.36 −0.273614
\(537\) 2066.08 0.166030
\(538\) −13356.5 −1.07034
\(539\) 2531.11 0.202268
\(540\) −835.642 −0.0665932
\(541\) 9247.23 0.734879 0.367440 0.930047i \(-0.380234\pi\)
0.367440 + 0.930047i \(0.380234\pi\)
\(542\) 21404.3 1.69629
\(543\) 1528.49 0.120799
\(544\) 5793.21 0.456584
\(545\) −3626.71 −0.285048
\(546\) 0 0
\(547\) 3661.21 0.286183 0.143092 0.989709i \(-0.454296\pi\)
0.143092 + 0.989709i \(0.454296\pi\)
\(548\) 2894.35 0.225621
\(549\) 19550.5 1.51985
\(550\) −1063.45 −0.0824464
\(551\) 19419.9 1.50148
\(552\) 781.946 0.0602932
\(553\) 3080.29 0.236867
\(554\) 1992.24 0.152783
\(555\) −1771.43 −0.135483
\(556\) 3926.53 0.299500
\(557\) 16803.9 1.27828 0.639142 0.769089i \(-0.279290\pi\)
0.639142 + 0.769089i \(0.279290\pi\)
\(558\) −14237.2 −1.08012
\(559\) 0 0
\(560\) −10110.2 −0.762921
\(561\) −416.080 −0.0313135
\(562\) −28092.9 −2.10859
\(563\) 13085.7 0.979571 0.489785 0.871843i \(-0.337075\pi\)
0.489785 + 0.871843i \(0.337075\pi\)
\(564\) −429.498 −0.0320659
\(565\) −4509.63 −0.335790
\(566\) −26368.3 −1.95820
\(567\) −7436.98 −0.550836
\(568\) −4105.35 −0.303268
\(569\) −20152.0 −1.48474 −0.742368 0.669992i \(-0.766298\pi\)
−0.742368 + 0.669992i \(0.766298\pi\)
\(570\) −3338.62 −0.245332
\(571\) 8555.61 0.627042 0.313521 0.949581i \(-0.398491\pi\)
0.313521 + 0.949581i \(0.398491\pi\)
\(572\) 0 0
\(573\) 1021.05 0.0744417
\(574\) 7003.50 0.509269
\(575\) 2109.90 0.153024
\(576\) −8485.90 −0.613853
\(577\) 13753.6 0.992323 0.496161 0.868230i \(-0.334742\pi\)
0.496161 + 0.868230i \(0.334742\pi\)
\(578\) −2999.58 −0.215858
\(579\) 2124.63 0.152498
\(580\) 3587.25 0.256815
\(581\) −10317.8 −0.736758
\(582\) 3279.87 0.233599
\(583\) −3373.24 −0.239632
\(584\) −15358.7 −1.08827
\(585\) 0 0
\(586\) 4600.30 0.324295
\(587\) 8182.82 0.575368 0.287684 0.957725i \(-0.407115\pi\)
0.287684 + 0.957725i \(0.407115\pi\)
\(588\) 287.515 0.0201648
\(589\) −23642.2 −1.65392
\(590\) −10545.1 −0.735819
\(591\) −1555.47 −0.108263
\(592\) 18058.0 1.25368
\(593\) −3774.00 −0.261349 −0.130674 0.991425i \(-0.541714\pi\)
−0.130674 + 0.991425i \(0.541714\pi\)
\(594\) −1124.89 −0.0777018
\(595\) −8345.25 −0.574995
\(596\) −4850.92 −0.333392
\(597\) 2810.92 0.192702
\(598\) 0 0
\(599\) −3293.48 −0.224654 −0.112327 0.993671i \(-0.535830\pi\)
−0.112327 + 0.993671i \(0.535830\pi\)
\(600\) 343.605 0.0233794
\(601\) −12195.7 −0.827740 −0.413870 0.910336i \(-0.635823\pi\)
−0.413870 + 0.910336i \(0.635823\pi\)
