Properties

Label 185.2.e.a.121.4
Level $185$
Weight $2$
Character 185.121
Analytic conductor $1.477$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [185,2,Mod(26,185)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("185.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(185, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47723243739\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 11 x^{12} - 2 x^{11} + 86 x^{10} - 18 x^{9} + 332 x^{8} - 110 x^{7} + 935 x^{6} - 290 x^{5} + \cdots + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.4
Root \(0.178876 + 0.309823i\) of defining polynomial
Character \(\chi\) \(=\) 185.121
Dual form 185.2.e.a.26.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.178876 - 0.309823i) q^{2} +(-0.0462746 - 0.0801499i) q^{3} +(0.936006 + 1.62121i) q^{4} +(-0.500000 - 0.866025i) q^{5} -0.0331097 q^{6} +(1.38534 + 2.39948i) q^{7} +1.38522 q^{8} +(1.49572 - 2.59066i) q^{9} -0.357753 q^{10} -2.03649 q^{11} +(0.0866266 - 0.150042i) q^{12} +(3.09620 + 5.36277i) q^{13} +0.991221 q^{14} +(-0.0462746 + 0.0801499i) q^{15} +(-1.62423 + 2.81325i) q^{16} +(2.41732 - 4.18692i) q^{17} +(-0.535097 - 0.926816i) q^{18} +(-3.62153 - 6.27267i) q^{19} +(0.936006 - 1.62121i) q^{20} +(0.128212 - 0.222070i) q^{21} +(-0.364280 + 0.630951i) q^{22} +0.510883 q^{23} +(-0.0641006 - 0.111026i) q^{24} +(-0.500000 + 0.866025i) q^{25} +2.21535 q^{26} -0.554502 q^{27} +(-2.59338 + 4.49186i) q^{28} -8.39445 q^{29} +(0.0165549 + 0.0286739i) q^{30} -4.28667 q^{31} +(1.96630 + 3.40573i) q^{32} +(0.0942375 + 0.163224i) q^{33} +(-0.864804 - 1.49788i) q^{34} +(1.38534 - 2.39948i) q^{35} +5.60000 q^{36} +(2.72642 - 5.43752i) q^{37} -2.59122 q^{38} +(0.286550 - 0.496320i) q^{39} +(-0.692612 - 1.19964i) q^{40} +(1.42197 + 2.46293i) q^{41} +(-0.0458683 - 0.0794462i) q^{42} -4.00472 q^{43} +(-1.90616 - 3.30157i) q^{44} -2.99143 q^{45} +(0.0913850 - 0.158283i) q^{46} -11.1303 q^{47} +0.300642 q^{48} +(-0.338346 + 0.586032i) q^{49} +(0.178876 + 0.309823i) q^{50} -0.447442 q^{51} +(-5.79612 + 10.0392i) q^{52} +(-2.34060 + 4.05405i) q^{53} +(-0.0991874 + 0.171798i) q^{54} +(1.01824 + 1.76365i) q^{55} +(1.91901 + 3.32382i) q^{56} +(-0.335169 + 0.580530i) q^{57} +(-1.50157 + 2.60080i) q^{58} +(5.88440 - 10.1921i) q^{59} -0.173253 q^{60} +(-1.10202 - 1.90875i) q^{61} +(-0.766785 + 1.32811i) q^{62} +8.28832 q^{63} -5.09002 q^{64} +(3.09620 - 5.36277i) q^{65} +0.0674275 q^{66} +(-1.96671 - 3.40645i) q^{67} +9.05051 q^{68} +(-0.0236409 - 0.0409472i) q^{69} +(-0.495610 - 0.858422i) q^{70} +(7.05529 + 12.2201i) q^{71} +(2.07190 - 3.58864i) q^{72} +4.72706 q^{73} +(-1.19698 - 1.81735i) q^{74} +0.0925491 q^{75} +(6.77955 - 11.7425i) q^{76} +(-2.82123 - 4.88651i) q^{77} +(-0.102514 - 0.177560i) q^{78} +(4.77335 + 8.26768i) q^{79} +3.24846 q^{80} +(-4.46149 - 7.72753i) q^{81} +1.01743 q^{82} +(-0.0730402 + 0.126509i) q^{83} +0.480030 q^{84} -4.83464 q^{85} +(-0.716351 + 1.24076i) q^{86} +(0.388450 + 0.672815i) q^{87} -2.82099 q^{88} +(8.28829 - 14.3557i) q^{89} +(-0.535097 + 0.926816i) q^{90} +(-8.57859 + 14.8585i) q^{91} +(0.478190 + 0.828249i) q^{92} +(0.198364 + 0.343576i) q^{93} +(-1.99095 + 3.44842i) q^{94} +(-3.62153 + 6.27267i) q^{95} +(0.181979 - 0.315197i) q^{96} +18.7527 q^{97} +(0.121044 + 0.209655i) q^{98} +(-3.04601 + 5.27584i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{3} - 8 q^{4} - 7 q^{5} - 4 q^{6} + 6 q^{8} - 13 q^{9} - 2 q^{11} + 6 q^{12} + 4 q^{13} + 20 q^{14} - 2 q^{15} + 2 q^{16} - 3 q^{17} - 6 q^{18} - 14 q^{19} - 8 q^{20} + q^{21} + 7 q^{22} + 15 q^{24}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/185\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(112\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.178876 0.309823i 0.126485 0.219078i −0.795828 0.605523i \(-0.792964\pi\)
0.922312 + 0.386445i \(0.126297\pi\)
\(3\) −0.0462746 0.0801499i −0.0267166 0.0462746i 0.852358 0.522959i \(-0.175172\pi\)
−0.879075 + 0.476684i \(0.841839\pi\)
\(4\) 0.936006 + 1.62121i 0.468003 + 0.810605i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) −0.0331097 −0.0135170
\(7\) 1.38534 + 2.39948i 0.523610 + 0.906919i 0.999622 + 0.0274806i \(0.00874846\pi\)
−0.476012 + 0.879439i \(0.657918\pi\)
\(8\) 1.38522 0.489751
\(9\) 1.49572 2.59066i 0.498572 0.863553i
\(10\) −0.357753 −0.113131
\(11\) −2.03649 −0.614024 −0.307012 0.951706i \(-0.599329\pi\)
−0.307012 + 0.951706i \(0.599329\pi\)
\(12\) 0.0866266 0.150042i 0.0250069 0.0433133i
\(13\) 3.09620 + 5.36277i 0.858731 + 1.48737i 0.873140 + 0.487469i \(0.162080\pi\)
−0.0144096 + 0.999896i \(0.504587\pi\)
\(14\) 0.991221 0.264915
\(15\) −0.0462746 + 0.0801499i −0.0119480 + 0.0206946i
\(16\) −1.62423 + 2.81325i −0.406057 + 0.703312i
\(17\) 2.41732 4.18692i 0.586286 1.01548i −0.408427 0.912791i \(-0.633923\pi\)
0.994714 0.102687i \(-0.0327440\pi\)
\(18\) −0.535097 0.926816i −0.126124 0.218453i
\(19\) −3.62153 6.27267i −0.830835 1.43905i −0.897377 0.441265i \(-0.854530\pi\)
0.0665413 0.997784i \(-0.478804\pi\)
\(20\) 0.936006 1.62121i 0.209297 0.362514i
\(21\) 0.128212 0.222070i 0.0279782 0.0484597i
\(22\) −0.364280 + 0.630951i −0.0776647 + 0.134519i
\(23\) 0.510883 0.106526 0.0532632 0.998581i \(-0.483038\pi\)
0.0532632 + 0.998581i \(0.483038\pi\)
\(24\) −0.0641006 0.111026i −0.0130845 0.0226630i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 2.21535 0.434465
\(27\) −0.554502 −0.106714
\(28\) −2.59338 + 4.49186i −0.490102 + 0.848882i
\(29\) −8.39445 −1.55881 −0.779405 0.626520i \(-0.784479\pi\)
−0.779405 + 0.626520i \(0.784479\pi\)
\(30\) 0.0165549 + 0.0286739i 0.00302249 + 0.00523511i
\(31\) −4.28667 −0.769909 −0.384955 0.922935i \(-0.625783\pi\)
−0.384955 + 0.922935i \(0.625783\pi\)
\(32\) 1.96630 + 3.40573i 0.347595 + 0.602053i
\(33\) 0.0942375 + 0.163224i 0.0164046 + 0.0284137i
\(34\) −0.864804 1.49788i −0.148313 0.256885i
\(35\) 1.38534 2.39948i 0.234166 0.405587i
\(36\) 5.60000 0.933334
\(37\) 2.72642 5.43752i 0.448221 0.893923i
\(38\) −2.59122 −0.420352
\(39\) 0.286550 0.496320i 0.0458848 0.0794748i
\(40\) −0.692612 1.19964i −0.109512 0.189680i
\(41\) 1.42197 + 2.46293i 0.222075 + 0.384645i 0.955438 0.295193i \(-0.0953838\pi\)
−0.733363 + 0.679837i \(0.762050\pi\)
\(42\) −0.0458683 0.0794462i −0.00707763 0.0122588i
\(43\) −4.00472 −0.610715 −0.305357 0.952238i \(-0.598776\pi\)
−0.305357 + 0.952238i \(0.598776\pi\)
\(44\) −1.90616 3.30157i −0.287365 0.497731i
\(45\) −2.99143 −0.445937
\(46\) 0.0913850 0.158283i 0.0134740 0.0233376i
\(47\) −11.1303 −1.62352 −0.811760 0.583991i \(-0.801490\pi\)
−0.811760 + 0.583991i \(0.801490\pi\)
\(48\) 0.300642 0.0433939
\(49\) −0.338346 + 0.586032i −0.0483351 + 0.0837188i
\(50\) 0.178876 + 0.309823i 0.0252970 + 0.0438156i
\(51\) −0.447442 −0.0626544
\(52\) −5.79612 + 10.0392i −0.803777 + 1.39218i
\(53\) −2.34060 + 4.05405i −0.321507 + 0.556866i −0.980799 0.195021i \(-0.937523\pi\)
0.659292 + 0.751887i \(0.270856\pi\)
\(54\) −0.0991874 + 0.171798i −0.0134977 + 0.0233787i
\(55\) 1.01824 + 1.76365i 0.137300 + 0.237810i
\(56\) 1.91901 + 3.32382i 0.256438 + 0.444164i
\(57\) −0.335169 + 0.580530i −0.0443942 + 0.0768931i
\(58\) −1.50157 + 2.60080i −0.197166 + 0.341501i
\(59\) 5.88440 10.1921i 0.766084 1.32690i −0.173588 0.984818i \(-0.555536\pi\)
0.939672 0.342078i \(-0.111131\pi\)
\(60\) −0.173253 −0.0223669
