Properties

Label 185.2.e.a.26.4
Level $185$
Weight $2$
Character 185.26
Analytic conductor $1.477$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [185,2,Mod(26,185)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("185.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(185, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47723243739\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 11 x^{12} - 2 x^{11} + 86 x^{10} - 18 x^{9} + 332 x^{8} - 110 x^{7} + 935 x^{6} - 290 x^{5} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 26.4
Root \(0.178876 - 0.309823i\) of defining polynomial
Character \(\chi\) \(=\) 185.26
Dual form 185.2.e.a.121.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.178876 + 0.309823i) q^{2} +(-0.0462746 + 0.0801499i) q^{3} +(0.936006 - 1.62121i) q^{4} +(-0.500000 + 0.866025i) q^{5} -0.0331097 q^{6} +(1.38534 - 2.39948i) q^{7} +1.38522 q^{8} +(1.49572 + 2.59066i) q^{9} -0.357753 q^{10} -2.03649 q^{11} +(0.0866266 + 0.150042i) q^{12} +(3.09620 - 5.36277i) q^{13} +0.991221 q^{14} +(-0.0462746 - 0.0801499i) q^{15} +(-1.62423 - 2.81325i) q^{16} +(2.41732 + 4.18692i) q^{17} +(-0.535097 + 0.926816i) q^{18} +(-3.62153 + 6.27267i) q^{19} +(0.936006 + 1.62121i) q^{20} +(0.128212 + 0.222070i) q^{21} +(-0.364280 - 0.630951i) q^{22} +0.510883 q^{23} +(-0.0641006 + 0.111026i) q^{24} +(-0.500000 - 0.866025i) q^{25} +2.21535 q^{26} -0.554502 q^{27} +(-2.59338 - 4.49186i) q^{28} -8.39445 q^{29} +(0.0165549 - 0.0286739i) q^{30} -4.28667 q^{31} +(1.96630 - 3.40573i) q^{32} +(0.0942375 - 0.163224i) q^{33} +(-0.864804 + 1.49788i) q^{34} +(1.38534 + 2.39948i) q^{35} +5.60000 q^{36} +(2.72642 + 5.43752i) q^{37} -2.59122 q^{38} +(0.286550 + 0.496320i) q^{39} +(-0.692612 + 1.19964i) q^{40} +(1.42197 - 2.46293i) q^{41} +(-0.0458683 + 0.0794462i) q^{42} -4.00472 q^{43} +(-1.90616 + 3.30157i) q^{44} -2.99143 q^{45} +(0.0913850 + 0.158283i) q^{46} -11.1303 q^{47} +0.300642 q^{48} +(-0.338346 - 0.586032i) q^{49} +(0.178876 - 0.309823i) q^{50} -0.447442 q^{51} +(-5.79612 - 10.0392i) q^{52} +(-2.34060 - 4.05405i) q^{53} +(-0.0991874 - 0.171798i) q^{54} +(1.01824 - 1.76365i) q^{55} +(1.91901 - 3.32382i) q^{56} +(-0.335169 - 0.580530i) q^{57} +(-1.50157 - 2.60080i) q^{58} +(5.88440 + 10.1921i) q^{59} -0.173253 q^{60} +(-1.10202 + 1.90875i) q^{61} +(-0.766785 - 1.32811i) q^{62} +8.28832 q^{63} -5.09002 q^{64} +(3.09620 + 5.36277i) q^{65} +0.0674275 q^{66} +(-1.96671 + 3.40645i) q^{67} +9.05051 q^{68} +(-0.0236409 + 0.0409472i) q^{69} +(-0.495610 + 0.858422i) q^{70} +(7.05529 - 12.2201i) q^{71} +(2.07190 + 3.58864i) q^{72} +4.72706 q^{73} +(-1.19698 + 1.81735i) q^{74} +0.0925491 q^{75} +(6.77955 + 11.7425i) q^{76} +(-2.82123 + 4.88651i) q^{77} +(-0.102514 + 0.177560i) q^{78} +(4.77335 - 8.26768i) q^{79} +3.24846 q^{80} +(-4.46149 + 7.72753i) q^{81} +1.01743 q^{82} +(-0.0730402 - 0.126509i) q^{83} +0.480030 q^{84} -4.83464 q^{85} +(-0.716351 - 1.24076i) q^{86} +(0.388450 - 0.672815i) q^{87} -2.82099 q^{88} +(8.28829 + 14.3557i) q^{89} +(-0.535097 - 0.926816i) q^{90} +(-8.57859 - 14.8585i) q^{91} +(0.478190 - 0.828249i) q^{92} +(0.198364 - 0.343576i) q^{93} +(-1.99095 - 3.44842i) q^{94} +(-3.62153 - 6.27267i) q^{95} +(0.181979 + 0.315197i) q^{96} +18.7527 q^{97} +(0.121044 - 0.209655i) q^{98} +(-3.04601 - 5.27584i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{3} - 8 q^{4} - 7 q^{5} - 4 q^{6} + 6 q^{8} - 13 q^{9} - 2 q^{11} + 6 q^{12} + 4 q^{13} + 20 q^{14} - 2 q^{15} + 2 q^{16} - 3 q^{17} - 6 q^{18} - 14 q^{19} - 8 q^{20} + q^{21} + 7 q^{22} + 15 q^{24}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/185\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(112\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.178876 + 0.309823i 0.126485 + 0.219078i 0.922312 0.386445i \(-0.126297\pi\)
−0.795828 + 0.605523i \(0.792964\pi\)
\(3\) −0.0462746 + 0.0801499i −0.0267166 + 0.0462746i −0.879075 0.476684i \(-0.841839\pi\)
0.852358 + 0.522959i \(0.175172\pi\)
\(4\) 0.936006 1.62121i 0.468003 0.810605i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) −0.0331097 −0.0135170
\(7\) 1.38534 2.39948i 0.523610 0.906919i −0.476012 0.879439i \(-0.657918\pi\)
0.999622 0.0274806i \(-0.00874846\pi\)
\(8\) 1.38522 0.489751
\(9\) 1.49572 + 2.59066i 0.498572 + 0.863553i
\(10\) −0.357753 −0.113131
\(11\) −2.03649 −0.614024 −0.307012 0.951706i \(-0.599329\pi\)
−0.307012 + 0.951706i \(0.599329\pi\)
\(12\) 0.0866266 + 0.150042i 0.0250069 + 0.0433133i
\(13\) 3.09620 5.36277i 0.858731 1.48737i −0.0144096 0.999896i \(-0.504587\pi\)
0.873140 0.487469i \(-0.162080\pi\)
\(14\) 0.991221 0.264915
\(15\) −0.0462746 0.0801499i −0.0119480 0.0206946i
\(16\) −1.62423 2.81325i −0.406057 0.703312i
\(17\) 2.41732 + 4.18692i 0.586286 + 1.01548i 0.994714 + 0.102687i \(0.0327440\pi\)
−0.408427 + 0.912791i \(0.633923\pi\)
\(18\) −0.535097 + 0.926816i −0.126124 + 0.218453i
\(19\) −3.62153 + 6.27267i −0.830835 + 1.43905i 0.0665413 + 0.997784i \(0.478804\pi\)
−0.897377 + 0.441265i \(0.854530\pi\)
\(20\) 0.936006 + 1.62121i 0.209297 + 0.362514i
\(21\) 0.128212 + 0.222070i 0.0279782 + 0.0484597i
\(22\) −0.364280 0.630951i −0.0776647 0.134519i
\(23\) 0.510883 0.106526 0.0532632 0.998581i \(-0.483038\pi\)
0.0532632 + 0.998581i \(0.483038\pi\)
\(24\) −0.0641006 + 0.111026i −0.0130845 + 0.0226630i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 2.21535 0.434465
\(27\) −0.554502 −0.106714
\(28\) −2.59338 4.49186i −0.490102 0.848882i
\(29\) −8.39445 −1.55881 −0.779405 0.626520i \(-0.784479\pi\)
−0.779405 + 0.626520i \(0.784479\pi\)
\(30\) 0.0165549 0.0286739i 0.00302249 0.00523511i
\(31\) −4.28667 −0.769909 −0.384955 0.922935i \(-0.625783\pi\)
−0.384955 + 0.922935i \(0.625783\pi\)
\(32\) 1.96630 3.40573i 0.347595 0.602053i
\(33\) 0.0942375 0.163224i 0.0164046 0.0284137i
\(34\) −0.864804 + 1.49788i −0.148313 + 0.256885i
\(35\) 1.38534 + 2.39948i 0.234166 + 0.405587i
\(36\) 5.60000 0.933334
\(37\) 2.72642 + 5.43752i 0.448221 + 0.893923i
\(38\) −2.59122 −0.420352
\(39\) 0.286550 + 0.496320i 0.0458848 + 0.0794748i
\(40\) −0.692612 + 1.19964i −0.109512 + 0.189680i
\(41\) 1.42197 2.46293i 0.222075 0.384645i −0.733363 0.679837i \(-0.762050\pi\)
0.955438 + 0.295193i \(0.0953838\pi\)
\(42\) −0.0458683 + 0.0794462i −0.00707763 + 0.0122588i
\(43\) −4.00472 −0.610715 −0.305357 0.952238i \(-0.598776\pi\)
−0.305357 + 0.952238i \(0.598776\pi\)
\(44\) −1.90616 + 3.30157i −0.287365 + 0.497731i
\(45\) −2.99143 −0.445937
\(46\) 0.0913850 + 0.158283i 0.0134740 + 0.0233376i
\(47\) −11.1303 −1.62352 −0.811760 0.583991i \(-0.801490\pi\)
−0.811760 + 0.583991i \(0.801490\pi\)
\(48\) 0.300642 0.0433939
\(49\) −0.338346 0.586032i −0.0483351 0.0837188i
\(50\) 0.178876 0.309823i 0.0252970 0.0438156i
\(51\) −0.447442 −0.0626544
\(52\) −5.79612 10.0392i −0.803777 1.39218i
\(53\) −2.34060 4.05405i −0.321507 0.556866i 0.659292 0.751887i \(-0.270856\pi\)
−0.980799 + 0.195021i \(0.937523\pi\)
\(54\) −0.0991874 0.171798i −0.0134977 0.0233787i
\(55\) 1.01824 1.76365i 0.137300 0.237810i
\(56\) 1.91901 3.32382i 0.256438 0.444164i
\(57\) −0.335169 0.580530i −0.0443942 0.0768931i
\(58\) −1.50157 2.60080i −0.197166 0.341501i
\(59\) 5.88440 + 10.1921i 0.766084 + 1.32690i 0.939672 + 0.342078i \(0.111131\pi\)
−0.173588 + 0.984818i \(0.555536\pi\)
\(60\) −0.173253 −0.0223669