\(602\) 10181.8 0.689336
\(603\) −4812.91 −0.325036
\(604\) −4875.27 −0.328430
\(605\) −1508.62 −0.101379
\(606\) 3262.43 0.218691
\(607\) −153.122 −0.0102389 −0.00511947 0.999987i \(-0.501630\pi\)
−0.00511947 + 0.999987i \(0.501630\pi\)
\(608\) 12916.9 0.861594
\(609\) −882.140 −0.0586964
\(610\) 29052.1 1.92834
\(611\) 0 0
\(612\) 3492.08 0.230652
\(613\) 17683.7 1.16515 0.582577 0.812775i \(-0.302044\pi\)
0.582577 + 0.812775i \(0.302044\pi\)
\(614\) 9955.31 0.654338
\(615\) −1554.16 −0.101902
\(616\) −2196.55 −0.143671
\(617\) −4930.92 −0.321737 −0.160868 0.986976i \(-0.551429\pi\)
−0.160868 + 0.986976i \(0.551429\pi\)
\(618\) 1439.64 0.0937069
\(619\) −22061.4 −1.43251 −0.716254 0.697839i \(-0.754145\pi\)
−0.716254 + 0.697839i \(0.754145\pi\)
\(620\) −4367.19 −0.282888
\(621\) 2231.81 0.144218
\(622\) −20261.7 −1.30614
\(623\) 14936.5 0.960543
\(624\) 0 0
\(625\) −18504.0 −1.18425
\(626\) −2842.20 −0.181465
\(627\) −927.716 −0.0590899
\(628\) 4736.47 0.300965
\(629\) 14905.5 0.944869
\(630\) −11205.1 −0.708604
\(631\) 30547.7 1.92724 0.963618 0.267283i \(-0.0861257\pi\)
0.963618 + 0.267283i \(0.0861257\pi\)
\(632\) 5448.16 0.342906
\(633\) −2971.42 −0.186577
\(634\) −4480.21 −0.280649
\(635\) −6898.56 −0.431120
\(636\) −383.175 −0.0238897
\(637\) 0 0
\(638\) 4828.95 0.299655
\(639\) −5819.31 −0.360263
\(640\) −21782.9 −1.34538
\(641\) −13540.0 −0.834321 −0.417160 0.908833i \(-0.636975\pi\)
−0.417160 + 0.908833i \(0.636975\pi\)
\(642\) −476.829 −0.0293130
\(643\) −3224.64 −0.197772 −0.0988861 0.995099i \(-0.531528\pi\)
−0.0988861 + 0.995099i \(0.531528\pi\)
\(644\) −1532.12 −0.0937486
\(645\) −2259.48 −0.137933
\(646\) 28092.4 1.71096
\(647\) −5934.82 −0.360621 −0.180310 0.983610i \(-0.557710\pi\)
−0.180310 + 0.983610i \(0.557710\pi\)
\(648\) −13153.9 −0.797430
\(649\) −2930.20 −0.177227
\(650\) 0 0
\(651\) 1073.93 0.0646556
\(652\) −2115.93 −0.127095
\(653\) 13383.6 0.802055 0.401028 0.916066i \(-0.368653\pi\)
0.401028 + 0.916066i \(0.368653\pi\)
\(654\) −554.565 −0.0331578
\(655\) −18365.3 −1.09556
\(656\) 15843.2 0.942944
\(657\) −21770.9 −1.29279
\(658\) −11596.2 −0.687031
\(659\) 22121.9 1.30766 0.653829 0.756642i \(-0.273162\pi\)
0.653829 + 0.756642i \(0.273162\pi\)
\(660\) −171.368 −0.0101068
\(661\) −24670.9 −1.45172 −0.725861 0.687841i \(-0.758559\pi\)
−0.725861 + 0.687841i \(0.758559\pi\)
\(662\) 1137.59 0.0667881
\(663\) 0 0
\(664\) −18249.4 −1.06658
\(665\) −18607.1 −1.08504
\(666\) 20013.5 1.16443