\(61\) −1.10202 1.90875i −0.141099 0.244390i 0.786812 0.617193i \(-0.211730\pi\)
−0.927911 + 0.372803i \(0.878397\pi\)
\(62\) −0.766785 + 1.32811i −0.0973818 + 0.168670i
\(63\) 8.28832 1.04423
\(64\) −5.09002 −0.636252
\(65\) 3.09620 5.36277i 0.384036 0.665170i
\(66\) 0.0674275 0.00829975
\(67\) −1.96671 3.40645i −0.240272 0.416164i 0.720519 0.693435i \(-0.243903\pi\)
−0.960792 + 0.277271i \(0.910570\pi\)
\(68\) 9.05051 1.09754
\(69\) −0.0236409 0.0409472i −0.00284603 0.00492947i
\(70\) −0.495610 0.858422i −0.0592368 0.102601i
\(71\) 7.05529 + 12.2201i 0.837308 + 1.45026i 0.892137 + 0.451765i \(0.149205\pi\)
−0.0548288 + 0.998496i \(0.517461\pi\)
\(72\) 2.07190 3.58864i 0.244176 0.422926i
\(73\) 4.72706 0.553261 0.276630 0.960976i \(-0.410782\pi\)
0.276630 + 0.960976i \(0.410782\pi\)
\(74\) −1.19698 1.81735i −0.139146 0.211263i
\(75\) 0.0925491 0.0106867
\(76\) 6.77955 11.7425i 0.777667 1.34696i
\(77\) −2.82123 4.88651i −0.321509 0.556870i
\(78\) −0.102514 0.177560i −0.0116075 0.0201047i
\(79\) 4.77335 + 8.26768i 0.537043 + 0.930186i 0.999061 + 0.0433158i \(0.0137922\pi\)
−0.462018 + 0.886870i \(0.652875\pi\)
\(80\) 3.24846 0.363189
\(81\) −4.46149 7.72753i −0.495721 0.858615i
\(82\) 1.01743 0.112356
\(83\) −0.0730402 + 0.126509i −0.00801721 + 0.0138862i −0.870006 0.493041i \(-0.835885\pi\)
0.861989 + 0.506927i \(0.169219\pi\)
\(84\) 0.480030 0.0523755
\(85\) −4.83464 −0.524391
\(86\) −0.716351 + 1.24076i −0.0772461 + 0.133794i
\(87\) 0.388450 + 0.672815i 0.0416462 + 0.0721333i
\(88\) −2.82099 −0.300719
\(89\) 8.28829 14.3557i 0.878557 1.52171i 0.0256329 0.999671i \(-0.491840\pi\)
0.852924 0.522034i \(-0.174827\pi\)
\(90\) −0.535097 + 0.926816i −0.0564042 + 0.0976950i
\(91\) −8.57859 + 14.8585i −0.899280 + 1.55760i
\(92\) 0.478190 + 0.828249i 0.0498547 + 0.0863509i
\(93\) 0.198364 + 0.343576i 0.0205694 + 0.0356272i
\(94\) −1.99095 + 3.44842i −0.205351 + 0.355678i
\(95\) −3.62153 + 6.27267i −0.371561 + 0.643562i
\(96\) 0.181979 0.315197i 0.0185732 0.0321697i
\(97\) 18.7527 1.90405 0.952023 0.306028i \(-0.0990001\pi\)
0.952023 + 0.306028i \(0.0990001\pi\)
\(98\) 0.121044 + 0.209655i 0.0122273 + 0.0211783i
\(99\) −3.04601 + 5.27584i −0.306135 + 0.530242i
\(100\) −1.87201 −0.187201
\(101\) 4.50006 0.447772 0.223886 0.974615i \(-0.428126\pi\)
0.223886 + 0.974615i \(0.428126\pi\)
\(102\) −0.0800368 + 0.138628i −0.00792483 + 0.0137262i
\(103\) −3.37545 −0.332593 −0.166297 0.986076i \(-0.553181\pi\)
−0.166297 + 0.986076i \(0.553181\pi\)
\(104\) 4.28893 + 7.42864i 0.420564 + 0.728438i
\(105\) −0.256424 −0.0250245
\(106\) 0.837358 + 1.45035i 0.0813314 + 0.140870i
\(107\) 6.78884 + 11.7586i 0.656302 + 1.13675i 0.981566 + 0.191125i \(0.0612134\pi\)
−0.325264 + 0.945623i \(0.605453\pi\)
\(108\) −0.519017 0.898965i −0.0499425 0.0865029i
\(109\) 0.287863 0.498593i 0.0275722 0.0477565i −0.851910 0.523688i \(-0.824556\pi\)
0.879482 + 0.475932i \(0.157889\pi\)
\(110\) 0.728559 0.0694654
\(111\) −0.561981 + 0.0330964i −0.0533408 + 0.00314137i
\(112\) −9.00045 −0.850463
\(113\) −1.77807 + 3.07971i −0.167267 + 0.289715i −0.937458 0.348099i \(-0.886827\pi\)
0.770191 + 0.637813i \(0.220161\pi\)
\(114\) 0.119908 + 0.207686i 0.0112304 + 0.0194516i
\(115\) −0.255442 0.442438i −0.0238200 0.0412575i
\(116\) −7.85726 13.6092i −0.729528 1.26358i
\(117\) 18.5241 1.71256
\(118\) −2.10516 3.64625i −0.193796 0.335664i
\(119\) 13.3953 1.22794
\(120\) −0.0641006 + 0.111026i −0.00585156 + 0.0101352i
\(121\) −6.85272 −0.622975
\(122\) −0.788500 −0.0713874
\(123\) 0.131602 0.227942i 0.0118662 0.0205528i
\(124\) −4.01235 6.94960i −0.360320 0.624093i
\(125\) 1.00000 0.0894427
\(126\) 1.48259 2.56791i 0.132079 0.228768i
\(127\) 0.327318 0.566931i 0.0290447 0.0503070i −0.851138 0.524943i \(-0.824087\pi\)
0.880182 + 0.474636i \(0.157420\pi\)
\(128\) −4.84308 + 8.38846i −0.428072 + 0.741442i
\(129\) 0.185317 + 0.320978i 0.0163162 + 0.0282606i
\(130\) −1.10767 1.91855i −0.0971494 0.168268i
\(131\) −1.43266 + 2.48144i −0.125172 + 0.216805i −0.921800 0.387665i \(-0.873282\pi\)
0.796628 + 0.604470i \(0.206615\pi\)
\(132\) −0.176414 + 0.305558i −0.0153549 + 0.0265954i
\(133\) 10.0341 17.3796i 0.870068 1.50700i
\(134\) −1.40720 −0.121563
\(135\) 0.277251 + 0.480213i 0.0238620 + 0.0413301i
\(136\) 3.34853 5.79983i 0.287134 0.497331i
\(137\) −14.5828 −1.24589 −0.622945 0.782265i \(-0.714064\pi\)
−0.622945 + 0.782265i \(0.714064\pi\)
\(138\) −0.0169152 −0.00143992
\(139\) −5.77671 + 10.0056i −0.489974 + 0.848661i −0.999933 0.0115381i \(-0.996327\pi\)
0.509959 + 0.860199i \(0.329661\pi\)
\(140\) 5.18676 0.438361
\(141\) 0.515050 + 0.892092i 0.0433750 + 0.0751277i
\(142\) 5.04810 0.423627
\(143\) −6.30536 10.9212i −0.527281 0.913278i
\(144\) 4.85877 + 8.41564i 0.404898 + 0.701304i
\(145\) 4.19723 + 7.26981i 0.348561 + 0.603725i
\(146\) 0.845561 1.46455i 0.0699791 0.121207i
\(147\) 0.0626272 0.00516540
\(148\) 11.3673 0.669449i 0.934387 0.0550283i
\(149\) −0.488881 −0.0400507 −0.0200253 0.999799i \(-0.506375\pi\)
−0.0200253 + 0.999799i \(0.506375\pi\)
\(150\) 0.0165549 0.0286739i 0.00135170 0.00234121i
\(151\) −1.98594 3.43975i −0.161614 0.279923i 0.773834 0.633388i \(-0.218336\pi\)
−0.935448 + 0.353466i \(0.885003\pi\)
\(152\) −5.01663 8.68905i −0.406902 0.704775i
\(153\) −7.23126 12.5249i −0.584613 1.01258i
\(154\) −2.01861 −0.162664
\(155\) 2.14334 + 3.71237i 0.172157 + 0.298185i
\(156\) 1.07285 0.0858969
\(157\) −5.32041 + 9.21522i −0.424615 + 0.735455i −0.996384 0.0849597i \(-0.972924\pi\)
0.571769 + 0.820414i \(0.306257\pi\)
\(158\) 3.41536 0.271711
\(159\) 0.433242 0.0343583
\(160\) 1.96630 3.40573i 0.155449 0.269246i
\(161\) 0.707748 + 1.22586i 0.0557783 + 0.0966109i
\(162\) −3.19222 −0.250805
\(163\) −11.0589 + 19.1546i −0.866203 + 1.50031i −0.000355092 1.00000i \(0.500113\pi\)
−0.865848 + 0.500307i \(0.833220\pi\)
\(164\) −2.66195 + 4.61063i −0.207863 + 0.360030i
\(165\) 0.0942375 0.163224i 0.00733638 0.0127070i
\(166\) 0.0261304 + 0.0452591i 0.00202811 + 0.00351279i
\(167\) −6.29101 10.8964i −0.486813 0.843185i 0.513072 0.858346i \(-0.328507\pi\)
−0.999885 + 0.0151604i \(0.995174\pi\)
\(168\) 0.177603 0.307617i 0.0137023 0.0237332i
\(169\) −12.6729 + 21.9501i −0.974837 + 1.68847i
\(170\) −0.864804 + 1.49788i −0.0663274 + 0.114882i
\(171\) −21.6671 −1.65693
\(172\) −3.74845 6.49250i −0.285816 0.495049i
\(173\) −2.01989 + 3.49855i −0.153569 + 0.265990i −0.932537 0.361074i \(-0.882410\pi\)
0.778968 + 0.627064i \(0.215743\pi\)
\(174\) 0.277938 0.0210704
\(175\) −2.77068 −0.209444
\(176\) 3.30772 5.72914i 0.249329 0.431850i
\(177\) −1.08919 −0.0818687
\(178\) −2.96516 5.13581i −0.222248 0.384945i
\(179\) −10.6326 −0.794721 −0.397360 0.917663i \(-0.630074\pi\)
−0.397360 + 0.917663i \(0.630074\pi\)
\(180\) −2.80000 4.84975i −0.208700 0.361479i
\(181\) −0.312453 0.541185i −0.0232245 0.0402259i 0.854180 0.519978i \(-0.174060\pi\)
−0.877404 + 0.479752i \(0.840727\pi\)
\(182\) 3.06901 + 5.31569i 0.227490 + 0.394025i
\(183\) −0.101991 + 0.176653i −0.00753937 + 0.0130586i
\(184\) 0.707687 0.0521714
\(185\) −6.07224 + 0.357609i −0.446440 + 0.0262919i
\(186\) 0.141931 0.0104069
\(187\) −4.92284 + 8.52661i −0.359994 + 0.623528i
\(188\) −10.4180 18.0446i −0.759813 1.31603i
\(189\) −0.768175 1.33052i −0.0558765 0.0967810i
\(190\) 1.29561 + 2.24407i 0.0939936 + 0.162802i
\(191\) 9.44797 0.683631 0.341816 0.939767i \(-0.388958\pi\)
