Properties

Label 184.4.i.a.25.8
Level $184$
Weight $4$
Character 184.25
Analytic conductor $10.856$
Analytic rank $0$
Dimension $90$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [184,4,Mod(9,184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(184, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 0, 10])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("184.9"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 184.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [90,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8563514411\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(9\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 25.8
Character \(\chi\) \(=\) 184.25
Dual form 184.4.i.a.81.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.961609 + 6.68814i) q^{3} +(-17.3126 - 5.08343i) q^{5} +(23.0068 - 26.5513i) q^{7} +(-17.9002 + 5.25597i) q^{9} +(-3.18916 + 2.04955i) q^{11} +(-4.30168 - 4.96440i) q^{13} +(17.3508 - 120.677i) q^{15} +(33.6407 - 73.6628i) q^{17} +(-25.8795 - 56.6682i) q^{19} +(199.702 + 128.341i) q^{21} +(86.3597 + 68.6222i) q^{23} +(168.727 + 108.434i) q^{25} +(23.4213 + 51.2855i) q^{27} +(9.92531 - 21.7334i) q^{29} +(36.0043 - 250.416i) q^{31} +(-16.7744 - 19.3587i) q^{33} +(-533.278 + 342.717i) q^{35} +(370.177 - 108.694i) q^{37} +(29.0661 - 33.5440i) q^{39} +(-323.173 - 94.8922i) q^{41} +(3.75057 + 26.0858i) q^{43} +336.617 q^{45} -44.9208 q^{47} +(-126.843 - 882.210i) q^{49} +(525.016 + 154.159i) q^{51} +(-38.5510 + 44.4902i) q^{53} +(65.6313 - 19.2711i) q^{55} +(354.119 - 227.578i) q^{57} +(-421.079 - 485.951i) q^{59} +(-7.67877 + 53.4070i) q^{61} +(-272.273 + 596.195i) q^{63} +(49.2369 + 107.814i) q^{65} +(-727.606 - 467.604i) q^{67} +(-375.910 + 643.573i) q^{69} +(227.836 + 146.422i) q^{71} +(152.196 + 333.263i) q^{73} +(-562.974 + 1232.74i) q^{75} +(-18.9542 + 131.830i) q^{77} +(-581.283 - 670.836i) q^{79} +(-744.229 + 478.287i) q^{81} +(-497.557 + 146.096i) q^{83} +(-956.866 + 1104.28i) q^{85} +(154.900 + 45.4828i) q^{87} +(37.3154 + 259.534i) q^{89} -230.779 q^{91} +1709.44 q^{93} +(159.972 + 1112.63i) q^{95} +(1257.48 + 369.229i) q^{97} +(46.3142 - 53.4494i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 2 q^{3} - 87 q^{7} - 113 q^{9} - 6 q^{11} - 8 q^{13} - 6 q^{15} + 306 q^{17} + 275 q^{19} + 350 q^{21} - 23 q^{23} - 289 q^{25} + 511 q^{27} + 309 q^{29} - 314 q^{31} - 1444 q^{33} - 1895 q^{35}+ \cdots + 5967 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/184\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(93\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.961609 + 6.68814i 0.185062 + 1.28713i 0.844574 + 0.535439i \(0.179854\pi\)
−0.659512 + 0.751694i \(0.729237\pi\)
\(4\) 0 0