\(667\) −9580.74 −0.556173
\(668\) 4309.68 0.249621
\(669\) 84.7038 0.00489512
\(670\) −7151.99 −0.412396
\(671\) 8072.83 0.464453
\(672\) −586.743 −0.0336817
\(673\) −6709.79 −0.384314 −0.192157 0.981364i \(-0.561548\pi\)
−0.192157 + 0.981364i \(0.561548\pi\)
\(674\) 1854.19 0.105966
\(675\) 980.710 0.0559223
\(676\) 0 0
\(677\) −3713.77 −0.210830 −0.105415 0.994428i \(-0.533617\pi\)
−0.105415 + 0.994428i \(0.533617\pi\)
\(678\) −689.573 −0.0390603
\(679\) 18279.6 1.03315
\(680\) −14760.4 −0.832404
\(681\) −1122.96 −0.0631894
\(682\) −5878.85 −0.330077
\(683\) 12021.6 0.673488 0.336744 0.941596i \(-0.390674\pi\)
0.336744 + 0.941596i \(0.390674\pi\)
\(684\) 7786.15 0.435250
\(685\) −17341.5 −0.967276
\(686\) 19334.2 1.07607
\(687\) 2186.52 0.121428
\(688\) 23033.1 1.27635
\(689\) 0 0
\(690\) 1647.09 0.0908749
\(691\) 10210.5 0.562121 0.281060 0.959690i \(-0.409314\pi\)
0.281060 + 0.959690i \(0.409314\pi\)
\(692\) −4122.25 −0.226451
\(693\) −3113.60 −0.170672
\(694\) 8424.47 0.460790
\(695\) −23525.8 −1.28401
\(696\) −1560.26 −0.0849733
\(697\) 13077.3 0.710674
\(698\) 8563.23 0.464360
\(699\) −312.653 −0.0169179
\(700\) −673.250 −0.0363521
\(701\) 19676.4 1.06015 0.530076 0.847950i \(-0.322163\pi\)
0.530076 + 0.847950i \(0.322163\pi\)
\(702\) 0 0
\(703\) 33234.3 1.78301
\(704\) −3504.01 −0.187589
\(705\) 2573.34 0.137472
\(706\) 1395.58 0.0743958
\(707\) 18182.4 0.967214
\(708\) −332.849 −0.0176684
\(709\) −4472.68 −0.236918 −0.118459 0.992959i \(-0.537795\pi\)
−0.118459 + 0.992959i \(0.537795\pi\)
\(710\) −8647.50 −0.457091
\(711\) 7722.75 0.407350
\(712\) 26418.5 1.39055
\(713\) 11663.8 0.612639
\(714\) −1276.08 −0.0668855
\(715\) 0 0
\(716\) −7160.15 −0.373726
\(717\) −677.544 −0.0352906
\(718\) −14056.9 −0.730639
\(719\) −12341.2 −0.640121 −0.320061 0.947397i \(-0.603703\pi\)
−0.320061 + 0.947397i \(0.603703\pi\)
\(720\) −25347.9 −1.31203
\(721\) 8023.53 0.414441
\(722\) 40858.9 2.10611
\(723\) −190.575 −0.00980299
\(724\) −5297.11 −0.271914
\(725\) −4210.00 −0.215663
\(726\) −230.685 −0.0117927
\(727\) −11805.3 −0.602248 −0.301124 0.953585i \(-0.597362\pi\)
−0.301124 + 0.953585i \(0.597362\pi\)
\(728\) 0 0
\(729\) −18123.5 −0.920767
\(730\) −32351.6 −1.64026
\(731\) 19012.1 0.961955
\(732\) 917.013 0.0463030
\(733\) 14972.2 0.754448 0.377224 0.926122i \(-0.376879\pi\)
0.377224 + 0.926122i \(0.376879\pi\)
\(734\) −32700.9 −1.64443
\(735\) −1722.65 −0.0864500
\(736\) −6372.49 −0.319148