0.341816 + 0.939767i \(0.388958\pi\)
\(192\) 0.235538 + 0.407964i 0.0169985 + 0.0294423i
\(193\) 17.1241 1.23262 0.616308 0.787505i \(-0.288628\pi\)
0.616308 + 0.787505i \(0.288628\pi\)
\(194\) 3.35441 5.81001i 0.240833 0.417135i
\(195\) −0.573101 −0.0410406
\(196\) −1.26677 −0.0904839
\(197\) 1.14837 1.98903i 0.0818179 0.141713i −0.822213 0.569180i \(-0.807261\pi\)
0.904031 + 0.427467i \(0.140594\pi\)
\(198\) 1.08972 + 1.88745i 0.0774429 + 0.134135i
\(199\) 25.5292 1.80971 0.904857 0.425715i \(-0.139977\pi\)
0.904857 + 0.425715i \(0.139977\pi\)
\(200\) −0.692612 + 1.19964i −0.0489751 + 0.0848273i
\(201\) −0.182018 + 0.315264i −0.0128385 + 0.0222370i
\(202\) 0.804954 1.39422i 0.0566364 0.0980971i
\(203\) −11.6292 20.1423i −0.816209 1.41372i
\(204\) −0.418808 0.725398i −0.0293225 0.0507880i
\(205\) 1.42197 2.46293i 0.0993148 0.172018i
\(206\) −0.603789 + 1.04579i −0.0420680 + 0.0728638i
\(207\) 0.764137 1.32352i 0.0531112 0.0919912i
\(208\) −20.1157 −1.39478
\(209\) 7.37519 + 12.7742i 0.510153 + 0.883610i
\(210\) −0.0458683 + 0.0794462i −0.00316521 + 0.00548231i
\(211\) −11.6634 −0.802941 −0.401470 0.915872i \(-0.631501\pi\)
−0.401470 + 0.915872i \(0.631501\pi\)
\(212\) −8.76328 −0.601865
\(213\) 0.652961 1.13096i 0.0447401 0.0774922i
\(214\) 4.85745 0.332049
\(215\) 2.00236 + 3.46819i 0.136560 + 0.236529i
\(216\) −0.768110 −0.0522632
\(217\) −5.93851 10.2858i −0.403132 0.698246i
\(218\) −0.102984 0.178373i −0.00697493 0.0120809i
\(219\) −0.218743 0.378874i −0.0147813 0.0256019i
\(220\) −1.90616 + 3.30157i −0.128514 + 0.222592i
\(221\) 29.9380 2.01385
\(222\) −0.0902711 + 0.180035i −0.00605860 + 0.0120831i
\(223\) −2.49921 −0.167360 −0.0836798 0.996493i \(-0.526667\pi\)
−0.0836798 + 0.996493i \(0.526667\pi\)
\(224\) −5.44799 + 9.43619i −0.364009 + 0.630482i
\(225\) 1.49572 + 2.59066i 0.0997145 + 0.172711i
\(226\) 0.636110 + 1.10177i 0.0423134 + 0.0732890i
\(227\) −1.27662 2.21117i −0.0847323 0.146761i 0.820545 0.571582i \(-0.193670\pi\)
−0.905277 + 0.424822i \(0.860337\pi\)
\(228\) −1.25488 −0.0831066
\(229\) 0.613571 + 1.06274i 0.0405459 + 0.0702276i 0.885586 0.464475i \(-0.153757\pi\)
−0.845040 + 0.534703i \(0.820424\pi\)
\(230\) −0.182770 −0.0120515
\(231\) −0.261102 + 0.452243i −0.0171793 + 0.0297554i
\(232\) −11.6282 −0.763429
\(233\) 15.6292 1.02391 0.511953 0.859013i \(-0.328922\pi\)
0.511953 + 0.859013i \(0.328922\pi\)
\(234\) 3.31353 5.73921i 0.216612 0.375184i
\(235\) 5.56515 + 9.63912i 0.363030 + 0.628787i
\(236\) 22.0314 1.43412
\(237\) 0.441769 0.765166i 0.0286960 0.0497029i
\(238\) 2.39610 4.15016i 0.155316 0.269015i
\(239\) −8.31261 + 14.3979i −0.537698 + 0.931320i 0.461330 + 0.887229i \(0.347373\pi\)
−0.999028 + 0.0440911i \(0.985961\pi\)
\(240\) −0.150321 0.260364i −0.00970318 0.0168064i
\(241\) −0.899786 1.55847i −0.0579603 0.100390i 0.835589 0.549355i \(-0.185126\pi\)
−0.893550 + 0.448964i \(0.851793\pi\)
\(242\) −1.22579 + 2.12313i −0.0787968 + 0.136480i
\(243\) −1.24466 + 2.15582i −0.0798450 + 0.138296i
\(244\) 2.06299 3.57320i 0.132069 0.228751i
\(245\) 0.676691 0.0432322
\(246\) −0.0470811 0.0815468i −0.00300178 0.00519924i
\(247\) 22.4259 38.8428i 1.42693 2.47151i
\(248\) −5.93800 −0.377064
\(249\) 0.0135196 0.000856771
\(250\) 0.178876 0.309823i 0.0113131 0.0195949i
\(251\) −6.75316 −0.426256 −0.213128 0.977024i \(-0.568365\pi\)
−0.213128 + 0.977024i \(0.568365\pi\)
\(252\) 7.75792 + 13.4371i 0.488703 + 0.846459i
\(253\) −1.04041 −0.0654098
\(254\) −0.117099 0.202821i −0.00734743 0.0127261i
\(255\) 0.223721 + 0.387496i 0.0140099 + 0.0242659i
\(256\) −3.35739 5.81517i −0.209837 0.363448i
\(257\) 4.73362 8.19887i 0.295275 0.511432i −0.679774 0.733422i \(-0.737922\pi\)
0.975049 + 0.221990i \(0.0712553\pi\)
\(258\) 0.132595 0.00825502
\(259\) 16.8243 0.990821i 1.04541 0.0615667i
\(260\) 11.5922 0.718920
\(261\) −12.5557 + 21.7472i −0.777180 + 1.34612i
\(262\) 0.512539 + 0.887744i 0.0316648 + 0.0548450i
\(263\) 6.06418 + 10.5035i 0.373933 + 0.647671i 0.990167 0.139892i \(-0.0446756\pi\)
−0.616234 + 0.787563i \(0.711342\pi\)
\(264\) 0.130540 + 0.226102i 0.00803419 + 0.0139156i
\(265\) 4.68121 0.287564
\(266\) −3.58973 6.21760i −0.220101 0.381225i
\(267\) −1.53415 −0.0938884
\(268\) 3.68171 6.37692i 0.224896 0.389532i
\(269\) −18.3226 −1.11715 −0.558574 0.829455i \(-0.688651\pi\)
−0.558574 + 0.829455i \(0.688651\pi\)
\(270\) 0.198375 0.0120727
\(271\) 10.9467 18.9602i 0.664964 1.15175i −0.314331 0.949313i \(-0.601780\pi\)
0.979295 0.202438i \(-0.0648864\pi\)
\(272\) 7.85256 + 13.6010i 0.476132 + 0.824684i
\(273\) 1.58788 0.0961029
\(274\) −2.60852 + 4.51808i −0.157586 + 0.272947i
\(275\) 1.01824 1.76365i 0.0614024 0.106352i
\(276\) 0.0442560 0.0766537i 0.00266390 0.00461401i
\(277\) 9.63350 + 16.6857i 0.578821 + 1.00255i 0.995615 + 0.0935460i \(0.0298202\pi\)
−0.416794 + 0.909001i \(0.636846\pi\)
\(278\) 2.06664 + 3.57952i 0.123949 + 0.214685i
\(279\) −6.41165 + 11.1053i −0.383856 + 0.664857i
\(280\) 1.91901 3.32382i 0.114683 0.198636i
\(281\) −2.97557 + 5.15384i −0.177508 + 0.307452i −0.941026 0.338334i \(-0.890137\pi\)
0.763519 + 0.645786i \(0.223470\pi\)
\(282\) 0.368521 0.0219451
\(283\) 4.13549 + 7.16287i 0.245829 + 0.425789i 0.962364 0.271762i \(-0.0876064\pi\)
−0.716535 + 0.697551i \(0.754273\pi\)
\(284\) −13.2076 + 22.8762i −0.783726 + 1.35745i
\(285\) 0.670338 0.0397074
\(286\) −4.51153 −0.266772
\(287\) −3.93983 + 6.82399i −0.232561 + 0.402808i
\(288\) 11.7641 0.693206
\(289\) −3.18688 5.51984i −0.187464 0.324696i
\(290\) 3.00314 0.176351
\(291\) −0.867772 1.50302i −0.0508697 0.0881089i
\(292\) 4.42456 + 7.66357i 0.258928 + 0.448476i
\(293\) 3.74515 + 6.48679i 0.218794 + 0.378963i 0.954440 0.298404i \(-0.0964544\pi\)
−0.735645 + 0.677367i \(0.763121\pi\)
\(294\) 0.0112025 0.0194034i 0.000653345 0.00113163i
\(295\) −11.7688 −0.685206
\(296\) 3.77671 7.53218i 0.219517 0.437799i
\(297\) 1.12924 0.0655249
\(298\) −0.0874493 + 0.151467i −0.00506580 + 0.00877423i
\(299\) 1.58179 + 2.73975i 0.0914775 + 0.158444i
\(300\) 0.0866266 + 0.150042i 0.00500139 + 0.00866266i
\(301\) −5.54791 9.60927i −0.319776 0.553869i
\(302\) −1.42095 −0.0817666
\(303\) −0.208238 0.360679i −0.0119630 0.0207205i
\(304\) 23.5288 1.34947
\(305\) −1.10202 + 1.90875i −0.0631013 + 0.109295i
\(306\) −5.17401 −0.295778
\(307\) 10.0716 0.574817 0.287408 0.957808i \(-0.407206\pi\)
0.287408 + 0.957808i \(0.407206\pi\)
\(308\) 5.28138 9.14762i 0.300935 0.521234i
\(309\) 0.156198 + 0.270542i 0.00888577 + 0.0153906i
\(310\) 1.53357 0.0871009
\(311\) −2.97981 + 5.16118i −0.168970 + 0.292664i −0.938058 0.346479i \(-0.887377\pi\)
0.769088 + 0.639143i \(0.220711\pi\)
\(312\) 0.396937 0.687514i 0.0224721 0.0389228i
\(313\) 7.07137 12.2480i 0.399698 0.692296i −0.593991 0.804472i \(-0.702448\pi\)
0.993688 + 0.112175i \(0.0357818\pi\)
\(314\) 1.90339 + 3.29677i 0.107415 + 0.186048i
\(315\) −4.14416 7.17790i −0.233497 0.404429i
\(316\) −8.93576 + 15.4772i −0.502676 + 0.870660i
\(317\) 2.44384 4.23285i 0.137260 0.237741i −0.789199 0.614138i \(-0.789504\pi\)
0.926458 + 0.376397i \(0.122837\pi\)
\(318\) 0.0774968 0.134228i 0.00434580 0.00752715i
\(319\) 17.0952 0.957147
\(320\) 2.54501 + 4.40808i 0.142270 + 0.246419i
\(321\) 0.628301 1.08825i 0.0350683 0.0607401i
\(322\) 0.506398 0.0282204
\(323\) −35.0176 −1.94843
\(324\) 8.35197 14.4660i 0.463998 0.803669i