\(5\) −17.3126 5.08343i −1.54848 0.454676i −0.607836 0.794062i \(-0.707962\pi\)
−0.940647 + 0.339387i \(0.889780\pi\)
\(6\) 0 0
\(7\) 23.0068 26.5513i 1.24225 1.43363i 0.381685 0.924292i \(-0.375344\pi\)
0.860565 0.509340i \(-0.170111\pi\)
\(8\) 0 0
\(9\) −17.9002 + 5.25597i −0.662970 + 0.194666i
\(10\) 0 0
\(11\) −3.18916 + 2.04955i −0.0874152 + 0.0561784i −0.583618 0.812028i \(-0.698364\pi\)
0.496203 + 0.868207i \(0.334727\pi\)
\(12\) 0 0
\(13\) −4.30168 4.96440i −0.0917747 0.105914i 0.708005 0.706208i \(-0.249596\pi\)
−0.799779 + 0.600294i \(0.795050\pi\)
\(14\) 0 0
\(15\) 17.3508 120.677i 0.298663 2.07725i
\(16\) 0 0
\(17\) 33.6407 73.6628i 0.479945 1.05093i −0.502534 0.864558i \(-0.667599\pi\)
0.982479 0.186375i \(-0.0596740\pi\)
\(18\) 0 0
\(19\) −25.8795 56.6682i −0.312482 0.684240i 0.686602 0.727034i \(-0.259102\pi\)
−0.999084 + 0.0427933i \(0.986374\pi\)
\(20\) 0 0
\(21\) 199.702 + 128.341i 2.07517 + 1.33363i
\(22\) 0 0
\(23\) 86.3597 + 68.6222i 0.782923 + 0.622118i
\(24\) 0 0
\(25\) 168.727 + 108.434i 1.34982 + 0.867474i
\(26\) 0 0
\(27\) 23.4213 + 51.2855i 0.166942 + 0.365552i
\(28\) 0 0
\(29\) 9.92531 21.7334i 0.0635546 0.139165i −0.875189 0.483780i \(-0.839263\pi\)
0.938744 + 0.344615i \(0.111991\pi\)
\(30\) 0 0
\(31\) 36.0043 250.416i 0.208599 1.45084i −0.569135 0.822244i \(-0.692722\pi\)
0.777734 0.628593i \(-0.216369\pi\)
\(32\) 0 0
\(33\) −16.7744 19.3587i −0.0884862 0.102119i
\(34\) 0 0
\(35\) −533.278 + 342.717i −2.57544 + 1.65514i
\(36\) 0 0
\(37\) 370.177 108.694i 1.64478 0.482950i 0.677257 0.735747i \(-0.263169\pi\)
0.967519 + 0.252797i \(0.0813506\pi\)
\(38\) 0 0
\(39\) 29.0661 33.5440i 0.119341 0.137727i
\(40\) 0 0
\(41\) −323.173 94.8922i −1.23100 0.361455i −0.399375 0.916788i \(-0.630773\pi\)
−0.831629 + 0.555332i \(0.812591\pi\)
\(42\) 0 0
\(43\) 3.75057 + 26.0858i 0.0133013 + 0.0925127i 0.995391 0.0959030i \(-0.0305739\pi\)
−0.982089 + 0.188416i \(0.939665\pi\)
\(44\) 0 0
\(45\) 336.617 1.11511
\(46\) 0 0
\(47\) −44.9208 −0.139412 −0.0697062 0.997568i \(-0.522206\pi\)
−0.0697062 + 0.997568i \(0.522206\pi\)
\(48\) 0 0
\(49\) −126.843 882.210i −0.369803 2.57204i
\(50\) 0 0
\(51\) 525.016 + 154.159i 1.44151 + 0.423265i
\(52\) 0 0
\(53\) −38.5510 + 44.4902i −0.0999129 + 0.115306i −0.803504 0.595300i \(-0.797033\pi\)
0.703591 + 0.710605i \(0.251579\pi\)
\(54\) 0 0
\(55\) 65.6313 19.2711i 0.160904 0.0472457i
\(56\) 0 0
\(57\) 354.119 227.578i 0.822880 0.528833i
\(58\) 0 0
\(59\) −421.079 485.951i −0.929149 1.07230i −0.997212 0.0746141i \(-0.976228\pi\)
0.0680635 0.997681i \(-0.478318\pi\)
\(60\) 0 0
\(61\) −7.67877 + 53.4070i −0.0161175 + 0.112099i −0.996292 0.0860368i \(-0.972580\pi\)
0.980174 + 0.198136i \(0.0634888\pi\)
\(62\) 0 0
\(63\) −272.273 + 596.195i −0.544496 + 1.19228i
\(64\) 0 0
\(65\) 49.2369 + 107.814i 0.0939552 + 0.205733i