\(737\) −1987.35 −0.0993285
\(738\) 17558.8 0.875811
\(739\) −19331.6 −0.962281 −0.481141 0.876643i \(-0.659777\pi\)
−0.481141 + 0.876643i \(0.659777\pi\)
\(740\) 6139.03 0.304967
\(741\) 0 0
\(742\) −10345.5 −0.511852
\(743\) −35774.8 −1.76642 −0.883211 0.468977i \(-0.844623\pi\)
−0.883211 + 0.468977i \(0.844623\pi\)
\(744\) 1899.49 0.0936002
\(745\) 29064.3 1.42931
\(746\) −22793.4 −1.11867
\(747\) −25868.4 −1.26703
\(748\) 1441.95 0.0704854
\(749\) −2657.50 −0.129644
\(750\) −2247.47 −0.109421
\(751\) 14454.8 0.702347 0.351174 0.936310i \(-0.385783\pi\)
0.351174 + 0.936310i \(0.385783\pi\)
\(752\) −26232.6 −1.27208
\(753\) −2163.82 −0.104720
\(754\) 0 0
\(755\) 29210.2 1.40804
\(756\) −712.150 −0.0342601
\(757\) −25002.3 −1.20043 −0.600215 0.799839i \(-0.704918\pi\)
−0.600215 + 0.799839i \(0.704918\pi\)
\(758\) 13380.4 0.641158
\(759\) 457.684 0.0218879
\(760\) −32910.6 −1.57078
\(761\) −36019.9 −1.71579 −0.857897 0.513822i \(-0.828229\pi\)
−0.857897 + 0.513822i \(0.828229\pi\)
\(762\) −1054.87 −0.0501494
\(763\) −3090.75 −0.146648
\(764\) −3538.54 −0.167565
\(765\) −20922.8 −0.988843
\(766\) −20657.8 −0.974407
\(767\) 0 0
\(768\) −1800.66 −0.0846037
\(769\) 11963.0 0.560986 0.280493 0.959856i \(-0.409502\pi\)
0.280493 + 0.959856i \(0.409502\pi\)
\(770\) −4626.82 −0.216544
\(771\) 2729.37 0.127492
\(772\) −7363.06 −0.343267
\(773\) 9003.56 0.418933 0.209467 0.977816i \(-0.432827\pi\)
0.209467 + 0.977816i \(0.432827\pi\)
\(774\) 25527.4 1.18548
\(775\) 5125.33 0.237558
\(776\) 32331.5 1.49566
\(777\) −1509.65 −0.0697019
\(778\) −34521.7 −1.59083
\(779\) 29158.0 1.34107
\(780\) 0 0
\(781\) −2402.92 −0.110094
\(782\) −13859.3 −0.633768
\(783\) −4453.25 −0.203252
\(784\) 17560.7 0.799957
\(785\) −28378.6 −1.29029
\(786\) −2808.26 −0.127439
\(787\) −2322.23 −0.105182 −0.0525912 0.998616i \(-0.516748\pi\)
−0.0525912 + 0.998616i \(0.516748\pi\)
\(788\) 5390.59 0.243695
\(789\) −749.358 −0.0338122
\(790\) 11476.0 0.516833
\(791\) −3843.19 −0.172754
\(792\) −5507.08 −0.247078
\(793\) 0 0
\(794\) 28640.5 1.28012
\(795\) 2295.79 0.102419
\(796\) −9741.44 −0.433764
\(797\) −9108.50 −0.404818 −0.202409 0.979301i \(-0.564877\pi\)
−0.202409 + 0.979301i \(0.564877\pi\)
\(798\) −2845.23 −0.126216
\(799\) −21653.1 −0.958737
\(800\) −2800.22 −0.123753
\(801\) 37448.0 1.65189
\(802\) 1928.04 0.0848896
\(803\) −8989.69 −0.395068
\(804\) −225.748 −0.00990240
\(805\) 9179.71 0.401916
\(806\) 0 0
\(807\) 2525.96 0.110183