\(325\) −6.19239 −0.343492
\(326\) 3.95637 + 6.85263i 0.219123 + 0.379532i
\(327\) −0.0532829 −0.00294655
\(328\) 1.96975 + 3.41171i 0.108761 + 0.188380i
\(329\) −15.4193 26.7070i −0.850092 1.47240i
\(330\) −0.0337138 0.0583939i −0.00185588 0.00321448i
\(331\) 12.2406 21.2013i 0.672802 1.16533i −0.304304 0.952575i \(-0.598424\pi\)
0.977106 0.212753i \(-0.0682428\pi\)
\(332\) −0.273465 −0.0150083
\(333\) −10.0088 15.1962i −0.548479 0.832748i
\(334\) −4.50126 −0.246298
\(335\) −1.96671 + 3.40645i −0.107453 + 0.186114i
\(336\) 0.416492 + 0.721385i 0.0227215 + 0.0393548i
\(337\) 4.43827 + 7.68730i 0.241768 + 0.418754i 0.961218 0.275790i \(-0.0889394\pi\)
−0.719450 + 0.694544i \(0.755606\pi\)
\(338\) 4.53376 + 7.85270i 0.246604 + 0.427131i
\(339\) 0.329118 0.0178752
\(340\) −4.52526 7.83797i −0.245416 0.425074i
\(341\) 8.72975 0.472743
\(342\) −3.87574 + 6.71298i −0.209576 + 0.362996i
\(343\) 17.5199 0.945985
\(344\) −5.54744 −0.299098
\(345\) −0.0236409 + 0.0409472i −0.00127278 + 0.00220452i
\(346\) 0.722621 + 1.25162i 0.0388483 + 0.0672873i
\(347\) 3.32706 0.178606 0.0893029 0.996005i \(-0.471536\pi\)
0.0893029 + 0.996005i \(0.471536\pi\)
\(348\) −0.727183 + 1.25952i −0.0389811 + 0.0675172i
\(349\) 14.3885 24.9216i 0.770198 1.33402i −0.167256 0.985914i \(-0.553491\pi\)
0.937454 0.348109i \(-0.113176\pi\)
\(350\) −0.495610 + 0.858422i −0.0264915 + 0.0458846i
\(351\) −1.71685 2.97367i −0.0916386 0.158723i
\(352\) −4.00434 6.93572i −0.213432 0.369675i
\(353\) −18.0163 + 31.2052i −0.958912 + 1.66088i −0.233760 + 0.972294i \(0.575103\pi\)
−0.725152 + 0.688589i \(0.758230\pi\)
\(354\) −0.194831 + 0.337457i −0.0103552 + 0.0179356i
\(355\) 7.05529 12.2201i 0.374456 0.648576i
\(356\) 31.0316 1.64467
\(357\) −0.619860 1.07363i −0.0328065 0.0568225i
\(358\) −1.90193 + 3.29424i −0.100520 + 0.174106i
\(359\) −1.95449 −0.103154 −0.0515771 0.998669i \(-0.516425\pi\)
−0.0515771 + 0.998669i \(0.516425\pi\)
\(360\) −4.14381 −0.218398
\(361\) −16.7309 + 28.9788i −0.880575 + 1.52520i
\(362\) −0.223562 −0.0117502
\(363\) 0.317107 + 0.549245i 0.0166438 + 0.0288279i
\(364\) −32.1184 −1.68346
\(365\) −2.36353 4.09376i −0.123713 0.214277i
\(366\) 0.0364875 + 0.0631982i 0.00190723 + 0.00330342i
\(367\) 12.6555 + 21.9200i 0.660614 + 1.14422i 0.980455 + 0.196746i \(0.0630373\pi\)
−0.319841 + 0.947471i \(0.603629\pi\)
\(368\) −0.829791 + 1.43724i −0.0432558 + 0.0749213i
\(369\) 8.50747 0.442881
\(370\) −0.975386 + 1.94529i −0.0507079 + 0.101131i
\(371\) −12.9702 −0.673377
\(372\) −0.371340 + 0.643180i −0.0192531 + 0.0333473i
\(373\) −11.6839 20.2372i −0.604972 1.04784i −0.992056 0.125797i \(-0.959851\pi\)
0.387084 0.922044i \(-0.373482\pi\)
\(374\) 1.76116 + 3.05042i 0.0910675 + 0.157734i
\(375\) −0.0462746 0.0801499i −0.00238961 0.00413892i
\(376\) −15.4180 −0.795120
\(377\) −25.9909 45.0175i −1.33860 2.31852i
\(378\) −0.549634 −0.0282701
\(379\) 13.1399 22.7590i 0.674953 1.16905i −0.301530 0.953457i \(-0.597497\pi\)
0.976483 0.215596i \(-0.0691694\pi\)
\(380\) −13.5591 −0.695567
\(381\) −0.0605859 −0.00310391
\(382\) 1.69002 2.92720i 0.0864690 0.149769i
\(383\) −1.49652 2.59204i −0.0764684 0.132447i 0.825255 0.564760i \(-0.191031\pi\)
−0.901724 + 0.432312i \(0.857698\pi\)
\(384\) 0.896445 0.0457465
\(385\) −2.82123 + 4.88651i −0.143783 + 0.249040i
\(386\) 3.06309 5.30543i 0.155907 0.270039i
\(387\) −5.98993 + 10.3749i −0.304485 + 0.527384i
\(388\) 17.5526 + 30.4020i 0.891099 + 1.54343i
\(389\) −0.179623 0.311117i −0.00910727 0.0157743i 0.861436 0.507866i \(-0.169566\pi\)
−0.870543 + 0.492092i \(0.836232\pi\)
\(390\) −0.102514 + 0.177560i −0.00519101 + 0.00899110i
\(391\) 1.23497 2.13903i 0.0624550 0.108175i
\(392\) −0.468684 + 0.811785i −0.0236721 + 0.0410013i
\(393\) 0.265183 0.0133767
\(394\) −0.410832 0.711583i −0.0206974 0.0358490i
\(395\) 4.77335 8.26768i 0.240173 0.415992i
\(396\) −11.4043 −0.573089
\(397\) −19.0744 −0.957318 −0.478659 0.878001i \(-0.658877\pi\)
−0.478659 + 0.878001i \(0.658877\pi\)
\(398\) 4.56657 7.90953i 0.228901 0.396469i
\(399\) −1.85730 −0.0929811
\(400\) −1.62423 2.81325i −0.0812114 0.140662i
\(401\) −16.9963 −0.848755 −0.424378 0.905485i \(-0.639507\pi\)
−0.424378 + 0.905485i \(0.639507\pi\)
\(402\) 0.0651174 + 0.112787i 0.00324776 + 0.00562528i
\(403\) −13.2724 22.9885i −0.661145 1.14514i
\(404\) 4.21208 + 7.29554i 0.209559 + 0.362967i
\(405\) −4.46149 + 7.72753i −0.221693 + 0.383984i
\(406\) −8.32076 −0.412952
\(407\) −5.55232 + 11.0734i −0.275218 + 0.548890i
\(408\) −0.619807 −0.0306850
\(409\) −0.207634 + 0.359633i −0.0102668 + 0.0177827i −0.871113 0.491082i \(-0.836601\pi\)
0.860846 + 0.508865i \(0.169935\pi\)
\(410\) −0.508715 0.881120i −0.0251236 0.0435154i
\(411\) 0.674812 + 1.16881i 0.0332860 + 0.0576531i
\(412\) −3.15944 5.47232i −0.155655 0.269602i
\(413\) 32.6076 1.60452
\(414\) −0.273372 0.473494i −0.0134355 0.0232710i
\(415\) 0.146080 0.00717081
\(416\) −12.1761 + 21.0896i −0.596982 + 1.03400i
\(417\) 1.06926 0.0523619
\(418\) 5.27699 0.258106
\(419\) −10.3760 + 17.9718i −0.506901 + 0.877979i 0.493067 + 0.869991i \(0.335876\pi\)
−0.999968 + 0.00798721i \(0.997458\pi\)
\(420\) −0.240015 0.415718i −0.0117115 0.0202850i
\(421\) −11.5314 −0.562008 −0.281004 0.959707i \(-0.590667\pi\)
−0.281004 + 0.959707i \(0.590667\pi\)
\(422\) −2.08631 + 3.61359i −0.101560 + 0.175907i
\(423\) −16.6478 + 28.8348i −0.809443 + 1.40200i
\(424\) −3.24226 + 5.61576i −0.157458 + 0.272726i
\(425\) 2.41732 + 4.18692i 0.117257 + 0.203096i
\(426\) −0.233599 0.404605i −0.0113179 0.0196032i
\(427\) 3.05334 5.28854i 0.147762 0.255931i
\(428\) −12.7088 + 22.0123i −0.614303 + 1.06400i
\(429\) −0.583556 + 1.01075i −0.0281743 + 0.0487994i
\(430\) 1.43270 0.0690910
\(431\) 0.360230 + 0.623937i 0.0173517 + 0.0300540i 0.874571 0.484898i \(-0.161143\pi\)
−0.857219 + 0.514952i \(0.827810\pi\)
\(432\) 0.900638 1.55995i 0.0433320 0.0750532i
\(433\) 28.4761 1.36848 0.684238 0.729259i \(-0.260135\pi\)
0.684238 + 0.729259i \(0.260135\pi\)
\(434\) −4.24904 −0.203960
\(435\) 0.388450 0.672815i 0.0186247 0.0322590i
\(436\) 1.07776 0.0516156
\(437\) −1.85018 3.20460i −0.0885060 0.153297i
\(438\) −0.156512 −0.00747842
\(439\) −11.4437 19.8211i −0.546180 0.946011i −0.998532 0.0541714i \(-0.982748\pi\)
0.452352 0.891839i \(-0.350585\pi\)
\(440\) 1.41050 + 2.44305i 0.0672427 + 0.116468i
\(441\) 1.01214 + 1.75308i 0.0481971 + 0.0834798i
\(442\) 5.35521 9.27549i 0.254721 0.441190i
\(443\) 2.51641 0.119558 0.0597790 0.998212i \(-0.480960\pi\)
0.0597790 + 0.998212i \(0.480960\pi\)
\(444\) −0.579674 0.880111i −0.0275101 0.0417682i
\(445\) −16.5766 −0.785806
\(446\) −0.447050 + 0.774313i −0.0211684 + 0.0366648i
\(447\) 0.0226228 + 0.0391838i 0.00107002 + 0.00185333i
\(448\) −7.05142 12.2134i −0.333148 0.577029i
\(449\) −18.7859 32.5381i −0.886561 1.53557i −0.843914 0.536478i \(-0.819754\pi\)
−0.0426469 0.999090i \(-0.513579\pi\)
\(450\) 1.07019 0.0504495
\(451\) −2.89583 5.01572i −0.136359 0.236181i
\(452\) −6.65714 −0.313126
\(453\) −0.183797 + 0.318346i −0.00863554 + 0.0149572i
\(454\) −0.913430 −0.0428694
\(455\) 17.1572 0.804341
\(456\) −0.464285 + 0.804164i −0.0217421 + 0.0376584i
\(457\) 9.71917 + 16.8341i 0.454644 + 0.787466i 0.998668 0.0516036i \(-0.0164332\pi\)
−0.544024 + 0.839070i \(0.683100\pi\)
\(458\) 0.439014 0.0205138
\(459\) −1.34041 + 2.32166i −0.0625650 + 0.108366i