\(61\) −1.10202 + 1.90875i −0.141099 + 0.244390i −0.927911 0.372803i \(-0.878397\pi\)
0.786812 + 0.617193i \(0.211730\pi\)
\(62\) −0.766785 1.32811i −0.0973818 0.168670i
\(63\) 8.28832 1.04423
\(64\) −5.09002 −0.636252
\(65\) 3.09620 + 5.36277i 0.384036 + 0.665170i
\(66\) 0.0674275 0.00829975
\(67\) −1.96671 + 3.40645i −0.240272 + 0.416164i −0.960792 0.277271i \(-0.910570\pi\)
0.720519 + 0.693435i \(0.243903\pi\)
\(68\) 9.05051 1.09754
\(69\) −0.0236409 + 0.0409472i −0.00284603 + 0.00492947i
\(70\) −0.495610 + 0.858422i −0.0592368 + 0.102601i
\(71\) 7.05529 12.2201i 0.837308 1.45026i −0.0548288 0.998496i \(-0.517461\pi\)
0.892137 0.451765i \(-0.149205\pi\)
\(72\) 2.07190 + 3.58864i 0.244176 + 0.422926i
\(73\) 4.72706 0.553261 0.276630 0.960976i \(-0.410782\pi\)
0.276630 + 0.960976i \(0.410782\pi\)
\(74\) −1.19698 + 1.81735i −0.139146 + 0.211263i
\(75\) 0.0925491 0.0106867
\(76\) 6.77955 + 11.7425i 0.777667 + 1.34696i
\(77\) −2.82123 + 4.88651i −0.321509 + 0.556870i
\(78\) −0.102514 + 0.177560i −0.0116075 + 0.0201047i
\(79\) 4.77335 8.26768i 0.537043 0.930186i −0.462018 0.886870i \(-0.652875\pi\)
0.999061 0.0433158i \(-0.0137922\pi\)
\(80\) 3.24846 0.363189
\(81\) −4.46149 + 7.72753i −0.495721 + 0.858615i
\(82\) 1.01743 0.112356
\(83\) −0.0730402 0.126509i −0.00801721 0.0138862i 0.861989 0.506927i \(-0.169219\pi\)
−0.870006 + 0.493041i \(0.835885\pi\)
\(84\) 0.480030 0.0523755
\(85\) −4.83464 −0.524391
\(86\) −0.716351 1.24076i −0.0772461 0.133794i
\(87\) 0.388450 0.672815i 0.0416462 0.0721333i
\(88\) −2.82099 −0.300719
\(89\) 8.28829 + 14.3557i 0.878557 + 1.52171i 0.852924 + 0.522034i \(0.174827\pi\)
0.0256329 + 0.999671i \(0.491840\pi\)
\(90\) −0.535097 0.926816i −0.0564042 0.0976950i
\(91\) −8.57859 14.8585i −0.899280 1.55760i
\(92\) 0.478190 0.828249i 0.0498547 0.0863509i
\(93\) 0.198364 0.343576i 0.0205694 0.0356272i
\(94\) −1.99095 3.44842i −0.205351 0.355678i
\(95\) −3.62153 6.27267i −0.371561 0.643562i
\(96\) 0.181979 + 0.315197i 0.0185732 + 0.0321697i
\(97\) 18.7527 1.90405 0.952023 0.306028i \(-0.0990001\pi\)
0.952023 + 0.306028i \(0.0990001\pi\)
\(98\) 0.121044 0.209655i 0.0122273 0.0211783i
\(99\) −3.04601 5.27584i −0.306135 0.530242i
\(100\) −1.87201 −0.187201
\(101\) 4.50006 0.447772 0.223886 0.974615i \(-0.428126\pi\)
0.223886 + 0.974615i \(0.428126\pi\)
\(102\) −0.0800368 0.138628i −0.00792483 0.0137262i
\(103\) −3.37545 −0.332593 −0.166297 0.986076i \(-0.553181\pi\)
−0.166297 + 0.986076i \(0.553181\pi\)
\(104\) 4.28893 7.42864i 0.420564 0.728438i
\(105\) −0.256424 −0.0250245
\(106\) 0.837358 1.45035i 0.0813314 0.140870i
\(107\) 6.78884 11.7586i 0.656302 1.13675i −0.325264 0.945623i \(-0.605453\pi\)
0.981566 0.191125i \(-0.0612134\pi\)
\(108\) −0.519017 + 0.898965i −0.0499425 + 0.0865029i
\(109\) 0.287863 + 0.498593i 0.0275722 + 0.0477565i 0.879482 0.475932i \(-0.157889\pi\)
−0.851910 + 0.523688i \(0.824556\pi\)
\(110\) 0.728559 0.0694654
\(111\) −0.561981 0.0330964i −0.0533408 0.00314137i
\(112\) −9.00045 −0.850463
\(113\) −1.77807 3.07971i −0.167267 0.289715i 0.770191 0.637813i \(-0.220161\pi\)
−0.937458 + 0.348099i \(0.886827\pi\)
\(114\) 0.119908 0.207686i 0.0112304 0.0194516i
\(115\) −0.255442 + 0.442438i −0.0238200 + 0.0412575i
\(116\) −7.85726 + 13.6092i −0.729528 + 1.26358i
\(117\) 18.5241 1.71256
\(118\) −2.10516 + 3.64625i −0.193796 + 0.335664i
\(119\) 13.3953 1.22794
\(120\) −0.0641006 0.111026i −0.00585156 0.0101352i
\(121\) −6.85272 −0.622975
\(122\) −0.788500 −0.0713874
\(123\) 0.131602 + 0.227942i 0.0118662 + 0.0205528i
\(124\) −4.01235 + 6.94960i −0.360320 + 0.624093i
\(125\) 1.00000 0.0894427
\(126\) 1.48259 + 2.56791i 0.132079 + 0.228768i
\(127\) 0.327318 + 0.566931i 0.0290447 + 0.0503070i 0.880182 0.474636i \(-0.157420\pi\)
−0.851138 + 0.524943i \(0.824087\pi\)
\(128\) −4.84308 8.38846i −0.428072 0.741442i
\(129\) 0.185317 0.320978i 0.0163162 0.0282606i
\(130\) −1.10767 + 1.91855i −0.0971494 + 0.168268i
\(131\) −1.43266 2.48144i −0.125172 0.216805i 0.796628 0.604470i \(-0.206615\pi\)
−0.921800 + 0.387665i \(0.873282\pi\)
\(132\) −0.176414 0.305558i −0.0153549 0.0265954i
\(133\) 10.0341 + 17.3796i 0.870068 + 1.50700i
\(134\) −1.40720 −0.121563
\(135\) 0.277251 0.480213i 0.0238620 0.0413301i
\(136\) 3.34853 + 5.79983i 0.287134 + 0.497331i
\(137\) −14.5828 −1.24589 −0.622945 0.782265i \(-0.714064\pi\)
−0.622945 + 0.782265i \(0.714064\pi\)
\(138\) −0.0169152 −0.00143992
\(139\) −5.77671 10.0056i −0.489974 0.848661i 0.509959 0.860199i \(-0.329661\pi\)
−0.999933 + 0.0115381i \(0.996327\pi\)
\(140\) 5.18676 0.438361
\(141\) 0.515050 0.892092i 0.0433750 0.0751277i
\(142\) 5.04810 0.423627
\(143\) −6.30536 + 10.9212i −0.527281 + 0.913278i
\(144\) 4.85877 8.41564i 0.404898 0.701304i
\(145\) 4.19723 7.26981i 0.348561 0.603725i
\(146\) 0.845561 + 1.46455i 0.0699791 + 0.121207i
\(147\) 0.0626272 0.00516540
\(148\) 11.3673 + 0.669449i 0.934387 + 0.0550283i
\(149\) −0.488881 −0.0400507 −0.0200253 0.999799i \(-0.506375\pi\)
−0.0200253 + 0.999799i \(0.506375\pi\)
\(150\) 0.0165549 + 0.0286739i 0.00135170 + 0.00234121i
\(151\) −1.98594 + 3.43975i −0.161614 + 0.279923i −0.935448 0.353466i \(-0.885003\pi\)
0.773834 + 0.633388i \(0.218336\pi\)
\(152\) −5.01663 + 8.68905i −0.406902 + 0.704775i
\(153\) −7.23126 + 12.5249i −0.584613 + 1.01258i
\(154\) −2.01861 −0.162664
\(155\) 2.14334 3.71237i 0.172157 0.298185i
\(156\) 1.07285 0.0858969
\(157\) −5.32041 9.21522i −0.424615 0.735455i 0.571769 0.820414i \(-0.306257\pi\)
−0.996384 + 0.0849597i \(0.972924\pi\)
\(158\) 3.41536 0.271711
\(159\) 0.433242 0.0343583
\(160\) 1.96630 + 3.40573i 0.155449 + 0.269246i
\(161\) 0.707748 1.22586i 0.0557783 0.0966109i
\(162\) −3.19222 −0.250805
\(163\) −11.0589 19.1546i −0.866203 1.50031i −0.865848 0.500307i \(-0.833220\pi\)
−0.000355092 1.00000i \(-0.500113\pi\)
\(164\) −2.66195 4.61063i −0.207863 0.360030i
\(165\) 0.0942375 + 0.163224i 0.00733638 + 0.0127070i
\(166\) 0.0261304 0.0452591i 0.00202811 0.00351279i
\(167\) −6.29101 + 10.8964i −0.486813 + 0.843185i −0.999885 0.0151604i \(-0.995174\pi\)
0.513072 + 0.858346i \(0.328507\pi\)
\(168\) 0.177603 + 0.307617i 0.0137023 + 0.0237332i
\(169\) −12.6729 21.9501i −0.974837 1.68847i
\(170\) −0.864804 1.49788i −0.0663274 0.114882i
\(171\) −21.6671 −1.65693
\(172\) −3.74845 + 6.49250i −0.285816 + 0.495049i
\(173\) −2.01989 3.49855i −0.153569 0.265990i 0.778968 0.627064i \(-0.215743\pi\)
−0.932537 + 0.361074i \(0.882410\pi\)
\(174\) 0.277938 0.0210704
\(175\) −2.77068 −0.209444
\(176\) 3.30772 + 5.72914i 0.249329 + 0.431850i
\(177\) −1.08919 −0.0818687
\(178\) −2.96516 + 5.13581i −0.222248 + 0.384945i
\(179\) −10.6326 −0.794721 −0.397360 0.917663i \(-0.630074\pi\)
−0.397360 + 0.917663i \(0.630074\pi\)
\(180\) −2.80000 + 4.84975i −0.208700 + 0.361479i
\(181\) −0.312453 + 0.541185i −0.0232245 + 0.0402259i −0.877404 0.479752i \(-0.840727\pi\)
0.854180 + 0.519978i \(0.174060\pi\)
\(182\) 3.06901 5.31569i 0.227490 0.394025i
\(183\) −0.101991 0.176653i −0.00753937 0.0130586i
\(184\) 0.707687 0.0521714
\(185\) −6.07224 0.357609i −0.446440 0.0262919i
\(186\) 0.141931 0.0104069
\(187\) −4.92284 8.52661i −0.359994 0.623528i
\(188\) −10.4180 + 18.0446i −0.759813 + 1.31603i
\(189\) −0.768175 + 1.33052i −0.0558765 + 0.0967810i
\(190\) 1.29561 2.24407i 0.0939936 0.162802i
\(191\) 9.44797 0.683631 0.341816 0.939767i \(-0.388958\pi\)