\(808\) 32159.6 1.40021
\(809\) −20587.8 −0.894719 −0.447359 0.894354i \(-0.647636\pi\)
−0.447359 + 0.894354i \(0.647636\pi\)
\(810\) −27707.4 −1.20190
\(811\) 36898.8 1.59765 0.798823 0.601566i \(-0.205456\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(812\) 3057.12 0.132123
\(813\) −4047.93 −0.174621
\(814\) 8264.00 0.355839
\(815\) 12677.6 0.544879
\(816\) −2886.73 −0.123843
\(817\) 42390.5 1.81525
\(818\) 46966.8 2.00752
\(819\) 0 0
\(820\) 5386.07 0.229378
\(821\) −26017.3 −1.10598 −0.552991 0.833187i \(-0.686514\pi\)
−0.552991 + 0.833187i \(0.686514\pi\)
\(822\) −2651.71 −0.112517
\(823\) −42783.6 −1.81208 −0.906041 0.423190i \(-0.860910\pi\)
−0.906041 + 0.423190i \(0.860910\pi\)
\(824\) 14191.4 0.599975
\(825\) 201.117 0.00848727
\(826\) −8986.70 −0.378556
\(827\) −8366.69 −0.351800 −0.175900 0.984408i \(-0.556284\pi\)
−0.175900 + 0.984408i \(0.556284\pi\)
\(828\) −3841.26 −0.161223
\(829\) 30518.2 1.27858 0.639289 0.768967i \(-0.279229\pi\)
0.639289 + 0.768967i \(0.279229\pi\)
\(830\) −38440.4 −1.60758
\(831\) −376.768 −0.0157279
\(832\) 0 0
\(833\) 14495.0 0.602908
\(834\) −3597.36 −0.149360
\(835\) −25821.4 −1.07017
\(836\) 3215.07 0.133009
\(837\) 5421.47 0.223887
\(838\) −27548.9 −1.13563
\(839\) 40913.5 1.68354 0.841771 0.539835i \(-0.181513\pi\)
0.841771 + 0.539835i \(0.181513\pi\)
\(840\) 1494.95 0.0614055
\(841\) −5272.06 −0.216165
\(842\) −29165.4 −1.19371
\(843\) 5312.87 0.217064
\(844\) 10297.7 0.419978
\(845\) 0 0
\(846\) −29073.3 −1.18152
\(847\) −1285.67 −0.0521561
\(848\) −23403.3 −0.947727
\(849\) 4986.72 0.201583
\(850\) −6090.09 −0.245751
\(851\) −16396.0 −0.660454
\(852\) −272.953 −0.0109756
\(853\) 42770.2 1.71679 0.858396 0.512988i \(-0.171461\pi\)
0.858396 + 0.512988i \(0.171461\pi\)
\(854\) 24758.8 0.992069
\(855\) −46650.7 −1.86599
\(856\) −4700.37 −0.187682
\(857\) 36034.8 1.43632 0.718160 0.695878i \(-0.244984\pi\)
0.718160 + 0.695878i \(0.244984\pi\)
\(858\) 0 0
\(859\) 35219.1 1.39890 0.699452 0.714679i \(-0.253427\pi\)
0.699452 + 0.714679i \(0.253427\pi\)
\(860\) 7830.38 0.310481
\(861\) −1324.49 −0.0524256
\(862\) −40260.2 −1.59080
\(863\) −9065.72 −0.357591 −0.178795 0.983886i \(-0.557220\pi\)
−0.178795 + 0.983886i \(0.557220\pi\)
\(864\) −2962.01 −0.116632
\(865\) 24698.4 0.970835
\(866\) −2264.90 −0.0888735
\(867\) 567.275 0.0222211
\(868\) −3721.80 −0.145537
\(869\) 3188.89 0.124483
\(870\) −3286.53 −0.128073
\(871\) 0 0
\(872\) −5466.66 −0.212299