\(460\) 0.478190 0.828249i 0.0222957 0.0386173i
\(461\) 9.48509 16.4287i 0.441765 0.765159i −0.556056 0.831145i \(-0.687686\pi\)
0.997821 + 0.0659862i \(0.0210193\pi\)
\(462\) 0.0934102 + 0.161791i 0.00434583 + 0.00752721i
\(463\) −0.109249 0.189225i −0.00507723 0.00879402i 0.863476 0.504391i \(-0.168283\pi\)
−0.868553 + 0.495597i \(0.834949\pi\)
\(464\) 13.6345 23.6157i 0.632966 1.09633i
\(465\) 0.198364 0.343576i 0.00919891 0.0159330i
\(466\) 2.79570 4.84230i 0.129509 0.224315i
\(467\) −11.9630 −0.553580 −0.276790 0.960930i \(-0.589271\pi\)
−0.276790 + 0.960930i \(0.589271\pi\)
\(468\) 17.3387 + 30.0315i 0.801483 + 1.38821i
\(469\) 5.44914 9.43819i 0.251618 0.435815i
\(470\) 3.98190 0.183671
\(471\) 0.984799 0.0453771
\(472\) 8.15122 14.1183i 0.375190 0.649848i
\(473\) 8.15557 0.374993
\(474\) −0.158044 0.273741i −0.00725921 0.0125733i
\(475\) 7.24305 0.332334
\(476\) 12.5381 + 21.7165i 0.574681 + 0.995376i
\(477\) 7.00177 + 12.1274i 0.320589 + 0.555276i
\(478\) 2.97386 + 5.15088i 0.136021 + 0.235596i
\(479\) 8.91840 15.4471i 0.407492 0.705797i −0.587116 0.809503i \(-0.699737\pi\)
0.994608 + 0.103706i \(0.0330700\pi\)
\(480\) −0.363958 −0.0166123
\(481\) 37.6017 2.21446i 1.71449 0.100970i
\(482\) −0.643802 −0.0293244
\(483\) 0.0655014 0.113452i 0.00298042 0.00516224i
\(484\) −6.41419 11.1097i −0.291554 0.504987i
\(485\) −9.37633 16.2403i −0.425757 0.737433i
\(486\) 0.445281 + 0.771249i 0.0201984 + 0.0349846i
\(487\) −19.0241 −0.862062 −0.431031 0.902337i \(-0.641850\pi\)
−0.431031 + 0.902337i \(0.641850\pi\)
\(488\) −1.52654 2.64405i −0.0691033 0.119690i
\(489\) 2.04699 0.0925681
\(490\) 0.121044 0.209655i 0.00546822 0.00947123i
\(491\) 31.9253 1.44077 0.720385 0.693575i \(-0.243965\pi\)
0.720385 + 0.693575i \(0.243965\pi\)
\(492\) 0.492722 0.0222136
\(493\) −20.2921 + 35.1469i −0.913910 + 1.58294i
\(494\) −8.02294 13.8961i −0.360969 0.625217i
\(495\) 6.09202 0.273816
\(496\) 6.96254 12.0595i 0.312627 0.541486i
\(497\) −19.5480 + 33.8581i −0.876846 + 1.51874i
\(498\) 0.00241834 0.00418869i 0.000108369 0.000187700i
\(499\) −4.55248 7.88512i −0.203797 0.352987i 0.745952 0.666000i \(-0.231995\pi\)
−0.949749 + 0.313013i \(0.898662\pi\)
\(500\) 0.936006 + 1.62121i 0.0418595 + 0.0725027i
\(501\) −0.582228 + 1.00845i −0.0260120 + 0.0450541i
\(502\) −1.20798 + 2.09229i −0.0539148 + 0.0933833i
\(503\) 9.13175 15.8166i 0.407164 0.705230i −0.587406 0.809292i \(-0.699851\pi\)
0.994571 + 0.104063i \(0.0331842\pi\)
\(504\) 11.4812 0.511413
\(505\) −2.25003 3.89716i −0.100125 0.173421i
\(506\) −0.186104 + 0.322342i −0.00827334 + 0.0143299i
\(507\) 2.34573 0.104177
\(508\) 1.22549 0.0543721
\(509\) −13.5136 + 23.4062i −0.598978 + 1.03746i 0.393994 + 0.919113i \(0.371093\pi\)
−0.992972 + 0.118348i \(0.962240\pi\)
\(510\) 0.160074 0.00708818
\(511\) 6.54860 + 11.3425i 0.289693 + 0.501763i
\(512\) −21.7745 −0.962308
\(513\) 2.00814 + 3.47821i 0.0886617 + 0.153567i
\(514\) −1.69347 2.93317i −0.0746956 0.129377i
\(515\) 1.68773 + 2.92323i 0.0743701 + 0.128813i
\(516\) −0.346916 + 0.600875i −0.0152721 + 0.0264521i
\(517\) 22.6667 0.996880
\(518\) 2.70249 5.38978i 0.118740 0.236813i
\(519\) 0.373878 0.0164114
\(520\) 4.28893 7.42864i 0.188082 0.325767i
\(521\) 12.2187 + 21.1634i 0.535311 + 0.927186i 0.999148 + 0.0412658i \(0.0131390\pi\)
−0.463837 + 0.885921i \(0.653528\pi\)
\(522\) 4.49185 + 7.78011i 0.196603 + 0.340526i
\(523\) −6.43876 11.1523i −0.281547 0.487654i 0.690219 0.723601i \(-0.257514\pi\)
−0.971766 + 0.235947i \(0.924181\pi\)
\(524\) −5.36393 −0.234324
\(525\) 0.128212 + 0.222070i 0.00559564 + 0.00969193i
\(526\) 4.33896 0.189187
\(527\) −10.3623 + 17.9480i −0.451387 + 0.781826i
\(528\) −0.612253 −0.0266449
\(529\) −22.7390 −0.988652
\(530\) 0.837358 1.45035i 0.0363725 0.0629991i
\(531\) −17.6028 30.4890i −0.763897 1.32311i
\(532\) 37.5680 1.62878
\(533\) −8.80541 + 15.2514i −0.381405 + 0.660612i
\(534\) −0.274423 + 0.475315i −0.0118755 + 0.0205689i
\(535\) 6.78884 11.7586i 0.293507 0.508369i
\(536\) −2.72434 4.71869i −0.117674 0.203817i
\(537\) 0.492021 + 0.852205i 0.0212323 + 0.0367753i
\(538\) −3.27748 + 5.67676i −0.141302 + 0.244742i
\(539\) 0.689036 1.19345i 0.0296789 0.0514053i
\(540\) −0.519017 + 0.898965i −0.0223350 + 0.0386853i
\(541\) 27.7984 1.19515 0.597573 0.801815i \(-0.296132\pi\)
0.597573 + 0.801815i \(0.296132\pi\)
\(542\) −3.91621 6.78307i −0.168216 0.291358i
\(543\) −0.0289173 + 0.0500862i −0.00124096 + 0.00214940i
\(544\) 19.0127 0.815162
\(545\) −0.575725 −0.0246614
\(546\) 0.284035 0.491962i 0.0121556 0.0210540i
\(547\) 13.2756 0.567623 0.283811 0.958880i \(-0.408401\pi\)
0.283811 + 0.958880i \(0.408401\pi\)
\(548\) −13.6496 23.6418i −0.583081 1.00993i
\(549\) −6.59323 −0.281392
\(550\) −0.364280 0.630951i −0.0155329 0.0269038i
\(551\) 30.4007 + 52.6556i 1.29512 + 2.24321i
\(552\) −0.0327479 0.0567211i −0.00139384 0.00241421i
\(553\) −13.2254 + 22.9071i −0.562403 + 0.974110i
\(554\) 6.89282 0.292848
\(555\) 0.309653 + 0.470141i 0.0131440 + 0.0199564i
\(556\) −21.6282 −0.917238
\(557\) 9.83840 17.0406i 0.416866 0.722034i −0.578756 0.815501i \(-0.696462\pi\)
0.995622 + 0.0934671i \(0.0297950\pi\)
\(558\) 2.29379 + 3.97296i 0.0971038 + 0.168189i
\(559\) −12.3994 21.4764i −0.524439 0.908356i
\(560\) 4.50023 + 7.79462i 0.190169 + 0.329383i
\(561\) 0.911209 0.0384713
\(562\) 1.06452 + 1.84380i 0.0449040 + 0.0777760i
\(563\) 11.5785 0.487975 0.243988 0.969778i \(-0.421544\pi\)
0.243988 + 0.969778i \(0.421544\pi\)
\(564\) −0.964180 + 1.67001i −0.0405993 + 0.0703200i
\(565\) 3.55614 0.149608
\(566\) 2.95897 0.124375
\(567\) 12.3614 21.4106i 0.519129 0.899159i
\(568\) 9.77315 + 16.9276i 0.410072 + 0.710266i
\(569\) −7.13372 −0.299061 −0.149530 0.988757i \(-0.547776\pi\)
−0.149530 + 0.988757i \(0.547776\pi\)
\(570\) 0.119908 0.207686i 0.00502238 0.00869903i
\(571\) −7.75168 + 13.4263i −0.324398 + 0.561873i −0.981390 0.192024i \(-0.938495\pi\)
0.656993 + 0.753897i \(0.271828\pi\)
\(572\) 11.8037 20.4446i 0.493538 0.854834i
\(573\) −0.437201 0.757254i −0.0182643 0.0316347i
\(574\) 1.40949 + 2.44130i 0.0588309 + 0.101898i
\(575\) −0.255442 + 0.442438i −0.0106526 + 0.0184509i
\(576\) −7.61323 + 13.1865i −0.317218 + 0.549437i
\(577\) −9.83190 + 17.0294i −0.409308 + 0.708941i −0.994812 0.101728i \(-0.967563\pi\)
0.585505 + 0.810669i \(0.300896\pi\)
\(578\) −2.28023 −0.0948452
\(579\) −0.792408 1.37249i −0.0329314 0.0570388i
\(580\) −7.85726 + 13.6092i −0.326255 + 0.565090i
\(581\) −0.404743 −0.0167916
\(582\) −0.620896 −0.0257370
\(583\) 4.76661 8.25601i 0.197413 0.341929i
\(584\) 6.54804 0.270960
\(585\) −9.26207 16.0424i −0.382940 0.663271i
\(586\) 2.67968 0.110697
\(587\) −6.19424 10.7287i −0.255664 0.442822i 0.709412 0.704794i \(-0.248961\pi\)
−0.965076 + 0.261972i \(0.915627\pi\)
\(588\) 0.0586194 + 0.101532i 0.00241742 + 0.00418710i
\(589\) 15.5243 + 26.8889i 0.639668 + 1.10794i
\(590\) −2.10516 + 3.64625i −0.0866682 + 0.150114i
\(591\) −0.212561 −0.00874359
\(592\) 10.8688 + 16.5019i 0.446703 + 0.678223i
\(593\) 27.8062 1.14186 0.570931 0.820998i \(-0.306582\pi\)
0.570931 + 0.820998i \(0.306582\pi\)
\(594\) 0.201994 0.349863i 0.00828791 0.0143551i
\(595\) −6.69763 11.6006i −0.274576 0.475580i
\(596\) −0.457596 0.792579i −0.0187439 0.0324653i
\(597\) −1.18135 2.04616i −0.0483495 0.0837437i
\(598\) 1.13178 0.0462821