0.341816 + 0.939767i \(0.388958\pi\)
\(192\) 0.235538 0.407964i 0.0169985 0.0294423i
\(193\) 17.1241 1.23262 0.616308 0.787505i \(-0.288628\pi\)
0.616308 + 0.787505i \(0.288628\pi\)
\(194\) 3.35441 + 5.81001i 0.240833 + 0.417135i
\(195\) −0.573101 −0.0410406
\(196\) −1.26677 −0.0904839
\(197\) 1.14837 + 1.98903i 0.0818179 + 0.141713i 0.904031 0.427467i \(-0.140594\pi\)
−0.822213 + 0.569180i \(0.807261\pi\)
\(198\) 1.08972 1.88745i 0.0774429 0.134135i
\(199\) 25.5292 1.80971 0.904857 0.425715i \(-0.139977\pi\)
0.904857 + 0.425715i \(0.139977\pi\)
\(200\) −0.692612 1.19964i −0.0489751 0.0848273i
\(201\) −0.182018 0.315264i −0.0128385 0.0222370i
\(202\) 0.804954 + 1.39422i 0.0566364 + 0.0980971i
\(203\) −11.6292 + 20.1423i −0.816209 + 1.41372i
\(204\) −0.418808 + 0.725398i −0.0293225 + 0.0507880i
\(205\) 1.42197 + 2.46293i 0.0993148 + 0.172018i
\(206\) −0.603789 1.04579i −0.0420680 0.0728638i
\(207\) 0.764137 + 1.32352i 0.0531112 + 0.0919912i
\(208\) −20.1157 −1.39478
\(209\) 7.37519 12.7742i 0.510153 0.883610i
\(210\) −0.0458683 0.0794462i −0.00316521 0.00548231i
\(211\) −11.6634 −0.802941 −0.401470 0.915872i \(-0.631501\pi\)
−0.401470 + 0.915872i \(0.631501\pi\)
\(212\) −8.76328 −0.601865
\(213\) 0.652961 + 1.13096i 0.0447401 + 0.0774922i
\(214\) 4.85745 0.332049
\(215\) 2.00236 3.46819i 0.136560 0.236529i
\(216\) −0.768110 −0.0522632
\(217\) −5.93851 + 10.2858i −0.403132 + 0.698246i
\(218\) −0.102984 + 0.178373i −0.00697493 + 0.0120809i
\(219\) −0.218743 + 0.378874i −0.0147813 + 0.0256019i
\(220\) −1.90616 3.30157i −0.128514 0.222592i
\(221\) 29.9380 2.01385
\(222\) −0.0902711 0.180035i −0.00605860 0.0120831i
\(223\) −2.49921 −0.167360 −0.0836798 0.996493i \(-0.526667\pi\)
−0.0836798 + 0.996493i \(0.526667\pi\)
\(224\) −5.44799 9.43619i −0.364009 0.630482i
\(225\) 1.49572 2.59066i 0.0997145 0.172711i
\(226\) 0.636110 1.10177i 0.0423134 0.0732890i
\(227\) −1.27662 + 2.21117i −0.0847323 + 0.146761i −0.905277 0.424822i \(-0.860337\pi\)
0.820545 + 0.571582i \(0.193670\pi\)
\(228\) −1.25488 −0.0831066
\(229\) 0.613571 1.06274i 0.0405459 0.0702276i −0.845040 0.534703i \(-0.820424\pi\)
0.885586 + 0.464475i \(0.153757\pi\)
\(230\) −0.182770 −0.0120515
\(231\) −0.261102 0.452243i −0.0171793 0.0297554i
\(232\) −11.6282 −0.763429
\(233\) 15.6292 1.02391 0.511953 0.859013i \(-0.328922\pi\)
0.511953 + 0.859013i \(0.328922\pi\)
\(234\) 3.31353 + 5.73921i 0.216612 + 0.375184i
\(235\) 5.56515 9.63912i 0.363030 0.628787i
\(236\) 22.0314 1.43412
\(237\) 0.441769 + 0.765166i 0.0286960 + 0.0497029i
\(238\) 2.39610 + 4.15016i 0.155316 + 0.269015i
\(239\) −8.31261 14.3979i −0.537698 0.931320i −0.999028 0.0440911i \(-0.985961\pi\)
0.461330 0.887229i \(-0.347373\pi\)
\(240\) −0.150321 + 0.260364i −0.00970318 + 0.0168064i
\(241\) −0.899786 + 1.55847i −0.0579603 + 0.100390i −0.893550 0.448964i \(-0.851793\pi\)
0.835589 + 0.549355i \(0.185126\pi\)
\(242\) −1.22579 2.12313i −0.0787968 0.136480i
\(243\) −1.24466 2.15582i −0.0798450 0.138296i
\(244\) 2.06299 + 3.57320i 0.132069 + 0.228751i
\(245\) 0.676691 0.0432322
\(246\) −0.0470811 + 0.0815468i −0.00300178 + 0.00519924i
\(247\) 22.4259 + 38.8428i 1.42693 + 2.47151i
\(248\) −5.93800 −0.377064
\(249\) 0.0135196 0.000856771
\(250\) 0.178876 + 0.309823i 0.0113131 + 0.0195949i
\(251\) −6.75316 −0.426256 −0.213128 0.977024i \(-0.568365\pi\)
−0.213128 + 0.977024i \(0.568365\pi\)
\(252\) 7.75792 13.4371i 0.488703 0.846459i
\(253\) −1.04041 −0.0654098
\(254\) −0.117099 + 0.202821i −0.00734743 + 0.0127261i
\(255\) 0.223721 0.387496i 0.0140099 0.0242659i
\(256\) −3.35739 + 5.81517i −0.209837 + 0.363448i
\(257\) 4.73362 + 8.19887i 0.295275 + 0.511432i 0.975049 0.221990i \(-0.0712553\pi\)
−0.679774 + 0.733422i \(0.737922\pi\)
\(258\) 0.132595 0.00825502
\(259\) 16.8243 + 0.990821i 1.04541 + 0.0615667i
\(260\) 11.5922 0.718920
\(261\) −12.5557 21.7472i −0.777180 1.34612i
\(262\) 0.512539 0.887744i 0.0316648 0.0548450i
\(263\) 6.06418 10.5035i 0.373933 0.647671i −0.616234 0.787563i \(-0.711342\pi\)
0.990167 + 0.139892i \(0.0446756\pi\)
\(264\) 0.130540 0.226102i 0.00803419 0.0139156i
\(265\) 4.68121 0.287564
\(266\) −3.58973 + 6.21760i −0.220101 + 0.381225i
\(267\) −1.53415 −0.0938884
\(268\) 3.68171 + 6.37692i 0.224896 + 0.389532i
\(269\) −18.3226 −1.11715 −0.558574 0.829455i \(-0.688651\pi\)
−0.558574 + 0.829455i \(0.688651\pi\)
\(270\) 0.198375 0.0120727
\(271\) 10.9467 + 18.9602i 0.664964 + 1.15175i 0.979295 + 0.202438i \(0.0648864\pi\)
−0.314331 + 0.949313i \(0.601780\pi\)
\(272\) 7.85256 13.6010i 0.476132 0.824684i
\(273\) 1.58788 0.0961029
\(274\) −2.60852 4.51808i −0.157586 0.272947i
\(275\) 1.01824 + 1.76365i 0.0614024 + 0.106352i
\(276\) 0.0442560 + 0.0766537i 0.00266390 + 0.00461401i
\(277\) 9.63350 16.6857i 0.578821 1.00255i −0.416794 0.909001i \(-0.636846\pi\)
0.995615 0.0935460i \(-0.0298202\pi\)
\(278\) 2.06664 3.57952i 0.123949 0.214685i
\(279\) −6.41165 11.1053i −0.383856 0.664857i
\(280\) 1.91901 + 3.32382i 0.114683 + 0.198636i
\(281\) −2.97557 5.15384i −0.177508 0.307452i 0.763519 0.645786i \(-0.223470\pi\)
−0.941026 + 0.338334i \(0.890137\pi\)
\(282\) 0.368521 0.0219451
\(283\) 4.13549 7.16287i 0.245829 0.425789i −0.716535 0.697551i \(-0.754273\pi\)
0.962364 + 0.271762i \(0.0876064\pi\)
\(284\) −13.2076 22.8762i −0.783726 1.35745i
\(285\) 0.670338 0.0397074
\(286\) −4.51153 −0.266772
\(287\) −3.93983 6.82399i −0.232561 0.402808i
\(288\) 11.7641 0.693206
\(289\) −3.18688 + 5.51984i −0.187464 + 0.324696i
\(290\) 3.00314 0.176351
\(291\) −0.867772 + 1.50302i −0.0508697 + 0.0881089i
\(292\) 4.42456 7.66357i 0.258928 0.448476i
\(293\) 3.74515 6.48679i 0.218794 0.378963i −0.735645 0.677367i \(-0.763121\pi\)
0.954440 + 0.298404i \(0.0964544\pi\)
\(294\) 0.0112025 + 0.0194034i 0.000653345 + 0.00113163i
\(295\) −11.7688 −0.685206
\(296\) 3.77671 + 7.53218i 0.219517 + 0.437799i
\(297\) 1.12924 0.0655249
\(298\) −0.0874493 0.151467i −0.00506580 0.00877423i
\(299\) 1.58179 2.73975i 0.0914775 0.158444i
\(300\) 0.0866266 0.150042i 0.00500139 0.00866266i
\(301\) −5.54791 + 9.60927i −0.319776 + 0.553869i
\(302\) −1.42095 −0.0817666
\(303\) −0.208238 + 0.360679i −0.0119630 + 0.0207205i
\(304\) 23.5288 1.34947
\(305\) −1.10202 1.90875i −0.0631013 0.109295i
\(306\) −5.17401 −0.295778
\(307\) 10.0716 0.574817 0.287408 0.957808i \(-0.407206\pi\)
0.287408 + 0.957808i \(0.407206\pi\)
\(308\) 5.28138 + 9.14762i 0.300935 + 0.521234i
\(309\) 0.156198 0.270542i 0.00888577 0.0153906i
\(310\) 1.53357 0.0871009
\(311\) −2.97981 5.16118i −0.168970 0.292664i 0.769088 0.639143i \(-0.220711\pi\)
−0.938058 + 0.346479i \(0.887377\pi\)
\(312\) 0.396937 + 0.687514i 0.0224721 + 0.0389228i
\(313\) 7.07137 + 12.2480i 0.399698 + 0.692296i 0.993688 0.112175i \(-0.0357818\pi\)
−0.593991 + 0.804472i \(0.702448\pi\)
\(314\) 1.90339 3.29677i 0.107415 0.186048i
\(315\) −4.14416 + 7.17790i −0.233497 + 0.404429i
\(316\) −8.93576 15.4772i −0.502676 0.870660i
\(317\) 2.44384 + 4.23285i 0.137260 + 0.237741i 0.926458 0.376397i \(-0.122837\pi\)
−0.789199 + 0.614138i \(0.789504\pi\)
\(318\) 0.0774968 + 0.134228i 0.00434580 + 0.00752715i
\(319\) 17.0952 0.957147
\(320\) 2.54501 4.40808i 0.142270 0.246419i
\(321\) 0.628301 + 1.08825i 0.0350683 + 0.0607401i
\(322\) 0.506398 0.0282204
\(323\) −35.0176 −1.94843
\(324\) 8.35197 + 14.4660i 0.463998 + 0.803669i