\(873\) 45829.8 1.77675
\(874\) −30901.4 −1.19595
\(875\) −12525.8 −0.483942
\(876\) −1021.16 −0.0393856
\(877\) −43800.2 −1.68646 −0.843232 0.537549i \(-0.819350\pi\)
−0.843232 + 0.537549i \(0.819350\pi\)
\(878\) −47016.5 −1.80721
\(879\) −870.000 −0.0333838
\(880\) −10466.7 −0.400945
\(881\) −28864.1 −1.10381 −0.551905 0.833907i \(-0.686099\pi\)
−0.551905 + 0.833907i \(0.686099\pi\)
\(882\) 19462.3 0.743004
\(883\) 35808.9 1.36474 0.682369 0.731008i \(-0.260950\pi\)
0.682369 + 0.731008i \(0.260950\pi\)
\(884\) 0 0
\(885\) 1994.26 0.0757473
\(886\) 7535.44 0.285731
\(887\) −10226.5 −0.387117 −0.193558 0.981089i \(-0.562003\pi\)
−0.193558 + 0.981089i \(0.562003\pi\)
\(888\) −2670.14 −0.100905
\(889\) −5879.08 −0.221798
\(890\) 55647.8 2.09586
\(891\) −7699.18 −0.289486
\(892\) −293.547 −0.0110187
\(893\) −48279.0 −1.80918
\(894\) 4444.26 0.166262
\(895\) 42900.0 1.60222
\(896\) −18563.8 −0.692157
\(897\) 0 0
\(898\) −21886.0 −0.813303
\(899\) −23273.3 −0.863413
\(900\) −1687.94 −0.0625163
\(901\) −19317.7 −0.714279
\(902\) 7250.41 0.267641
\(903\) −1925.57 −0.0709622
\(904\) −6797.51 −0.250091
\(905\) 31737.6 1.16574
\(906\) 4466.57 0.163788
\(907\) 24472.6 0.895921 0.447961 0.894053i \(-0.352150\pi\)
0.447961 + 0.894053i \(0.352150\pi\)
\(908\) 3891.71 0.142237
\(909\) 45586.0 1.66336
\(910\) 0 0
\(911\) 16334.0 0.594038 0.297019 0.954872i \(-0.404007\pi\)
0.297019 + 0.954872i \(0.404007\pi\)
\(912\) −6436.42 −0.233697
\(913\) −10681.6 −0.387196
\(914\) 1570.16 0.0568230
\(915\) −5494.28 −0.198508
\(916\) −7577.56 −0.273329
\(917\) −15651.3 −0.563631
\(918\) −6441.97 −0.231608
\(919\) −16363.0 −0.587338 −0.293669 0.955907i \(-0.594876\pi\)
−0.293669 + 0.955907i \(0.594876\pi\)
\(920\) 16236.3 0.581842
\(921\) −1882.73 −0.0673594
\(922\) −28026.3 −1.00108
\(923\) 0 0
\(924\) −146.043 −0.00519962
\(925\) −7204.77 −0.256099
\(926\) 53302.6 1.89161
\(927\) 20116.2 0.712732
\(928\) 12715.3 0.449786
\(929\) −30435.9 −1.07489 −0.537444 0.843300i \(-0.680610\pi\)
−0.537444 + 0.843300i \(0.680610\pi\)
\(930\) 4001.08 0.141076
\(931\) 32318.9 1.13771
\(932\) 1083.52 0.0380814
\(933\) 3831.85 0.134458
\(934\) −22590.3 −0.791410
\(935\) −8639.47 −0.302183
\(936\) 0 0
\(937\) −6898.43 −0.240514 −0.120257 0.992743i \(-0.538372\pi\)
−0.120257 + 0.992743i \(0.538372\pi\)
\(938\) −6095.06 −0.212165
\(939\) 537.511 0.0186805
\(940\) −8918.09 −0.309443
\(941\) 2825.01 0.0978668 0.0489334 0.998802i \(-0.484418\pi\)