\(599\) 0.663341 + 1.14894i 0.0271034 + 0.0469444i 0.879259 0.476344i \(-0.158038\pi\)
−0.852156 + 0.523289i \(0.824705\pi\)
\(600\) 0.128201 0.00523380
\(601\) 2.96671 5.13850i 0.121015 0.209604i −0.799153 0.601127i \(-0.794718\pi\)
0.920168 + 0.391523i \(0.128052\pi\)
\(602\) −3.96956 −0.161787
\(603\) −11.7666 −0.479173
\(604\) 3.71771 6.43925i 0.151271 0.262010i
\(605\) 3.42636 + 5.93463i 0.139301 + 0.241277i
\(606\) −0.148996 −0.00605253
\(607\) 9.97311 17.2739i 0.404796 0.701127i −0.589502 0.807767i \(-0.700676\pi\)
0.994298 + 0.106640i \(0.0340092\pi\)
\(608\) 14.2420 24.6679i 0.577589 1.00041i
\(609\) −1.07627 + 1.86416i −0.0436127 + 0.0755394i
\(610\) 0.394250 + 0.682861i 0.0159627 + 0.0276482i
\(611\) −34.4616 59.6892i −1.39417 2.41477i
\(612\) 13.5370 23.4468i 0.547201 0.947780i
\(613\) −2.49236 + 4.31689i −0.100665 + 0.174358i −0.911959 0.410281i \(-0.865430\pi\)
0.811294 + 0.584639i \(0.198764\pi\)
\(614\) 1.80157 3.12042i 0.0727056 0.125930i
\(615\) −0.263204 −0.0106134
\(616\) −3.90804 6.76892i −0.157459 0.272727i
\(617\) −12.3127 + 21.3262i −0.495691 + 0.858561i −0.999988 0.00496889i \(-0.998418\pi\)
0.504297 + 0.863530i \(0.331752\pi\)
\(618\) 0.111760 0.00449566
\(619\) 13.5019 0.542688 0.271344 0.962482i \(-0.412532\pi\)
0.271344 + 0.962482i \(0.412532\pi\)
\(620\) −4.01235 + 6.94960i −0.161140 + 0.279103i
\(621\) −0.283286 −0.0113679
\(622\) 1.06604 + 1.84643i 0.0427442 + 0.0740350i
\(623\) 45.9285 1.84009
\(624\) 0.930847 + 1.61227i 0.0372637 + 0.0645426i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −2.52980 4.38175i −0.101111 0.175130i
\(627\) 0.682568 1.18224i 0.0272591 0.0472142i
\(628\) −19.9197 −0.794885
\(629\) −16.1758 24.5595i −0.644973 0.979253i
\(630\) −2.96517 −0.118135
\(631\) −16.2924 + 28.2193i −0.648592 + 1.12339i 0.334868 + 0.942265i \(0.391308\pi\)
−0.983459 + 0.181129i \(0.942025\pi\)
\(632\) 6.61215 + 11.4526i 0.263017 + 0.455559i
\(633\) 0.539718 + 0.934819i 0.0214519 + 0.0371557i
\(634\) −0.874290 1.51431i −0.0347225 0.0601411i
\(635\) −0.654635 −0.0259784
\(636\) 0.405517 + 0.702376i 0.0160798 + 0.0278510i
\(637\) −4.19034 −0.166027
\(638\) 3.05793 5.29649i 0.121065 0.209690i
\(639\) 42.2108 1.66984
\(640\) 9.68616 0.382879
\(641\) −1.15179 + 1.99496i −0.0454930 + 0.0787962i −0.887875 0.460084i \(-0.847819\pi\)
0.842382 + 0.538880i \(0.181153\pi\)
\(642\) −0.224777 0.389324i −0.00887122 0.0153654i
\(643\) 1.78059 0.0702197 0.0351098 0.999383i \(-0.488822\pi\)
0.0351098 + 0.999383i \(0.488822\pi\)
\(644\) −1.32491 + 2.29482i −0.0522089 + 0.0904284i
\(645\) 0.185317 0.320978i 0.00729684 0.0126385i
\(646\) −6.26382 + 10.8493i −0.246447 + 0.426858i
\(647\) 8.69575 + 15.0615i 0.341865 + 0.592128i 0.984779 0.173811i \(-0.0556081\pi\)
−0.642914 + 0.765938i \(0.722275\pi\)
\(648\) −6.18017 10.7044i −0.242780 0.420507i
\(649\) −11.9835 + 20.7560i −0.470394 + 0.814746i
\(650\) −1.10767 + 1.91855i −0.0434465 + 0.0752516i
\(651\) −0.549604 + 0.951942i −0.0215407 + 0.0373095i
\(652\) −41.4049 −1.62154
\(653\) 3.75990 + 6.51235i 0.147136 + 0.254848i 0.930168 0.367134i \(-0.119661\pi\)
−0.783032 + 0.621982i \(0.786328\pi\)
\(654\) −0.00953105 + 0.0165083i −0.000372694 + 0.000645524i
\(655\) 2.86533 0.111958
\(656\) −9.23843 −0.360700
\(657\) 7.07035 12.2462i 0.275841 0.477770i
\(658\) −11.0326 −0.430095
\(659\) 13.9067 + 24.0871i 0.541729 + 0.938302i 0.998805 + 0.0488744i \(0.0155634\pi\)
−0.457076 + 0.889428i \(0.651103\pi\)
\(660\) 0.352828 0.0137338
\(661\) 0.907354 + 1.57158i 0.0352920 + 0.0611275i 0.883132 0.469125i \(-0.155431\pi\)
−0.847840 + 0.530252i \(0.822097\pi\)
\(662\) −4.37910 7.58482i −0.170198 0.294792i
\(663\) −1.38537 2.39953i −0.0538033 0.0931900i
\(664\) −0.101177 + 0.175244i −0.00392643 + 0.00680078i
\(665\) −20.0682 −0.778212
\(666\) −6.49848 + 0.382711i −0.251811 + 0.0148298i
\(667\) −4.28858 −0.166055
\(668\) 11.7769 20.3981i 0.455660 0.789227i
\(669\) 0.115650 + 0.200311i 0.00447128 + 0.00774449i
\(670\) 0.703598 + 1.21867i 0.0271824 + 0.0470812i
\(671\) 2.24424 + 3.88714i 0.0866381 + 0.150062i
\(672\) 1.00841 0.0389004
\(673\) 12.1457 + 21.0369i 0.468182 + 0.810915i 0.999339 0.0363587i \(-0.0115759\pi\)
−0.531157 + 0.847273i \(0.678243\pi\)
\(674\) 3.17561 0.122320
\(675\) 0.277251 0.480213i 0.0106714 0.0184834i
\(676\) −47.4476 −1.82491
\(677\) −36.8733 −1.41716 −0.708578 0.705633i \(-0.750663\pi\)
−0.708578 + 0.705633i \(0.750663\pi\)
\(678\) 0.0588714 0.101968i 0.00226094 0.00391607i
\(679\) 25.9789 + 44.9967i 0.996977 + 1.72682i
\(680\) −6.69706 −0.256821
\(681\) −0.118150 + 0.204642i −0.00452753 + 0.00784190i
\(682\) 1.56155 2.70468i 0.0597948 0.103568i
\(683\) −15.2416 + 26.3993i −0.583204 + 1.01014i 0.411892 + 0.911233i \(0.364868\pi\)
−0.995097 + 0.0989072i \(0.968465\pi\)
\(684\) −20.2806 35.1270i −0.775447 1.34311i
\(685\) 7.29139 + 12.6291i 0.278590 + 0.482532i
\(686\) 3.13390 5.42807i 0.119653 0.207245i
\(687\) 0.0567854 0.0983553i 0.00216650 0.00375249i
\(688\) 6.50459 11.2663i 0.247985 0.429523i
\(689\) −28.9879 −1.10435
\(690\) 0.00845760 + 0.0146490i 0.000321975 + 0.000557678i
\(691\) 10.0536 17.4133i 0.382456 0.662433i −0.608957 0.793203i \(-0.708412\pi\)
0.991413 + 0.130771i \(0.0417452\pi\)
\(692\) −7.56251 −0.287484
\(693\) −16.8791 −0.641182
\(694\) 0.595132 1.03080i 0.0225909 0.0391286i
\(695\) 11.5534 0.438246
\(696\) 0.538090 + 0.931999i 0.0203962 + 0.0353273i
\(697\) 13.7494 0.520797
\(698\) −5.14753 8.91578i −0.194837 0.337467i
\(699\) −0.723237 1.25268i −0.0273553 0.0473808i
\(700\) −2.59338 4.49186i −0.0980205 0.169776i
\(701\) 6.28918 10.8932i 0.237539 0.411430i −0.722469 0.691404i \(-0.756993\pi\)
0.960008 + 0.279974i \(0.0903259\pi\)
\(702\) −1.22841 −0.0463635
\(703\) −43.9816 + 2.59018i −1.65880 + 0.0976905i
\(704\) 10.3658 0.390674
\(705\) 0.515050 0.892092i 0.0193979 0.0335981i
\(706\) 6.44539 + 11.1637i 0.242575 + 0.420153i
\(707\) 6.23412 + 10.7978i 0.234458 + 0.406093i
\(708\) −1.01949 1.76581i −0.0383148 0.0663632i
\(709\) −8.41335 −0.315970 −0.157985 0.987442i \(-0.550500\pi\)
−0.157985 + 0.987442i \(0.550500\pi\)
\(710\) −2.52405 4.37178i −0.0947259 0.164070i
\(711\) 28.5583 1.07102
\(712\) 11.4811 19.8859i 0.430274 0.745257i
\(713\) −2.18999 −0.0820157
\(714\) −0.443514 −0.0165981
\(715\) −6.30536 + 10.9212i −0.235807 + 0.408430i
\(716\) −9.95222 17.2377i −0.371932 0.644205i
\(717\) 1.53865 0.0574619
\(718\) −0.349613 + 0.605548i −0.0130474 + 0.0225988i
\(719\) 0.582394 1.00874i 0.0217196 0.0376195i −0.854961 0.518692i \(-0.826419\pi\)
0.876681 + 0.481072i \(0.159753\pi\)
\(720\) 4.85877 8.41564i 0.181076 0.313633i
\(721\) −4.67615 8.09934i −0.174149 0.301635i
\(722\) 5.98554 + 10.3673i 0.222759 + 0.385829i
\(723\) −0.0832744 + 0.144235i −0.00309701 + 0.00536418i
\(724\) 0.584916 1.01310i 0.0217382 0.0376517i
\(725\) 4.19723 7.26981i 0.155881 0.269994i
\(726\) 0.226892 0.00842074
\(727\) −13.7157 23.7564i −0.508689 0.881075i −0.999949 0.0100623i \(-0.996797\pi\)
0.491261 0.871013i \(-0.336536\pi\)
\(728\) −11.8833 + 20.5824i −0.440423 + 0.762835i
\(729\) −26.5386 −0.982910
\(730\) −1.69112 −0.0625912
\(731\) −9.68070 + 16.7675i −0.358054 + 0.620167i
\(732\) −0.381856 −0.0141138
\(733\) 10.2010 + 17.6686i 0.376781 + 0.652604i 0.990592 0.136849i \(-0.0436975\pi\)
−0.613811 + 0.789453i \(0.710364\pi\)
\(734\) 9.05512 0.334230