\(325\) −6.19239 −0.343492
\(326\) 3.95637 6.85263i 0.219123 0.379532i
\(327\) −0.0532829 −0.00294655
\(328\) 1.96975 3.41171i 0.108761 0.188380i
\(329\) −15.4193 + 26.7070i −0.850092 + 1.47240i
\(330\) −0.0337138 + 0.0583939i −0.00185588 + 0.00321448i
\(331\) 12.2406 + 21.2013i 0.672802 + 1.16533i 0.977106 + 0.212753i \(0.0682428\pi\)
−0.304304 + 0.952575i \(0.598424\pi\)
\(332\) −0.273465 −0.0150083
\(333\) −10.0088 + 15.1962i −0.548479 + 0.832748i
\(334\) −4.50126 −0.246298
\(335\) −1.96671 3.40645i −0.107453 0.186114i
\(336\) 0.416492 0.721385i 0.0227215 0.0393548i
\(337\) 4.43827 7.68730i 0.241768 0.418754i −0.719450 0.694544i \(-0.755606\pi\)
0.961218 + 0.275790i \(0.0889394\pi\)
\(338\) 4.53376 7.85270i 0.246604 0.427131i
\(339\) 0.329118 0.0178752
\(340\) −4.52526 + 7.83797i −0.245416 + 0.425074i
\(341\) 8.72975 0.472743
\(342\) −3.87574 6.71298i −0.209576 0.362996i
\(343\) 17.5199 0.945985
\(344\) −5.54744 −0.299098
\(345\) −0.0236409 0.0409472i −0.00127278 0.00220452i
\(346\) 0.722621 1.25162i 0.0388483 0.0672873i
\(347\) 3.32706 0.178606 0.0893029 0.996005i \(-0.471536\pi\)
0.0893029 + 0.996005i \(0.471536\pi\)
\(348\) −0.727183 1.25952i −0.0389811 0.0675172i
\(349\) 14.3885 + 24.9216i 0.770198 + 1.33402i 0.937454 + 0.348109i \(0.113176\pi\)
−0.167256 + 0.985914i \(0.553491\pi\)
\(350\) −0.495610 0.858422i −0.0264915 0.0458846i
\(351\) −1.71685 + 2.97367i −0.0916386 + 0.158723i
\(352\) −4.00434 + 6.93572i −0.213432 + 0.369675i
\(353\) −18.0163 31.2052i −0.958912 1.66088i −0.725152 0.688589i \(-0.758230\pi\)
−0.233760 0.972294i \(-0.575103\pi\)
\(354\) −0.194831 0.337457i −0.0103552 0.0179356i
\(355\) 7.05529 + 12.2201i 0.374456 + 0.648576i
\(356\) 31.0316 1.64467
\(357\) −0.619860 + 1.07363i −0.0328065 + 0.0568225i
\(358\) −1.90193 3.29424i −0.100520 0.174106i
\(359\) −1.95449 −0.103154 −0.0515771 0.998669i \(-0.516425\pi\)
−0.0515771 + 0.998669i \(0.516425\pi\)
\(360\) −4.14381 −0.218398
\(361\) −16.7309 28.9788i −0.880575 1.52520i
\(362\) −0.223562 −0.0117502
\(363\) 0.317107 0.549245i 0.0166438 0.0288279i
\(364\) −32.1184 −1.68346
\(365\) −2.36353 + 4.09376i −0.123713 + 0.214277i
\(366\) 0.0364875 0.0631982i 0.00190723 0.00330342i
\(367\) 12.6555 21.9200i 0.660614 1.14422i −0.319841 0.947471i \(-0.603629\pi\)
0.980455 0.196746i \(-0.0630373\pi\)
\(368\) −0.829791 1.43724i −0.0432558 0.0749213i
\(369\) 8.50747 0.442881
\(370\) −0.975386 1.94529i −0.0507079 0.101131i
\(371\) −12.9702 −0.673377
\(372\) −0.371340 0.643180i −0.0192531 0.0333473i
\(373\) −11.6839 + 20.2372i −0.604972 + 1.04784i 0.387084 + 0.922044i \(0.373482\pi\)
−0.992056 + 0.125797i \(0.959851\pi\)
\(374\) 1.76116 3.05042i 0.0910675 0.157734i
\(375\) −0.0462746 + 0.0801499i −0.00238961 + 0.00413892i
\(376\) −15.4180 −0.795120
\(377\) −25.9909 + 45.0175i −1.33860 + 2.31852i
\(378\) −0.549634 −0.0282701
\(379\) 13.1399 + 22.7590i 0.674953 + 1.16905i 0.976483 + 0.215596i \(0.0691694\pi\)
−0.301530 + 0.953457i \(0.597497\pi\)
\(380\) −13.5591 −0.695567
\(381\) −0.0605859 −0.00310391
\(382\) 1.69002 + 2.92720i 0.0864690 + 0.149769i
\(383\) −1.49652 + 2.59204i −0.0764684 + 0.132447i −0.901724 0.432312i \(-0.857698\pi\)
0.825255 + 0.564760i \(0.191031\pi\)
\(384\) 0.896445 0.0457465
\(385\) −2.82123 4.88651i −0.143783 0.249040i
\(386\) 3.06309 + 5.30543i 0.155907 + 0.270039i
\(387\) −5.98993 10.3749i −0.304485 0.527384i
\(388\) 17.5526 30.4020i 0.891099 1.54343i
\(389\) −0.179623 + 0.311117i −0.00910727 + 0.0157743i −0.870543 0.492092i \(-0.836232\pi\)
0.861436 + 0.507866i \(0.169566\pi\)
\(390\) −0.102514 0.177560i −0.00519101 0.00899110i
\(391\) 1.23497 + 2.13903i 0.0624550 + 0.108175i
\(392\) −0.468684 0.811785i −0.0236721 0.0410013i
\(393\) 0.265183 0.0133767
\(394\) −0.410832 + 0.711583i −0.0206974 + 0.0358490i
\(395\) 4.77335 + 8.26768i 0.240173 + 0.415992i
\(396\) −11.4043 −0.573089
\(397\) −19.0744 −0.957318 −0.478659 0.878001i \(-0.658877\pi\)
−0.478659 + 0.878001i \(0.658877\pi\)
\(398\) 4.56657 + 7.90953i 0.228901 + 0.396469i
\(399\) −1.85730 −0.0929811
\(400\) −1.62423 + 2.81325i −0.0812114 + 0.140662i
\(401\) −16.9963 −0.848755 −0.424378 0.905485i \(-0.639507\pi\)
−0.424378 + 0.905485i \(0.639507\pi\)
\(402\) 0.0651174 0.112787i 0.00324776 0.00562528i
\(403\) −13.2724 + 22.9885i −0.661145 + 1.14514i
\(404\) 4.21208 7.29554i 0.209559 0.362967i
\(405\) −4.46149 7.72753i −0.221693 0.383984i
\(406\) −8.32076 −0.412952
\(407\) −5.55232 11.0734i −0.275218 0.548890i
\(408\) −0.619807 −0.0306850
\(409\) −0.207634 0.359633i −0.0102668 0.0177827i 0.860846 0.508865i \(-0.169935\pi\)
−0.871113 + 0.491082i \(0.836601\pi\)
\(410\) −0.508715 + 0.881120i −0.0251236 + 0.0435154i
\(411\) 0.674812 1.16881i 0.0332860 0.0576531i
\(412\) −3.15944 + 5.47232i −0.155655 + 0.269602i
\(413\) 32.6076 1.60452
\(414\) −0.273372 + 0.473494i −0.0134355 + 0.0232710i
\(415\) 0.146080 0.00717081
\(416\) −12.1761 21.0896i −0.596982 1.03400i
\(417\) 1.06926 0.0523619
\(418\) 5.27699 0.258106
\(419\) −10.3760 17.9718i −0.506901 0.877979i −0.999968 0.00798721i \(-0.997458\pi\)
0.493067 0.869991i \(-0.335876\pi\)
\(420\) −0.240015 + 0.415718i −0.0117115 + 0.0202850i
\(421\) −11.5314 −0.562008 −0.281004 0.959707i \(-0.590667\pi\)
−0.281004 + 0.959707i \(0.590667\pi\)
\(422\) −2.08631 3.61359i −0.101560 0.175907i
\(423\) −16.6478 28.8348i −0.809443 1.40200i
\(424\) −3.24226 5.61576i −0.157458 0.272726i
\(425\) 2.41732 4.18692i 0.117257 0.203096i
\(426\) −0.233599 + 0.404605i −0.0113179 + 0.0196032i
\(427\) 3.05334 + 5.28854i 0.147762 + 0.255931i
\(428\) −12.7088 22.0123i −0.614303 1.06400i
\(429\) −0.583556 1.01075i −0.0281743 0.0487994i
\(430\) 1.43270 0.0690910
\(431\) 0.360230 0.623937i 0.0173517 0.0300540i −0.857219 0.514952i \(-0.827810\pi\)
0.874571 + 0.484898i \(0.161143\pi\)
\(432\) 0.900638 + 1.55995i 0.0433320 + 0.0750532i
\(433\) 28.4761 1.36848 0.684238 0.729259i \(-0.260135\pi\)
0.684238 + 0.729259i \(0.260135\pi\)
\(434\) −4.24904 −0.203960
\(435\) 0.388450 + 0.672815i 0.0186247 + 0.0322590i
\(436\) 1.07776 0.0516156
\(437\) −1.85018 + 3.20460i −0.0885060 + 0.153297i
\(438\) −0.156512 −0.00747842
\(439\) −11.4437 + 19.8211i −0.546180 + 0.946011i 0.452352 + 0.891839i \(0.350585\pi\)
−0.998532 + 0.0541714i \(0.982748\pi\)
\(440\) 1.41050 2.44305i 0.0672427 0.116468i
\(441\) 1.01214 1.75308i 0.0481971 0.0834798i
\(442\) 5.35521 + 9.27549i 0.254721 + 0.441190i
\(443\) 2.51641 0.119558 0.0597790 0.998212i \(-0.480960\pi\)
0.0597790 + 0.998212i \(0.480960\pi\)
\(444\) −0.579674 + 0.880111i −0.0275101 + 0.0417682i
\(445\) −16.5766 −0.785806
\(446\) −0.447050 0.774313i −0.0211684 0.0366648i
\(447\) 0.0226228 0.0391838i 0.00107002 0.00185333i
\(448\) −7.05142 + 12.2134i −0.333148 + 0.577029i
\(449\) −18.7859 + 32.5381i −0.886561 + 1.53557i −0.0426469 + 0.999090i \(0.513579\pi\)
−0.843914 + 0.536478i \(0.819754\pi\)
\(450\) 1.07019 0.0504495
\(451\) −2.89583 + 5.01572i −0.136359 + 0.236181i
\(452\) −6.65714 −0.313126
\(453\) −0.183797 0.318346i −0.00863554 0.0149572i
\(454\) −0.913430 −0.0428694
\(455\) 17.1572 0.804341
\(456\) −0.464285 0.804164i −0.0217421 0.0376584i
\(457\) 9.71917 16.8341i 0.454644 0.787466i −0.544024 0.839070i \(-0.683100\pi\)
0.998668 + 0.0516036i \(0.0164332\pi\)
\(458\) 0.439014 0.0205138
\(459\) −1.34041 2.32166i −0.0625650 0.108366i
\(460\) 0.478190 + 0.828249i 0.0222957 + 0.0386173i