0.0489334 + 0.998802i \(0.484418\pi\)
\(942\) −4339.41 −0.150091
\(943\) −14385.0 −0.496754
\(944\) −20329.5 −0.700921
\(945\) 4266.84 0.146879
\(946\) 10540.8 0.362274
\(947\) −37405.2 −1.28353 −0.641766 0.766900i \(-0.721798\pi\)
−0.641766 + 0.766900i \(0.721798\pi\)
\(948\) 362.234 0.0124101
\(949\) 0 0
\(950\) −13578.8 −0.463742
\(951\) 847.288 0.0288908
\(952\) −12579.1 −0.428246
\(953\) 43831.7 1.48987 0.744936 0.667136i \(-0.232480\pi\)
0.744936 + 0.667136i \(0.232480\pi\)
\(954\) −25937.6 −0.880253
\(955\) 21201.1 0.718379
\(956\) 2348.08 0.0794376
\(957\) −913.241 −0.0308473
\(958\) 57435.6 1.93702
\(959\) −14778.7 −0.497634
\(960\) 2384.79 0.0801758
\(961\) −1457.64 −0.0489288
\(962\) 0 0
\(963\) −6662.76 −0.222954
\(964\) 660.452 0.0220661
\(965\) 44115.7 1.47164
\(966\) 1403.68 0.0467523
\(967\) 28908.3 0.961352 0.480676 0.876898i \(-0.340391\pi\)
0.480676 + 0.876898i \(0.340391\pi\)
\(968\) −2273.99 −0.0755050
\(969\) −5312.79 −0.176131
\(970\) 68103.1 2.25429
\(971\) −4021.04 −0.132895 −0.0664477 0.997790i \(-0.521167\pi\)
−0.0664477 + 0.997790i \(0.521167\pi\)
\(972\) −2684.20 −0.0885759
\(973\) −20049.1 −0.660581
\(974\) 28033.0 0.922214
\(975\) 0 0
\(976\) 56008.7 1.83688
\(977\) −32966.5 −1.07952 −0.539760 0.841819i \(-0.681485\pi\)
−0.539760 + 0.841819i \(0.681485\pi\)
\(978\) 1938.55 0.0633824
\(979\) 15463.1 0.504804
\(980\) 5969.96 0.194595
\(981\) −7748.97 −0.252197
\(982\) 48452.9 1.57454
\(983\) −20732.5 −0.672699 −0.336350 0.941737i \(-0.609192\pi\)
−0.336350 + 0.941737i \(0.609192\pi\)
\(984\) −2342.64 −0.0758951
\(985\) −32297.7 −1.04476
\(986\) 27654.1 0.893191
\(987\) 2193.05 0.0707249
\(988\) 0 0
\(989\) −20913.2 −0.672397
\(990\) −11600.1 −0.372400
\(991\) 34338.8 1.10071 0.550357 0.834930i \(-0.314492\pi\)
0.550357 + 0.834930i \(0.314492\pi\)
\(992\) −15479.9 −0.495451
\(993\) −215.139 −0.00687536
\(994\) −7369.56 −0.235159
\(995\) 58365.8 1.85962
\(996\) −1213.35 −0.0386009
\(997\) −1792.04 −0.0569253 −0.0284626 0.999595i \(-0.509061\pi\)
−0.0284626 + 0.999595i \(0.509061\pi\)
\(998\) −21267.2 −0.674552
\(999\) −7621.05 −0.241361
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1859.4.a.h.1.14 17
13.4 even 6 143.4.e.b.133.14 yes 34
13.10 even 6 143.4.e.b.100.14 34
13.12 even 2 1859.4.a.g.1.4 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.4.e.b.100.14 34 13.10 even 6
143.4.e.b.133.14 yes 34 13.4 even 6
1859.4.a.g.1.4 17 13.12 even 2
1859.4.a.h.1.14 17 1.1 even 1 trivial