\(735\) −0.0313136 0.0542367i −0.00115502 0.00200055i
\(736\) 1.00455 + 1.73993i 0.0370281 + 0.0641346i
\(737\) 4.00519 + 6.93719i 0.147533 + 0.255535i
\(738\) 1.52179 2.63581i 0.0560177 0.0970256i
\(739\) 31.3170 1.15201 0.576006 0.817445i \(-0.304610\pi\)
0.576006 + 0.817445i \(0.304610\pi\)
\(740\) −6.26342 9.50966i −0.230248 0.349582i
\(741\) −4.15100 −0.152491
\(742\) −2.32006 + 4.01845i −0.0851719 + 0.147522i
\(743\) −23.2252 40.2272i −0.852049 1.47579i −0.879356 0.476166i \(-0.842026\pi\)
0.0273061 0.999627i \(-0.491307\pi\)
\(744\) 0.274779 + 0.475930i 0.0100739 + 0.0174485i
\(745\) 0.244441 + 0.423383i 0.00895561 + 0.0155116i
\(746\) −8.35993 −0.306079
\(747\) 0.218495 + 0.378445i 0.00799432 + 0.0138466i
\(748\) −18.4312 −0.673913
\(749\) −18.8097 + 32.5794i −0.687292 + 1.19043i
\(750\) −0.0331097 −0.00120900
\(751\) −29.1714 −1.06448 −0.532239 0.846594i \(-0.678649\pi\)
−0.532239 + 0.846594i \(0.678649\pi\)
\(752\) 18.0782 31.3123i 0.659242 1.14184i
\(753\) 0.312499 + 0.541265i 0.0113881 + 0.0197248i
\(754\) −18.5966 −0.677249
\(755\) −1.98594 + 3.43975i −0.0722758 + 0.125185i
\(756\) 1.43803 2.49075i 0.0523008 0.0905876i
\(757\) −5.70362 + 9.87896i −0.207302 + 0.359057i −0.950864 0.309610i \(-0.899801\pi\)
0.743562 + 0.668667i \(0.233135\pi\)
\(758\) −4.70085 8.14211i −0.170743 0.295735i
\(759\) 0.0481444 + 0.0833885i 0.00174753 + 0.00302681i
\(760\) −5.01663 + 8.68905i −0.181972 + 0.315185i
\(761\) 18.2391 31.5910i 0.661165 1.14517i −0.319145 0.947706i \(-0.603396\pi\)
0.980310 0.197466i \(-0.0632711\pi\)
\(762\) −0.0108374 + 0.0187709i −0.000392597 + 0.000679999i
\(763\) 1.59515 0.0577484
\(764\) 8.84336 + 15.3172i 0.319942 + 0.554155i
\(765\) −7.23126 + 12.5249i −0.261447 + 0.452839i
\(766\) −1.07077 −0.0386883
\(767\) 72.8771 2.63144
\(768\) −0.310724 + 0.538189i −0.0112123 + 0.0194202i
\(769\) −30.2067 −1.08928 −0.544641 0.838669i \(-0.683334\pi\)
−0.544641 + 0.838669i \(0.683334\pi\)
\(770\) 1.00930 + 1.74817i 0.0363728 + 0.0629995i
\(771\) −0.876185 −0.0315550
\(772\) 16.0282 + 27.7617i 0.576868 + 0.999165i
\(773\) −20.7496 35.9394i −0.746311 1.29265i −0.949580 0.313526i \(-0.898490\pi\)
0.203268 0.979123i \(-0.434844\pi\)
\(774\) 2.14292 + 3.71164i 0.0770256 + 0.133412i
\(775\) 2.14334 3.71237i 0.0769909 0.133352i
\(776\) 25.9767 0.932507
\(777\) −0.857950 1.30261i −0.0307788 0.0467310i
\(778\) −0.128522 −0.00460773
\(779\) 10.2994 17.8391i 0.369015 0.639153i
\(780\) −0.536426 0.929117i −0.0192071 0.0332677i
\(781\) −14.3680 24.8861i −0.514127 0.890494i
\(782\) −0.441814 0.765244i −0.0157992 0.0273651i
\(783\) 4.65474 0.166347
\(784\) −1.09910 1.90370i −0.0392536 0.0679893i
\(785\) 10.6408 0.379787
\(786\) 0.0474351 0.0821600i 0.00169195 0.00293055i
\(787\) −47.6784 −1.69955 −0.849777 0.527143i \(-0.823263\pi\)
−0.849777 + 0.527143i \(0.823263\pi\)
\(788\) 4.29952 0.153164
\(789\) 0.561234 0.972086i 0.0199805 0.0346072i
\(790\) −1.70768 2.95779i −0.0607565 0.105233i
\(791\) −9.85294 −0.350330
\(792\) −4.21940 + 7.30822i −0.149930 + 0.259686i
\(793\) 6.82413 11.8197i 0.242332 0.419731i
\(794\) −3.41196 + 5.90970i −0.121086 + 0.209727i
\(795\) −0.216621 0.375198i −0.00768275 0.0133069i
\(796\) 23.8955 + 41.3882i 0.846952 + 1.46696i
\(797\) −25.2032 + 43.6533i −0.892745 + 1.54628i −0.0561739 + 0.998421i \(0.517890\pi\)
−0.836571 + 0.547859i \(0.815443\pi\)
\(798\) −0.332227 + 0.575433i −0.0117607 + 0.0203701i
\(799\) −26.9055 + 46.6017i −0.951848 + 1.64865i
\(800\) −3.93259 −0.139038
\(801\) −24.7939 42.9443i −0.876049 1.51736i
\(802\) −3.04024 + 5.26585i −0.107355 + 0.185944i
\(803\) −9.62660 −0.339715
\(804\) −0.681479 −0.0240339
\(805\) 0.707748 1.22586i 0.0249448 0.0432057i
\(806\) −9.49647 −0.334499
\(807\) 0.847869 + 1.46855i 0.0298464 + 0.0516955i
\(808\) 6.23359 0.219297
\(809\) 17.5875 + 30.4624i 0.618344 + 1.07100i 0.989788 + 0.142547i \(0.0455293\pi\)
−0.371444 + 0.928455i \(0.621137\pi\)
\(810\) 1.59611 + 2.76455i 0.0560817 + 0.0971363i
\(811\) −14.6305 25.3407i −0.513745 0.889832i −0.999873 0.0159445i \(-0.994924\pi\)
0.486128 0.873888i \(-0.338409\pi\)
\(812\) 21.7700 37.7067i 0.763977 1.32325i
\(813\) −2.02621 −0.0710624
\(814\) 2.43763 + 3.70102i 0.0854388 + 0.129721i
\(815\) 22.1179 0.774755
\(816\) 0.726748 1.25876i 0.0254413 0.0440656i
\(817\) 14.5032 + 25.1203i 0.507403 + 0.878848i
\(818\) 0.0742817 + 0.128660i 0.00259720 + 0.00449848i
\(819\) 25.6623 + 44.4484i 0.896713 + 1.55315i
\(820\) 5.32390 0.185919
\(821\) 9.22305 + 15.9748i 0.321887 + 0.557524i 0.980877 0.194627i \(-0.0623496\pi\)
−0.658991 + 0.752151i \(0.729016\pi\)
\(822\) 0.482832 0.0168407
\(823\) 9.85134 17.0630i 0.343396 0.594780i −0.641665 0.766985i \(-0.721756\pi\)
0.985061 + 0.172205i \(0.0550893\pi\)
\(824\) −4.67576 −0.162888
\(825\) −0.188475 −0.00656186
\(826\) 5.83274 10.1026i 0.202947 0.351515i
\(827\) −18.8318 32.6177i −0.654847 1.13423i −0.981932 0.189233i \(-0.939400\pi\)
0.327085 0.944995i \(-0.393934\pi\)
\(828\) 2.86095 0.0994248
\(829\) 2.91402 5.04724i 0.101208 0.175298i −0.810974 0.585082i \(-0.801062\pi\)
0.912183 + 0.409784i \(0.134396\pi\)
\(830\) 0.0261304 0.0452591i 0.000906998 0.00157097i
\(831\) 0.891572 1.54425i 0.0309283 0.0535694i
\(832\) −15.7597 27.2966i −0.546369 0.946339i
\(833\) 1.63578 + 2.83325i 0.0566764 + 0.0981664i
\(834\) 0.191265 0.331281i 0.00662298 0.0114713i
\(835\) −6.29101 + 10.8964i −0.217710 + 0.377084i
\(836\) −13.8065 + 23.9135i −0.477506 + 0.827065i
\(837\) 2.37697 0.0821601
\(838\) 3.71205 + 6.42946i 0.128231 + 0.222102i
\(839\) 20.4051 35.3427i 0.704462 1.22016i −0.262423 0.964953i \(-0.584522\pi\)
0.966885 0.255211i \(-0.0821450\pi\)
\(840\) −0.355205 −0.0122557
\(841\) 41.4669 1.42989
\(842\) −2.06270 + 3.57271i −0.0710855 + 0.123124i
\(843\) 0.550773 0.0189696
\(844\) −10.9170 18.9088i −0.375779 0.650868i
\(845\) 25.3458 0.871920
\(846\) 5.95579 + 10.3157i 0.204764 + 0.354662i
\(847\) −9.49337 16.4430i −0.326196 0.564988i
\(848\) −7.60335 13.1694i −0.261100 0.452239i
\(849\) 0.382736 0.662918i 0.0131355 0.0227513i
\(850\) 1.72961 0.0593251
\(851\) 1.39288 2.77794i 0.0477474 0.0952264i
\(852\) 2.44470 0.0837541
\(853\) 7.13107 12.3514i 0.244163 0.422903i −0.717733 0.696319i \(-0.754820\pi\)
0.961896 + 0.273415i \(0.0881534\pi\)
\(854\) −1.09234 1.89199i −0.0373792 0.0647426i
\(855\) 10.8336 + 18.7643i 0.370500 + 0.641725i
\(856\) 9.40406 + 16.2883i 0.321424 + 0.556723i
\(857\) 25.9914 0.887851 0.443925 0.896064i \(-0.353586\pi\)
0.443925 + 0.896064i \(0.353586\pi\)
\(858\) 0.208769 + 0.361598i 0.00712725 + 0.0123448i
\(859\) −29.8786 −1.01944 −0.509722 0.860339i \(-0.670252\pi\)
−0.509722 + 0.860339i \(0.670252\pi\)
\(860\) −3.74845 + 6.49250i −0.127821 + 0.221392i
\(861\) 0.729256 0.0248530
\(862\) 0.257747 0.00877889
\(863\) 20.1684 34.9327i 0.686540 1.18912i −0.286410 0.958107i \(-0.592462\pi\)
0.972950 0.231015i \(-0.0742047\pi\)
\(864\) −1.09032 1.88848i −0.0370933 0.0642475i
\(865\) 4.03977 0.137356
\(866\) 5.09371 8.82256i 0.173091 0.299803i
\(867\) −0.294943 + 0.510856i −0.0100168 + 0.0173496i
\(868\) 11.1170 19.2552i 0.377334 0.653562i
\(869\) −9.72085 16.8370i −0.329757 0.571157i
\(870\) −0.138969 0.240701i −0.00471149 0.00816054i
\(871\) 12.1787 21.0941i 0.412658 0.714745i
\(872\) 0.398754 0.690662i 0.0135035 0.0233888i
\(873\) 28.0487 48.5818i 0.949304 1.64424i