\(461\) 9.48509 + 16.4287i 0.441765 + 0.765159i 0.997821 0.0659862i \(-0.0210193\pi\)
−0.556056 + 0.831145i \(0.687686\pi\)
\(462\) 0.0934102 0.161791i 0.00434583 0.00752721i
\(463\) −0.109249 + 0.189225i −0.00507723 + 0.00879402i −0.868553 0.495597i \(-0.834949\pi\)
0.863476 + 0.504391i \(0.168283\pi\)
\(464\) 13.6345 + 23.6157i 0.632966 + 1.09633i
\(465\) 0.198364 + 0.343576i 0.00919891 + 0.0159330i
\(466\) 2.79570 + 4.84230i 0.129509 + 0.224315i
\(467\) −11.9630 −0.553580 −0.276790 0.960930i \(-0.589271\pi\)
−0.276790 + 0.960930i \(0.589271\pi\)
\(468\) 17.3387 30.0315i 0.801483 1.38821i
\(469\) 5.44914 + 9.43819i 0.251618 + 0.435815i
\(470\) 3.98190 0.183671
\(471\) 0.984799 0.0453771
\(472\) 8.15122 + 14.1183i 0.375190 + 0.649848i
\(473\) 8.15557 0.374993
\(474\) −0.158044 + 0.273741i −0.00725921 + 0.0125733i
\(475\) 7.24305 0.332334
\(476\) 12.5381 21.7165i 0.574681 0.995376i
\(477\) 7.00177 12.1274i 0.320589 0.555276i
\(478\) 2.97386 5.15088i 0.136021 0.235596i
\(479\) 8.91840 + 15.4471i 0.407492 + 0.705797i 0.994608 0.103706i \(-0.0330700\pi\)
−0.587116 + 0.809503i \(0.699737\pi\)
\(480\) −0.363958 −0.0166123
\(481\) 37.6017 + 2.21446i 1.71449 + 0.100970i
\(482\) −0.643802 −0.0293244
\(483\) 0.0655014 + 0.113452i 0.00298042 + 0.00516224i
\(484\) −6.41419 + 11.1097i −0.291554 + 0.504987i
\(485\) −9.37633 + 16.2403i −0.425757 + 0.737433i
\(486\) 0.445281 0.771249i 0.0201984 0.0349846i
\(487\) −19.0241 −0.862062 −0.431031 0.902337i \(-0.641850\pi\)
−0.431031 + 0.902337i \(0.641850\pi\)
\(488\) −1.52654 + 2.64405i −0.0691033 + 0.119690i
\(489\) 2.04699 0.0925681
\(490\) 0.121044 + 0.209655i 0.00546822 + 0.00947123i
\(491\) 31.9253 1.44077 0.720385 0.693575i \(-0.243965\pi\)
0.720385 + 0.693575i \(0.243965\pi\)
\(492\) 0.492722 0.0222136
\(493\) −20.2921 35.1469i −0.913910 1.58294i
\(494\) −8.02294 + 13.8961i −0.360969 + 0.625217i
\(495\) 6.09202 0.273816
\(496\) 6.96254 + 12.0595i 0.312627 + 0.541486i
\(497\) −19.5480 33.8581i −0.876846 1.51874i
\(498\) 0.00241834 + 0.00418869i 0.000108369 + 0.000187700i
\(499\) −4.55248 + 7.88512i −0.203797 + 0.352987i −0.949749 0.313013i \(-0.898662\pi\)
0.745952 + 0.666000i \(0.231995\pi\)
\(500\) 0.936006 1.62121i 0.0418595 0.0725027i
\(501\) −0.582228 1.00845i −0.0260120 0.0450541i
\(502\) −1.20798 2.09229i −0.0539148 0.0933833i
\(503\) 9.13175 + 15.8166i 0.407164 + 0.705230i 0.994571 0.104063i \(-0.0331842\pi\)
−0.587406 + 0.809292i \(0.699851\pi\)
\(504\) 11.4812 0.511413
\(505\) −2.25003 + 3.89716i −0.100125 + 0.173421i
\(506\) −0.186104 0.322342i −0.00827334 0.0143299i
\(507\) 2.34573 0.104177
\(508\) 1.22549 0.0543721
\(509\) −13.5136 23.4062i −0.598978 1.03746i −0.992972 0.118348i \(-0.962240\pi\)
0.393994 0.919113i \(-0.371093\pi\)
\(510\) 0.160074 0.00708818
\(511\) 6.54860 11.3425i 0.289693 0.501763i
\(512\) −21.7745 −0.962308
\(513\) 2.00814 3.47821i 0.0886617 0.153567i
\(514\) −1.69347 + 2.93317i −0.0746956 + 0.129377i
\(515\) 1.68773 2.92323i 0.0743701 0.128813i
\(516\) −0.346916 0.600875i −0.0152721 0.0264521i
\(517\) 22.6667 0.996880
\(518\) 2.70249 + 5.38978i 0.118740 + 0.236813i
\(519\) 0.373878 0.0164114
\(520\) 4.28893 + 7.42864i 0.188082 + 0.325767i
\(521\) 12.2187 21.1634i 0.535311 0.927186i −0.463837 0.885921i \(-0.653528\pi\)
0.999148 0.0412658i \(-0.0131390\pi\)
\(522\) 4.49185 7.78011i 0.196603 0.340526i
\(523\) −6.43876 + 11.1523i −0.281547 + 0.487654i −0.971766 0.235947i \(-0.924181\pi\)
0.690219 + 0.723601i \(0.257514\pi\)
\(524\) −5.36393 −0.234324
\(525\) 0.128212 0.222070i 0.00559564 0.00969193i
\(526\) 4.33896 0.189187
\(527\) −10.3623 17.9480i −0.451387 0.781826i
\(528\) −0.612253 −0.0266449
\(529\) −22.7390 −0.988652
\(530\) 0.837358 + 1.45035i 0.0363725 + 0.0629991i
\(531\) −17.6028 + 30.4890i −0.763897 + 1.32311i
\(532\) 37.5680 1.62878
\(533\) −8.80541 15.2514i −0.381405 0.660612i
\(534\) −0.274423 0.475315i −0.0118755 0.0205689i
\(535\) 6.78884 + 11.7586i 0.293507 + 0.508369i
\(536\) −2.72434 + 4.71869i −0.117674 + 0.203817i
\(537\) 0.492021 0.852205i 0.0212323 0.0367753i
\(538\) −3.27748 5.67676i −0.141302 0.244742i
\(539\) 0.689036 + 1.19345i 0.0296789 + 0.0514053i
\(540\) −0.519017 0.898965i −0.0223350 0.0386853i
\(541\) 27.7984 1.19515 0.597573 0.801815i \(-0.296132\pi\)
0.597573 + 0.801815i \(0.296132\pi\)
\(542\) −3.91621 + 6.78307i −0.168216 + 0.291358i
\(543\) −0.0289173 0.0500862i −0.00124096 0.00214940i
\(544\) 19.0127 0.815162
\(545\) −0.575725 −0.0246614
\(546\) 0.284035 + 0.491962i 0.0121556 + 0.0210540i
\(547\) 13.2756 0.567623 0.283811 0.958880i \(-0.408401\pi\)
0.283811 + 0.958880i \(0.408401\pi\)
\(548\) −13.6496 + 23.6418i −0.583081 + 1.00993i
\(549\) −6.59323 −0.281392
\(550\) −0.364280 + 0.630951i −0.0155329 + 0.0269038i
\(551\) 30.4007 52.6556i 1.29512 2.24321i
\(552\) −0.0327479 + 0.0567211i −0.00139384 + 0.00241421i
\(553\) −13.2254 22.9071i −0.562403 0.974110i
\(554\) 6.89282 0.292848
\(555\) 0.309653 0.470141i 0.0131440 0.0199564i
\(556\) −21.6282 −0.917238
\(557\) 9.83840 + 17.0406i 0.416866 + 0.722034i 0.995622 0.0934671i \(-0.0297950\pi\)
−0.578756 + 0.815501i \(0.696462\pi\)
\(558\) 2.29379 3.97296i 0.0971038 0.168189i
\(559\) −12.3994 + 21.4764i −0.524439 + 0.908356i
\(560\) 4.50023 7.79462i 0.190169 0.329383i
\(561\) 0.911209 0.0384713
\(562\) 1.06452 1.84380i 0.0449040 0.0777760i
\(563\) 11.5785 0.487975 0.243988 0.969778i \(-0.421544\pi\)
0.243988 + 0.969778i \(0.421544\pi\)
\(564\) −0.964180 1.67001i −0.0405993 0.0703200i
\(565\) 3.55614 0.149608
\(566\) 2.95897 0.124375
\(567\) 12.3614 + 21.4106i 0.519129 + 0.899159i
\(568\) 9.77315 16.9276i 0.410072 0.710266i
\(569\) −7.13372 −0.299061 −0.149530 0.988757i \(-0.547776\pi\)
−0.149530 + 0.988757i \(0.547776\pi\)
\(570\) 0.119908 + 0.207686i 0.00502238 + 0.00869903i
\(571\) −7.75168 13.4263i −0.324398 0.561873i 0.656993 0.753897i \(-0.271828\pi\)
−0.981390 + 0.192024i \(0.938495\pi\)
\(572\) 11.8037 + 20.4446i 0.493538 + 0.854834i
\(573\) −0.437201 + 0.757254i −0.0182643 + 0.0316347i
\(574\) 1.40949 2.44130i 0.0588309 0.101898i
\(575\) −0.255442 0.442438i −0.0106526 0.0184509i
\(576\) −7.61323 13.1865i −0.317218 0.549437i
\(577\) −9.83190 17.0294i −0.409308 0.708941i 0.585505 0.810669i \(-0.300896\pi\)
−0.994812 + 0.101728i \(0.967563\pi\)
\(578\) −2.28023 −0.0948452
\(579\) −0.792408 + 1.37249i −0.0329314 + 0.0570388i
\(580\) −7.85726 13.6092i −0.326255 0.565090i
\(581\) −0.404743 −0.0167916
\(582\) −0.620896 −0.0257370
\(583\) 4.76661 + 8.25601i 0.197413 + 0.341929i
\(584\) 6.54804 0.270960
\(585\) −9.26207 + 16.0424i −0.382940 + 0.663271i
\(586\) 2.67968 0.110697
\(587\) −6.19424 + 10.7287i −0.255664 + 0.442822i −0.965076 0.261972i \(-0.915627\pi\)
0.709412 + 0.704794i \(0.248961\pi\)
\(588\) 0.0586194 0.101532i 0.00241742 0.00418710i
\(589\) 15.5243 26.8889i 0.639668 1.10794i
\(590\) −2.10516 3.64625i −0.0866682 0.150114i
\(591\) −0.212561 −0.00874359
\(592\) 10.8688 16.5019i 0.446703 0.678223i
\(593\) 27.8062 1.14186 0.570931 0.820998i \(-0.306582\pi\)
0.570931 + 0.820998i \(0.306582\pi\)
\(594\) 0.201994 + 0.349863i 0.00828791 + 0.0143551i
\(595\) −6.69763 + 11.6006i −0.274576 + 0.475580i
\(596\) −0.457596 + 0.792579i −0.0187439 + 0.0324653i
\(597\) −1.18135 + 2.04616i −0.0483495 + 0.0837437i
\(598\) 1.13178 0.0462821
\(599\) 0.663341 1.14894i 0.0271034 0.0469444i −0.852156 0.523289i \(-0.824705\pi\)
0.879259 + 0.476344i \(0.158038\pi\)
\(600\) 0.128201 0.00523380
\(601\) 2.96671 + 5.13850i 0.121015 + 0.209604i 0.920168 0.391523i \(-0.128052\pi\)
−0.799153 + 0.601127i \(0.794718\pi\)
\(602\) −3.96956 −0.161787
\(603\) −11.7666 −0.479173
\(604\) 3.71771 + 6.43925i 0.151271 + 0.262010i
\(605\) 3.42636 5.93463i 0.139301 0.241277i
\(606\) −0.148996 −0.00605253
\(607\) 9.97311 + 17.2739i 0.404796 + 0.701127i 0.994298 0.106640i \(-0.0340092\pi\)
−0.589502 + 0.807767i \(0.700676\pi\)
\(608\) 14.2420 + 24.6679i 0.577589 + 1.00041i
\(609\) −1.07627 1.86416i −0.0436127 0.0755394i
\(610\) 0.394250 0.682861i 0.0159627 0.0276482i
\(611\) −34.4616 + 59.6892i −1.39417 + 2.41477i
\(612\) 13.5370 + 23.4468i 0.547201 + 0.947780i
\(613\) −2.49236 4.31689i −0.100665 0.174358i 0.811294 0.584639i \(-0.198764\pi\)
−0.911959 + 0.410281i \(0.865430\pi\)
\(614\) 1.80157 + 3.12042i 0.0727056 + 0.125930i
\(615\) −0.263204 −0.0106134
\(616\) −3.90804 + 6.76892i −0.157459 + 0.272727i
\(617\) −12.3127 21.3262i −0.495691 0.858561i 0.504297 0.863530i \(-0.331752\pi\)
−0.999988 + 0.00496889i \(0.998418\pi\)
\(618\) 0.111760 0.00449566
\(619\) 13.5019 0.542688 0.271344 0.962482i \(-0.412532\pi\)
0.271344 + 0.962482i \(0.412532\pi\)
\(620\) −4.01235 6.94960i −0.161140 0.279103i
\(621\) −0.283286 −0.0113679
\(622\) 1.06604 1.84643i 0.0427442 0.0740350i
\(623\) 45.9285 1.84009
\(624\) 0.930847 1.61227i 0.0372637 0.0645426i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −2.52980 + 4.38175i −0.101111 + 0.175130i
\(627\) 0.682568 + 1.18224i 0.0272591 + 0.0472142i
\(628\) −19.9197 −0.794885
\(629\) −16.1758 + 24.5595i −0.644973 + 0.979253i
\(630\) −2.96517 −0.118135
\(631\) −16.2924 28.2193i −0.648592 1.12339i −0.983459 0.181129i \(-0.942025\pi\)
0.334868 0.942265i \(-0.391308\pi\)
\(632\) 6.61215 11.4526i 0.263017 0.455559i
\(633\) 0.539718 0.934819i 0.0214519 0.0371557i
\(634\) −0.874290 + 1.51431i −0.0347225 + 0.0601411i
\(635\) −0.654635 −0.0259784
\(636\) 0.405517 0.702376i 0.0160798 0.0278510i
\(637\) −4.19034 −0.166027
\(638\) 3.05793 + 5.29649i 0.121065 + 0.209690i
\(639\) 42.2108 1.66984
\(640\) 9.68616 0.382879
\(641\) −1.15179 1.99496i −0.0454930 0.0787962i 0.842382 0.538880i \(-0.181153\pi\)
−0.887875 + 0.460084i \(0.847819\pi\)
\(642\) −0.224777 + 0.389324i −0.00887122 + 0.0153654i
\(643\) 1.78059 0.0702197 0.0351098 0.999383i \(-0.488822\pi\)
0.0351098 + 0.999383i \(0.488822\pi\)
\(644\) −1.32491 2.29482i −0.0522089 0.0904284i
\(645\) 0.185317 + 0.320978i 0.00729684 + 0.0126385i
\(646\) −6.26382 10.8493i −0.246447 0.426858i
\(647\) 8.69575 15.0615i 0.341865 0.592128i −0.642914 0.765938i \(-0.722275\pi\)
0.984779 + 0.173811i \(0.0556081\pi\)
\(648\) −6.18017 + 10.7044i −0.242780 + 0.420507i
\(649\) −11.9835 20.7560i −0.470394 0.814746i
\(650\) −1.10767 1.91855i −0.0434465 0.0752516i
\(651\) −0.549604 0.951942i −0.0215407 0.0373095i
\(652\) −41.4049 −1.62154
\(653\) 3.75990 6.51235i 0.147136 0.254848i −0.783032 0.621982i \(-0.786328\pi\)
0.930168 + 0.367134i \(0.119661\pi\)
\(654\) −0.00953105 0.0165083i −0.000372694 0.000645524i
\(655\) 2.86533 0.111958
\(656\) −9.23843 −0.360700
\(657\) 7.07035 + 12.2462i 0.275841 + 0.477770i
\(658\) −11.0326 −0.430095
\(659\) 13.9067 24.0871i 0.541729 0.938302i −0.457076 0.889428i \(-0.651103\pi\)
0.998805 0.0488744i \(-0.0155634\pi\)
\(660\) 0.352828 0.0137338
\(661\) 0.907354 1.57158i 0.0352920 0.0611275i −0.847840 0.530252i \(-0.822097\pi\)
0.883132 + 0.469125i \(0.155431\pi\)
\(662\) −4.37910 + 7.58482i −0.170198 + 0.294792i
\(663\) −1.38537 + 2.39953i −0.0538033 + 0.0931900i
\(664\) −0.101177 0.175244i −0.00392643 0.00680078i
\(665\) −20.0682 −0.778212
\(666\) −6.49848 0.382711i −0.251811 0.0148298i
\(667\) −4.28858 −0.166055
\(668\) 11.7769 + 20.3981i 0.455660 + 0.789227i
\(669\) 0.115650 0.200311i 0.00447128 0.00774449i
\(670\) 0.703598 1.21867i 0.0271824 0.0470812i
\(671\) 2.24424 3.88714i 0.0866381 0.150062i
\(672\) 1.00841 0.0389004
\(673\) 12.1457 21.0369i 0.468182 0.810915i −0.531157 0.847273i \(-0.678243\pi\)
0.999339 + 0.0363587i \(0.0115759\pi\)
\(674\) 3.17561 0.122320
\(675\) 0.277251 + 0.480213i 0.0106714 + 0.0184834i
\(676\) −47.4476 −1.82491
\(677\) −36.8733 −1.41716 −0.708578 0.705633i \(-0.750663\pi\)
−0.708578 + 0.705633i \(0.750663\pi\)
\(678\) 0.0588714 + 0.101968i 0.00226094 + 0.00391607i
\(679\) 25.9789 44.9967i 0.996977 1.72682i
\(680\) −6.69706 −0.256821
\(681\) −0.118150 0.204642i −0.00452753 0.00784190i
\(682\) 1.56155 + 2.70468i 0.0597948 + 0.103568i
\(683\) −15.2416 26.3993i −0.583204 1.01014i −0.995097 0.0989072i \(-0.968465\pi\)
0.411892 0.911233i \(-0.364868\pi\)
\(684\) −20.2806 + 35.1270i −0.775447 + 1.34311i
\(685\) 7.29139 12.6291i 0.278590 0.482532i
\(686\) 3.13390 + 5.42807i 0.119653 + 0.207245i
\(687\) 0.0567854 + 0.0983553i 0.00216650 + 0.00375249i
\(688\) 6.50459 + 11.2663i 0.247985 + 0.429523i
\(689\) −28.9879 −1.10435
\(690\) 0.00845760 0.0146490i 0.000321975 0.000557678i
\(691\) 10.0536 + 17.4133i 0.382456 + 0.662433i 0.991413 0.130771i \(-0.0417452\pi\)
−0.608957 + 0.793203i \(0.708412\pi\)
\(692\) −7.56251 −0.287484
\(693\) −16.8791 −0.641182
\(694\) 0.595132 + 1.03080i 0.0225909 + 0.0391286i
\(695\) 11.5534 0.438246
\(696\) 0.538090 0.931999i 0.0203962 0.0353273i
\(697\) 13.7494 0.520797
\(698\) −5.14753 + 8.91578i −0.194837 + 0.337467i
\(699\) −0.723237 + 1.25268i −0.0273553 + 0.0473808i
\(700\) −2.59338 + 4.49186i −0.0980205 + 0.169776i
\(701\) 6.28918 + 10.8932i 0.237539 + 0.411430i 0.960008 0.279974i \(-0.0903259\pi\)
−0.722469 + 0.691404i \(0.756993\pi\)
\(702\) −1.22841 −0.0463635
\(703\) −43.9816 2.59018i −1.65880 0.0976905i
\(704\) 10.3658 0.390674
\(705\) 0.515050 + 0.892092i 0.0193979 + 0.0335981i
\(706\) 6.44539 11.1637i 0.242575 0.420153i
\(707\) 6.23412 10.7978i 0.234458 0.406093i
\(708\) −1.01949 + 1.76581i −0.0383148 + 0.0663632i
\(709\) −8.41335 −0.315970 −0.157985 0.987442i \(-0.550500\pi\)
−0.157985 + 0.987442i \(0.550500\pi\)
\(710\) −2.52405 + 4.37178i −0.0947259 + 0.164070i
\(711\) 28.5583 1.07102
\(712\) 11.4811 + 19.8859i 0.430274 + 0.745257i
\(713\) −2.18999 −0.0820157
\(714\) −0.443514 −0.0165981
\(715\) −6.30536 10.9212i −0.235807 0.408430i
\(716\) −9.95222 + 17.2377i −0.371932 + 0.644205i
\(717\) 1.53865 0.0574619
\(718\) −0.349613 0.605548i −0.0130474 0.0225988i
\(719\) 0.582394 + 1.00874i 0.0217196 + 0.0376195i 0.876681 0.481072i \(-0.159753\pi\)
−0.854961 + 0.518692i \(0.826419\pi\)
\(720\) 4.85877 + 8.41564i 0.181076 + 0.313633i
\(721\) −4.67615 + 8.09934i −0.174149 + 0.301635i
\(722\) 5.98554 10.3673i 0.222759 0.385829i
\(723\) −0.0832744 0.144235i −0.00309701 0.00536418i
\(724\) 0.584916 + 1.01310i 0.0217382 + 0.0376517i
\(725\) 4.19723 + 7.26981i 0.155881 + 0.269994i
\(726\) 0.226892 0.00842074
\(727\) −13.7157 + 23.7564i −0.508689 + 0.881075i 0.491261 + 0.871013i \(0.336536\pi\)
−0.999949 + 0.0100623i \(0.996797\pi\)
\(728\) −11.8833 20.5824i −0.440423 0.762835i
\(729\) −26.5386 −0.982910
\(730\) −1.69112 −0.0625912
\(731\) −9.68070 16.7675i −0.358054 0.620167i
\(732\) −0.381856 −0.0141138
\(733\) 10.2010 17.6686i 0.376781 0.652604i −0.613811 0.789453i \(-0.710364\pi\)
0.990592 + 0.136849i \(0.0436975\pi\)
\(734\) 9.05512 0.334230
\(735\) −0.0313136 + 0.0542367i −0.00115502 + 0.00200055i