\(874\) −1.32381 −0.0447786
\(875\) 1.38534 + 2.39948i 0.0468331 + 0.0811173i
\(876\) 0.409489 0.709256i 0.0138354 0.0239636i
\(877\) −14.2522 −0.481262 −0.240631 0.970617i \(-0.577354\pi\)
−0.240631 + 0.970617i \(0.577354\pi\)
\(878\) −8.18806 −0.276334
\(879\) 0.346611 0.600347i 0.0116909 0.0202492i
\(880\) −6.61544 −0.223006
\(881\) 4.96811 + 8.60501i 0.167380 + 0.289910i 0.937498 0.347991i \(-0.113136\pi\)
−0.770118 + 0.637901i \(0.779803\pi\)
\(882\) 0.724191 0.0243848
\(883\) −21.1285 36.5957i −0.711031 1.23154i −0.964470 0.264191i \(-0.914895\pi\)
0.253439 0.967351i \(-0.418438\pi\)
\(884\) 28.0222 + 48.5358i 0.942488 + 1.63244i
\(885\) 0.544596 + 0.943269i 0.0183064 + 0.0317076i
\(886\) 0.450126 0.779641i 0.0151223 0.0261926i
\(887\) −28.2372 −0.948113 −0.474056 0.880494i \(-0.657211\pi\)
−0.474056 + 0.880494i \(0.657211\pi\)
\(888\) −0.778469 + 0.0458459i −0.0261237 + 0.00153849i
\(889\) 1.81379 0.0608325
\(890\) −2.96516 + 5.13581i −0.0993924 + 0.172153i
\(891\) 9.08577 + 15.7370i 0.304385 + 0.527210i
\(892\) −2.33928 4.05175i −0.0783248 0.135663i
\(893\) 40.3087 + 69.8167i 1.34888 + 2.33633i
\(894\) 0.0161867 0.000541365
\(895\) 5.31632 + 9.20813i 0.177705 + 0.307794i
\(896\) −26.8373 −0.896571
\(897\) 0.146394 0.253561i 0.00488794 0.00846617i
\(898\) −13.4414 −0.448546
\(899\) 35.9843 1.20014
\(900\) −2.80000 + 4.84975i −0.0933334 + 0.161658i
\(901\) 11.3160 + 19.5999i 0.376990 + 0.652966i
\(902\) −2.07198 −0.0689894
\(903\) −0.513454 + 0.889329i −0.0170867 + 0.0295950i
\(904\) −2.46303 + 4.26609i −0.0819190 + 0.141888i
\(905\) −0.312453 + 0.541185i −0.0103863 + 0.0179896i
\(906\) 0.0657539 + 0.113889i 0.00218453 + 0.00378371i
\(907\) 10.5036 + 18.1928i 0.348767 + 0.604081i 0.986031 0.166564i \(-0.0532673\pi\)
−0.637264 + 0.770645i \(0.719934\pi\)
\(908\) 2.38985 4.13934i 0.0793100 0.137369i
\(909\) 6.73081 11.6581i 0.223247 0.386675i
\(910\) 3.06901 5.31569i 0.101737 0.176213i
\(911\) 10.1234 0.335403 0.167701 0.985838i \(-0.446366\pi\)
0.167701 + 0.985838i \(0.446366\pi\)
\(912\) −1.08878 1.88583i −0.0360532 0.0624460i
\(913\) 0.148745 0.257635i 0.00492276 0.00852646i
\(914\) 6.95413 0.230022
\(915\) 0.203981 0.00674342
\(916\) −1.14861 + 1.98945i −0.0379512 + 0.0657334i
\(917\) −7.93891 −0.262166
\(918\) 0.479536 + 0.830580i 0.0158270 + 0.0274132i
\(919\) 32.6466 1.07691 0.538456 0.842654i \(-0.319008\pi\)
0.538456 + 0.842654i \(0.319008\pi\)
\(920\) −0.353844 0.612875i −0.0116659 0.0202059i
\(921\) −0.466059 0.807238i −0.0153572 0.0265994i
\(922\) −3.39332 5.87740i −0.111753 0.193562i
\(923\) −43.6891 + 75.6718i −1.43804 + 2.49077i
\(924\) −0.977574 −0.0321598
\(925\) 3.34582 + 5.07991i 0.110010 + 0.167026i
\(926\) −0.0781683 −0.00256877
\(927\) −5.04872 + 8.74464i −0.165822 + 0.287212i
\(928\) −16.5060 28.5892i −0.541836 0.938487i
\(929\) 20.7398 + 35.9224i 0.680451 + 1.17858i 0.974843 + 0.222891i \(0.0715494\pi\)
−0.294392 + 0.955685i \(0.595117\pi\)
\(930\) −0.0709653 0.122916i −0.00232704 0.00403056i
\(931\) 4.90131 0.160634
\(932\) 14.6291 + 25.3383i 0.479191 + 0.829984i
\(933\) 0.551558 0.0180572
\(934\) −2.13989 + 3.70640i −0.0700194 + 0.121277i
\(935\) 9.84568 0.321988
\(936\) 25.6601 0.838726
\(937\) −22.6417 + 39.2166i −0.739673 + 1.28115i 0.212970 + 0.977059i \(0.431686\pi\)
−0.952643 + 0.304092i \(0.901647\pi\)
\(938\) −1.94945 3.37654i −0.0636517 0.110248i
\(939\) −1.30890 −0.0427143
\(940\) −10.4180 + 18.0446i −0.339799 + 0.588549i
\(941\) 1.90807 3.30488i 0.0622014 0.107736i −0.833248 0.552900i \(-0.813521\pi\)
0.895449 + 0.445164i \(0.146855\pi\)
\(942\) 0.176157 0.305113i 0.00573952 0.00994113i
\(943\) 0.726461 + 1.25827i 0.0236568 + 0.0409748i
\(944\) 19.1152 + 33.1086i 0.622148 + 1.07759i
\(945\) −0.768175 + 1.33052i −0.0249887 + 0.0432818i
\(946\) 1.45884 2.52678i 0.0474309 0.0821528i
\(947\) 2.88363 4.99460i 0.0937055 0.162303i −0.815362 0.578951i \(-0.803462\pi\)
0.909068 + 0.416649i \(0.136795\pi\)
\(948\) 1.65399 0.0537192
\(949\) 14.6359 + 25.3502i 0.475102 + 0.822901i
\(950\) 1.29561 2.24407i 0.0420352 0.0728071i
\(951\) −0.452350 −0.0146685
\(952\) 18.5554 0.601385
\(953\) 17.0826 29.5879i 0.553359 0.958446i −0.444670 0.895694i \(-0.646679\pi\)
0.998029 0.0627517i \(-0.0199876\pi\)
\(954\) 5.00981 0.162198
\(955\) −4.72399 8.18218i −0.152865 0.264769i
\(956\) −31.1226 −1.00658
\(957\) −0.791073 1.37018i −0.0255717 0.0442916i
\(958\) −3.19059 5.52626i −0.103083 0.178545i
\(959\) −20.2021 34.9911i −0.652361 1.12992i
\(960\) 0.235538 0.407964i 0.00760197 0.0131670i
\(961\) −12.6244 −0.407240
\(962\) 6.03997 12.0460i 0.194737 0.388379i
\(963\) 40.6167 1.30886
\(964\) 1.68441 2.91748i 0.0542512 0.0939659i
\(965\) −8.56203 14.8299i −0.275621 0.477390i
\(966\) −0.0234333 0.0405877i −0.000753955 0.00130589i
\(967\) −16.2464 28.1396i −0.522449 0.904908i −0.999659 0.0261184i \(-0.991685\pi\)
0.477210 0.878789i \(-0.341648\pi\)
\(968\) −9.49256 −0.305102
\(969\) 1.62042 + 2.80666i 0.0520555 + 0.0901628i
\(970\) −6.70882 −0.215407
\(971\) 16.8070 29.1106i 0.539362 0.934203i −0.459576 0.888138i \(-0.651999\pi\)
0.998938 0.0460644i \(-0.0146680\pi\)
\(972\) −4.66004 −0.149471
\(973\) −32.0109 −1.02622
\(974\) −3.40296 + 5.89409i −0.109038 + 0.188859i
\(975\) 0.286550 + 0.496320i 0.00917696 + 0.0158950i
\(976\) 7.15971 0.229177
\(977\) 25.2908 43.8050i 0.809126 1.40145i −0.104344 0.994541i \(-0.533274\pi\)
0.913470 0.406906i \(-0.133392\pi\)
\(978\) 0.366158 0.634205i 0.0117085 0.0202796i
\(979\) −16.8790 + 29.2353i −0.539455 + 0.934364i
\(980\) 0.633387 + 1.09706i 0.0202328 + 0.0350443i
\(981\) −0.861122 1.49151i −0.0274935 0.0476202i
\(982\) 5.71069 9.89120i 0.182235 0.315641i
\(983\) −15.5754 + 26.9773i −0.496777 + 0.860442i −0.999993 0.00371817i \(-0.998816\pi\)
0.503217 + 0.864160i \(0.332150\pi\)
\(984\) 0.182299 0.315750i 0.00581147 0.0100658i
\(985\) −2.29674 −0.0731802
\(986\) 7.25956 + 12.5739i 0.231191 + 0.400435i
\(987\) −1.42704 + 2.47171i −0.0454232 + 0.0786753i
\(988\) 83.9632 2.67123
\(989\) −2.04595 −0.0650573
\(990\) 1.08972 1.88745i 0.0346335 0.0599870i
\(991\) −16.6891 −0.530146 −0.265073 0.964228i \(-0.585396\pi\)
−0.265073 + 0.964228i \(0.585396\pi\)
\(992\) −8.42887 14.5992i −0.267617 0.463526i
\(993\) −2.26571 −0.0719000
\(994\) 6.99334 + 12.1128i 0.221815 + 0.384196i
\(995\) −12.7646 22.1089i −0.404664 0.700899i
\(996\) 0.0126545 + 0.0219182i 0.000400972 + 0.000694503i
\(997\) −5.87262 + 10.1717i −0.185988 + 0.322140i −0.943909 0.330206i \(-0.892882\pi\)
0.757921 + 0.652346i \(0.226215\pi\)
\(998\) −3.25732 −0.103109
\(999\) −1.51181 + 3.01512i −0.0478315 + 0.0953940i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 185.2.e.a.121.4 yes 14
5.2 odd 4 925.2.o.b.824.8 28
5.3 odd 4 925.2.o.b.824.7 28
5.4 even 2 925.2.e.c.676.4 14
37.10 even 3 6845.2.a.l.1.4 7
37.26 even 3 inner 185.2.e.a.26.4 14
37.27 even 6 6845.2.a.k.1.4 7
185.63 odd 12 925.2.o.b.174.8 28
185.137 odd 12 925.2.o.b.174.7 28
185.174 even 6 925.2.e.c.26.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.e.a.26.4 14 37.26 even 3 inner
185.2.e.a.121.4 yes 14 1.1 even 1 trivial
925.2.e.c.26.4 14 185.174 even 6
925.2.e.c.676.4 14 5.4 even 2
925.2.o.b.174.7 28 185.137 odd 12
925.2.o.b.174.8 28 185.63 odd 12
925.2.o.b.824.7 28 5.3 odd 4
925.2.o.b.824.8 28 5.2 odd 4
6845.2.a.k.1.4 7 37.27 even 6
6845.2.a.l.1.4 7 37.10 even 3