\(736\) 1.00455 1.73993i 0.0370281 0.0641346i
\(737\) 4.00519 6.93719i 0.147533 0.255535i
\(738\) 1.52179 + 2.63581i 0.0560177 + 0.0970256i
\(739\) 31.3170 1.15201 0.576006 0.817445i \(-0.304610\pi\)
0.576006 + 0.817445i \(0.304610\pi\)
\(740\) −6.26342 + 9.50966i −0.230248 + 0.349582i
\(741\) −4.15100 −0.152491
\(742\) −2.32006 4.01845i −0.0851719 0.147522i
\(743\) −23.2252 + 40.2272i −0.852049 + 1.47579i 0.0273061 + 0.999627i \(0.491307\pi\)
−0.879356 + 0.476166i \(0.842026\pi\)
\(744\) 0.274779 0.475930i 0.0100739 0.0174485i
\(745\) 0.244441 0.423383i 0.00895561 0.0155116i
\(746\) −8.35993 −0.306079
\(747\) 0.218495 0.378445i 0.00799432 0.0138466i
\(748\) −18.4312 −0.673913
\(749\) −18.8097 32.5794i −0.687292 1.19043i
\(750\) −0.0331097 −0.00120900
\(751\) −29.1714 −1.06448 −0.532239 0.846594i \(-0.678649\pi\)
−0.532239 + 0.846594i \(0.678649\pi\)
\(752\) 18.0782 + 31.3123i 0.659242 + 1.14184i
\(753\) 0.312499 0.541265i 0.0113881 0.0197248i
\(754\) −18.5966 −0.677249
\(755\) −1.98594 3.43975i −0.0722758 0.125185i
\(756\) 1.43803 + 2.49075i 0.0523008 + 0.0905876i
\(757\) −5.70362 9.87896i −0.207302 0.359057i 0.743562 0.668667i \(-0.233135\pi\)
−0.950864 + 0.309610i \(0.899801\pi\)
\(758\) −4.70085 + 8.14211i −0.170743 + 0.295735i
\(759\) 0.0481444 0.0833885i 0.00174753 0.00302681i
\(760\) −5.01663 8.68905i −0.181972 0.315185i
\(761\) 18.2391 + 31.5910i 0.661165 + 1.14517i 0.980310 + 0.197466i \(0.0632711\pi\)
−0.319145 + 0.947706i \(0.603396\pi\)
\(762\) −0.0108374 0.0187709i −0.000392597 0.000679999i
\(763\) 1.59515 0.0577484
\(764\) 8.84336 15.3172i 0.319942 0.554155i
\(765\) −7.23126 12.5249i −0.261447 0.452839i
\(766\) −1.07077 −0.0386883
\(767\) 72.8771 2.63144
\(768\) −0.310724 0.538189i −0.0112123 0.0194202i
\(769\) −30.2067 −1.08928 −0.544641 0.838669i \(-0.683334\pi\)
−0.544641 + 0.838669i \(0.683334\pi\)
\(770\) 1.00930 1.74817i 0.0363728 0.0629995i
\(771\) −0.876185 −0.0315550
\(772\) 16.0282 27.7617i 0.576868 0.999165i
\(773\) −20.7496 + 35.9394i −0.746311 + 1.29265i 0.203268 + 0.979123i \(0.434844\pi\)
−0.949580 + 0.313526i \(0.898490\pi\)
\(774\) 2.14292 3.71164i 0.0770256 0.133412i
\(775\) 2.14334 + 3.71237i 0.0769909 + 0.133352i
\(776\) 25.9767 0.932507
\(777\) −0.857950 + 1.30261i −0.0307788 + 0.0467310i
\(778\) −0.128522 −0.00460773
\(779\) 10.2994 + 17.8391i 0.369015 + 0.639153i
\(780\) −0.536426 + 0.929117i −0.0192071 + 0.0332677i
\(781\) −14.3680 + 24.8861i −0.514127 + 0.890494i
\(782\) −0.441814 + 0.765244i −0.0157992 + 0.0273651i
\(783\) 4.65474 0.166347
\(784\) −1.09910 + 1.90370i −0.0392536 + 0.0679893i
\(785\) 10.6408 0.379787
\(786\) 0.0474351 + 0.0821600i 0.00169195 + 0.00293055i
\(787\) −47.6784 −1.69955 −0.849777 0.527143i \(-0.823263\pi\)
−0.849777 + 0.527143i \(0.823263\pi\)
\(788\) 4.29952 0.153164
\(789\) 0.561234 + 0.972086i 0.0199805 + 0.0346072i
\(790\) −1.70768 + 2.95779i −0.0607565 + 0.105233i
\(791\) −9.85294 −0.350330
\(792\) −4.21940 7.30822i −0.149930 0.259686i
\(793\) 6.82413 + 11.8197i 0.242332 + 0.419731i
\(794\) −3.41196 5.90970i −0.121086 0.209727i
\(795\) −0.216621 + 0.375198i −0.00768275 + 0.0133069i
\(796\) 23.8955 41.3882i 0.846952 1.46696i
\(797\) −25.2032 43.6533i −0.892745 1.54628i −0.836571 0.547859i \(-0.815443\pi\)
−0.0561739 0.998421i \(-0.517890\pi\)
\(798\) −0.332227 0.575433i −0.0117607 0.0203701i
\(799\) −26.9055 46.6017i −0.951848 1.64865i
\(800\) −3.93259 −0.139038
\(801\) −24.7939 + 42.9443i −0.876049 + 1.51736i
\(802\) −3.04024 5.26585i −0.107355 0.185944i
\(803\) −9.62660 −0.339715
\(804\) −0.681479 −0.0240339
\(805\) 0.707748 + 1.22586i 0.0249448 + 0.0432057i
\(806\) −9.49647 −0.334499
\(807\) 0.847869 1.46855i 0.0298464 0.0516955i
\(808\) 6.23359 0.219297
\(809\) 17.5875 30.4624i 0.618344 1.07100i −0.371444 0.928455i \(-0.621137\pi\)
0.989788 0.142547i \(-0.0455293\pi\)
\(810\) 1.59611 2.76455i 0.0560817 0.0971363i
\(811\) −14.6305 + 25.3407i −0.513745 + 0.889832i 0.486128 + 0.873888i \(0.338409\pi\)
−0.999873 + 0.0159445i \(0.994924\pi\)
\(812\) 21.7700 + 37.7067i 0.763977 + 1.32325i
\(813\) −2.02621 −0.0710624
\(814\) 2.43763 3.70102i 0.0854388 0.129721i
\(815\) 22.1179 0.774755
\(816\) 0.726748 + 1.25876i 0.0254413 + 0.0440656i
\(817\) 14.5032 25.1203i 0.507403 0.878848i
\(818\) 0.0742817 0.128660i 0.00259720 0.00449848i
\(819\) 25.6623 44.4484i 0.896713 1.55315i
\(820\) 5.32390 0.185919
\(821\) 9.22305 15.9748i 0.321887 0.557524i −0.658991 0.752151i \(-0.729016\pi\)
0.980877 + 0.194627i \(0.0623496\pi\)
\(822\) 0.482832 0.0168407
\(823\) 9.85134 + 17.0630i 0.343396 + 0.594780i 0.985061 0.172205i \(-0.0550893\pi\)
−0.641665 + 0.766985i \(0.721756\pi\)
\(824\) −4.67576 −0.162888
\(825\) −0.188475 −0.00656186
\(826\) 5.83274 + 10.1026i 0.202947 + 0.351515i
\(827\) −18.8318 + 32.6177i −0.654847 + 1.13423i 0.327085 + 0.944995i \(0.393934\pi\)
−0.981932 + 0.189233i \(0.939400\pi\)
\(828\) 2.86095 0.0994248
\(829\) 2.91402 + 5.04724i 0.101208 + 0.175298i 0.912183 0.409784i \(-0.134396\pi\)
−0.810974 + 0.585082i \(0.801062\pi\)
\(830\) 0.0261304 + 0.0452591i 0.000906998 + 0.00157097i
\(831\) 0.891572 + 1.54425i 0.0309283 + 0.0535694i
\(832\) −15.7597 + 27.2966i −0.546369 + 0.946339i
\(833\) 1.63578 2.83325i 0.0566764 0.0981664i
\(834\) 0.191265 + 0.331281i 0.00662298 + 0.0114713i
\(835\) −6.29101 10.8964i −0.217710 0.377084i
\(836\) −13.8065 23.9135i −0.477506 0.827065i
\(837\) 2.37697 0.0821601
\(838\) 3.71205 6.42946i 0.128231 0.222102i
\(839\) 20.4051 + 35.3427i 0.704462 + 1.22016i 0.966885 + 0.255211i \(0.0821450\pi\)
−0.262423 + 0.964953i \(0.584522\pi\)
\(840\) −0.355205 −0.0122557
\(841\) 41.4669 1.42989
\(842\) −2.06270 3.57271i −0.0710855 0.123124i
\(843\) 0.550773 0.0189696
\(844\) −10.9170 + 18.9088i −0.375779 + 0.650868i
\(845\) 25.3458 0.871920
\(846\) 5.95579 10.3157i 0.204764 0.354662i
\(847\) −9.49337 + 16.4430i −0.326196 + 0.564988i
\(848\) −7.60335 + 13.1694i −0.261100 + 0.452239i
\(849\) 0.382736 + 0.662918i 0.0131355 + 0.0227513i
\(850\) 1.72961 0.0593251
\(851\) 1.39288 + 2.77794i 0.0477474 + 0.0952264i
\(852\) 2.44470 0.0837541
\(853\) 7.13107 + 12.3514i 0.244163 + 0.422903i 0.961896 0.273415i \(-0.0881534\pi\)
−0.717733 + 0.696319i \(0.754820\pi\)
\(854\) −1.09234 + 1.89199i −0.0373792 + 0.0647426i
\(855\) 10.8336 18.7643i 0.370500 0.641725i
\(856\) 9.40406 16.2883i 0.321424 0.556723i
\(857\) 25.9914 0.887851 0.443925 0.896064i \(-0.353586\pi\)
0.443925 + 0.896064i \(0.353586\pi\)
\(858\) 0.208769 0.361598i 0.00712725 0.0123448i
\(859\) −29.8786 −1.01944 −0.509722 0.860339i \(-0.670252\pi\)
−0.509722 + 0.860339i \(0.670252\pi\)
\(860\) −3.74845 6.49250i −0.127821 0.221392i
\(861\) 0.729256 0.0248530
\(862\) 0.257747 0.00877889
\(863\) 20.1684 + 34.9327i 0.686540 + 1.18912i 0.972950 + 0.231015i \(0.0742047\pi\)
−0.286410 + 0.958107i \(0.592462\pi\)
\(864\) −1.09032 + 1.88848i −0.0370933 + 0.0642475i
\(865\) 4.03977 0.137356
\(866\) 5.09371 + 8.82256i 0.173091 + 0.299803i
\(867\) −0.294943 0.510856i −0.0100168 0.0173496i
\(868\) 11.1170 + 19.2552i 0.377334 + 0.653562i
\(869\) −9.72085 + 16.8370i −0.329757 + 0.571157i
\(870\) −0.138969 + 0.240701i −0.00471149 + 0.00816054i
\(871\) 12.1787 + 21.0941i 0.412658 + 0.714745i
\(872\) 0.398754 + 0.690662i 0.0135035 + 0.0233888i
\(873\) 28.0487 + 48.5818i 0.949304 + 1.64424i
\(874\) −1.32381 −0.0447786
\(875\) 1.38534 2.39948i 0.0468331 0.0811173i
\(876\) 0.409489 + 0.709256i 0.0138354 + 0.0239636i
\(877\) −14.2522 −0.481262 −0.240631 0.970617i \(-0.577354\pi\)
−0.240631 + 0.970617i \(0.577354\pi\)
\(878\) −8.18806 −0.276334
\(879\) 0.346611 + 0.600347i 0.0116909 + 0.0202492i
\(880\) −6.61544 −0.223006
\(881\) 4.96811 8.60501i 0.167380 0.289910i −0.770118 0.637901i \(-0.779803\pi\)
0.937498 + 0.347991i \(0.113136\pi\)
\(882\) 0.724191 0.0243848
\(883\) −21.1285 + 36.5957i −0.711031 + 1.23154i 0.253439 + 0.967351i \(0.418438\pi\)
−0.964470 + 0.264191i \(0.914895\pi\)
\(884\) 28.0222 48.5358i 0.942488 1.63244i
\(885\) 0.544596 0.943269i 0.0183064 0.0317076i
\(886\) 0.450126 + 0.779641i 0.0151223 + 0.0261926i
\(887\) −28.2372 −0.948113 −0.474056 0.880494i \(-0.657211\pi\)
−0.474056 + 0.880494i \(0.657211\pi\)
\(888\) −0.778469 0.0458459i −0.0261237 0.00153849i
\(889\) 1.81379 0.0608325
\(890\) −2.96516 5.13581i −0.0993924 0.172153i
\(891\) 9.08577 15.7370i 0.304385 0.527210i
\(892\) −2.33928 + 4.05175i −0.0783248 + 0.135663i
\(893\) 40.3087 69.8167i 1.34888 2.33633i
\(894\) 0.0161867 0.000541365
\(895\) 5.31632 9.20813i 0.177705 0.307794i
\(896\) −26.8373 −0.896571
\(897\) 0.146394 + 0.253561i 0.00488794 + 0.00846617i
\(898\) −13.4414 −0.448546
\(899\) 35.9843 1.20014
\(900\) −2.80000 4.84975i −0.0933334 0.161658i
\(901\) 11.3160 19.5999i 0.376990 0.652966i
\(902\) −2.07198 −0.0689894
\(903\) −0.513454 0.889329i −0.0170867 0.0295950i
\(904\) −2.46303 4.26609i −0.0819190 0.141888i
\(905\) −0.312453 0.541185i −0.0103863 0.0179896i
\(906\) 0.0657539 0.113889i 0.00218453 0.00378371i
\(907\) 10.5036 18.1928i 0.348767 0.604081i −0.637264 0.770645i \(-0.719934\pi\)
0.986031 + 0.166564i \(0.0532673\pi\)
\(908\) 2.38985 + 4.13934i 0.0793100 + 0.137369i
\(909\) 6.73081 + 11.6581i 0.223247 + 0.386675i
\(910\) 3.06901 + 5.31569i 0.101737 + 0.176213i
\(911\) 10.1234 0.335403 0.167701 0.985838i \(-0.446366\pi\)
0.167701 + 0.985838i \(0.446366\pi\)
\(912\) −1.08878 + 1.88583i −0.0360532 + 0.0624460i
\(913\) 0.148745 + 0.257635i 0.00492276 + 0.00852646i
\(914\) 6.95413 0.230022
\(915\) 0.203981 0.00674342
\(916\) −1.14861 1.98945i −0.0379512 0.0657334i
\(917\) −7.93891 −0.262166
\(918\) 0.479536 0.830580i 0.0158270 0.0274132i
\(919\) 32.6466 1.07691 0.538456 0.842654i \(-0.319008\pi\)
0.538456 + 0.842654i \(0.319008\pi\)
\(920\) −0.353844 + 0.612875i −0.0116659 + 0.0202059i
\(921\) −0.466059 + 0.807238i −0.0153572 + 0.0265994i
\(922\) −3.39332 + 5.87740i −0.111753 + 0.193562i
\(923\) −43.6891 75.6718i −1.43804 2.49077i
\(924\) −0.977574 −0.0321598
\(925\) 3.34582 5.07991i 0.110010 0.167026i
\(926\) −0.0781683 −0.00256877
\(927\) −5.04872 8.74464i −0.165822 0.287212i
\(928\) −16.5060 + 28.5892i −0.541836 + 0.938487i
\(929\) 20.7398 35.9224i 0.680451 1.17858i −0.294392 0.955685i \(-0.595117\pi\)
0.974843 0.222891i \(-0.0715494\pi\)
\(930\) −0.0709653 + 0.122916i −0.00232704 + 0.00403056i
\(931\) 4.90131 0.160634
\(932\) 14.6291 25.3383i 0.479191 0.829984i
\(933\) 0.551558 0.0180572
\(934\) −2.13989 3.70640i −0.0700194 0.121277i
\(935\) 9.84568 0.321988
\(936\) 25.6601 0.838726
\(937\) −22.6417 39.2166i −0.739673 1.28115i −0.952643 0.304092i \(-0.901647\pi\)
0.212970 0.977059i \(-0.431686\pi\)
\(938\) −1.94945 + 3.37654i −0.0636517 + 0.110248i
\(939\) −1.30890 −0.0427143
\(940\) −10.4180 18.0446i −0.339799 0.588549i
\(941\) 1.90807 + 3.30488i 0.0622014 + 0.107736i 0.895449 0.445164i \(-0.146855\pi\)
−0.833248 + 0.552900i \(0.813521\pi\)
\(942\) 0.176157 + 0.305113i 0.00573952 + 0.00994113i
\(943\) 0.726461 1.25827i 0.0236568 0.0409748i
\(944\) 19.1152 33.1086i 0.622148 1.07759i
\(945\) −0.768175 1.33052i −0.0249887 0.0432818i
\(946\) 1.45884 + 2.52678i 0.0474309 + 0.0821528i
\(947\) 2.88363 + 4.99460i 0.0937055 + 0.162303i 0.909068 0.416649i \(-0.136795\pi\)
−0.815362 + 0.578951i \(0.803462\pi\)
\(948\) 1.65399 0.0537192
\(949\) 14.6359 25.3502i 0.475102 0.822901i
\(950\) 1.29561 + 2.24407i 0.0420352 + 0.0728071i
\(951\) −0.452350 −0.0146685
\(952\) 18.5554 0.601385
\(953\) 17.0826 + 29.5879i 0.553359 + 0.958446i 0.998029 + 0.0627517i \(0.0199876\pi\)
−0.444670 + 0.895694i \(0.646679\pi\)
\(954\) 5.00981 0.162198
\(955\) −4.72399 + 8.18218i −0.152865 + 0.264769i
\(956\) −31.1226 −1.00658
\(957\) −0.791073 + 1.37018i −0.0255717 + 0.0442916i
\(958\) −3.19059 + 5.52626i −0.103083 + 0.178545i
\(959\) −20.2021 + 34.9911i −0.652361 + 1.12992i
\(960\) 0.235538 + 0.407964i 0.00760197 + 0.0131670i
\(961\) −12.6244 −0.407240
\(962\) 6.03997 + 12.0460i 0.194737 + 0.388379i
\(963\) 40.6167 1.30886
\(964\) 1.68441 + 2.91748i 0.0542512 + 0.0939659i
\(965\) −8.56203 + 14.8299i −0.275621 + 0.477390i
\(966\) −0.0234333 + 0.0405877i −0.000753955 + 0.00130589i
\(967\) −16.2464 + 28.1396i −0.522449 + 0.904908i 0.477210 + 0.878789i \(0.341648\pi\)
−0.999659 + 0.0261184i \(0.991685\pi\)
\(968\) −9.49256 −0.305102
\(969\) 1.62042 2.80666i 0.0520555 0.0901628i
\(970\) −6.70882 −0.215407
\(971\) 16.8070 + 29.1106i 0.539362 + 0.934203i 0.998938 + 0.0460644i \(0.0146680\pi\)
−0.459576 + 0.888138i \(0.651999\pi\)
\(972\) −4.66004 −0.149471
\(973\) −32.0109 −1.02622
\(974\) −3.40296 5.89409i −0.109038 0.188859i
\(975\) 0.286550 0.496320i 0.00917696 0.0158950i
\(976\) 7.15971 0.229177
\(977\) 25.2908 + 43.8050i 0.809126 + 1.40145i 0.913470 + 0.406906i \(0.133392\pi\)
−0.104344 + 0.994541i \(0.533274\pi\)
\(978\) 0.366158 + 0.634205i 0.0117085 + 0.0202796i
\(979\) −16.8790 29.2353i −0.539455 0.934364i
\(980\) 0.633387 1.09706i 0.0202328 0.0350443i
\(981\) −0.861122 + 1.49151i −0.0274935 + 0.0476202i
\(982\) 5.71069 + 9.89120i 0.182235 + 0.315641i
\(983\) −15.5754 26.9773i −0.496777 0.860442i 0.503217 0.864160i \(-0.332150\pi\)
−0.999993 + 0.00371817i \(0.998816\pi\)
\(984\) 0.182299 + 0.315750i 0.00581147 + 0.0100658i
\(985\) −2.29674 −0.0731802
\(986\) 7.25956 12.5739i 0.231191 0.400435i
\(987\) −1.42704 2.47171i −0.0454232 0.0786753i
\(988\) 83.9632 2.67123
\(989\) −2.04595 −0.0650573
\(990\) 1.08972 + 1.88745i 0.0346335 + 0.0599870i
\(991\) −16.6891 −0.530146 −0.265073 0.964228i \(-0.585396\pi\)
−0.265073 + 0.964228i \(0.585396\pi\)
\(992\) −8.42887 + 14.5992i −0.267617 + 0.463526i
\(993\) −2.26571 −0.0719000
\(994\) 6.99334 12.1128i 0.221815 0.384196i
\(995\) −12.7646 + 22.1089i −0.404664 + 0.700899i
\(996\) 0.0126545 0.0219182i 0.000400972 0.000694503i
\(997\) −5.87262 10.1717i −0.185988 0.322140i 0.757921 0.652346i \(-0.226215\pi\)
−0.943909 + 0.330206i \(0.892882\pi\)
\(998\) −3.25732 −0.103109
\(999\) −1.51181 3.01512i −0.0478315 0.0953940i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 185.2.e.a.26.4 14
5.2 odd 4 925.2.o.b.174.7 28
5.3 odd 4 925.2.o.b.174.8 28
5.4 even 2 925.2.e.c.26.4 14
37.10 even 3 inner 185.2.e.a.121.4 yes 14
37.11 even 6 6845.2.a.k.1.4 7
37.26 even 3 6845.2.a.l.1.4 7
185.47 odd 12 925.2.o.b.824.8 28
185.84 even 6 925.2.e.c.676.4 14
185.158 odd 12 925.2.o.b.824.7 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.e.a.26.4 14 1.1 even 1 trivial
185.2.e.a.121.4 yes 14 37.10 even 3 inner
925.2.e.c.26.4 14 5.4 even 2
925.2.e.c.676.4 14 185.84 even 6
925.2.o.b.174.7 28 5.2 odd 4
925.2.o.b.174.8 28 5.3 odd 4
925.2.o.b.824.7 28 185.158 odd 12
925.2.o.b.824.8 28 185.47 odd 12
6845.2.a.k.1.4 7 37.11 even 6
6845.2.a.l.1.4 7 37.26 even 3