\(66\) 0 0
\(67\) −727.606 467.604i −1.32673 0.852640i −0.330886 0.943671i \(-0.607347\pi\)
−0.995848 + 0.0910308i \(0.970984\pi\)
\(68\) 0 0
\(69\) −375.910 + 643.573i −0.655859 + 1.12286i
\(70\) 0 0
\(71\) 227.836 + 146.422i 0.380834 + 0.244747i 0.717026 0.697046i \(-0.245503\pi\)
−0.336192 + 0.941793i \(0.609139\pi\)
\(72\) 0 0
\(73\) 152.196 + 333.263i 0.244016 + 0.534322i 0.991523 0.129933i \(-0.0414763\pi\)
−0.747506 + 0.664255i \(0.768749\pi\)
\(74\) 0 0
\(75\) −562.974 + 1232.74i −0.866755 + 1.89793i
\(76\) 0 0
\(77\) −18.9542 + 131.830i −0.0280524 + 0.195109i
\(78\) 0 0
\(79\) −581.283 670.836i −0.827841 0.955379i 0.171716 0.985147i \(-0.445069\pi\)
−0.999557 + 0.0297671i \(0.990523\pi\)
\(80\) 0 0
\(81\) −744.229 + 478.287i −1.02089 + 0.656086i
\(82\) 0 0
\(83\) −497.557 + 146.096i −0.658000 + 0.193206i −0.593653 0.804721i \(-0.702315\pi\)
−0.0643471 + 0.997928i \(0.520496\pi\)
\(84\) 0 0
\(85\) −956.866 + 1104.28i −1.22102 + 1.40913i
\(86\) 0 0
\(87\) 154.900 + 45.4828i 0.190886 + 0.0560491i
\(88\) 0 0
\(89\) 37.3154 + 259.534i 0.0444429 + 0.309107i 0.999902 + 0.0139845i \(0.00445154\pi\)
−0.955459 + 0.295123i \(0.904639\pi\)
\(90\) 0 0
\(91\) −230.779 −0.265848
\(92\) 0 0
\(93\) 1709.44 1.90602
\(94\) 0 0
\(95\) 159.972 + 1112.63i 0.172766 + 1.20161i
\(96\) 0 0
\(97\) 1257.48 + 369.229i 1.31626 + 0.386490i 0.863143 0.504960i \(-0.168493\pi\)
0.453120 + 0.891450i \(0.350311\pi\)
\(98\) 0 0
\(99\) 46.3142 53.4494i 0.0470177 0.0542613i
\(100\) 0 0
\(101\) 756.114 222.015i 0.744912 0.218726i 0.112816 0.993616i \(-0.464013\pi\)
0.632096 + 0.774890i \(0.282195\pi\)
\(102\) 0 0
\(103\) 1706.83 1096.91i 1.63281 1.04934i 0.685970 0.727630i \(-0.259378\pi\)
0.946838 0.321712i \(-0.104258\pi\)
\(104\) 0 0
\(105\) −2804.94 3237.08i −2.60700 3.00863i
\(106\) 0 0
\(107\) −68.3755 + 475.562i −0.0617767 + 0.429666i 0.935338 + 0.353756i \(0.115096\pi\)
−0.997115 + 0.0759109i \(0.975814\pi\)
\(108\) 0 0
\(109\) −299.023 + 654.769i −0.262763 + 0.575371i −0.994323 0.106406i \(-0.966066\pi\)
0.731559 + 0.681778i \(0.238793\pi\)
\(110\) 0 0
\(111\) 1082.92 + 2371.27i 0.926006 + 2.02767i
\(112\) 0 0
\(113\) 1840.46 + 1182.79i 1.53218 + 0.984669i 0.989469 + 0.144747i \(0.0462367\pi\)
0.542706 + 0.839923i \(0.317400\pi\)
\(114\) 0 0
\(115\) −1146.27 1627.03i −0.929482 1.31932i
\(116\) 0 0
\(117\) 103.094 + 66.2542i 0.0814616 + 0.0523522i
\(118\) 0 0
\(119\) −1181.88 2587.95i −0.910440 1.99359i
\(120\) 0 0
\(121\) −546.947 + 1197.65i −0.410930 + 0.899810i
\(122\) 0 0
\(123\) 323.886 2252.67i 0.237429 1.65136i
\(124\) 0 0
\(125\) −892.887 1030.45i −0.638898 0.737328i
\(126\) 0 0
\(127\) −2111.11 + 1356.73i −1.47505 + 0.947955i −0.477450 + 0.878659i \(0.658439\pi\)
−0.997596 + 0.0692962i \(0.977925\pi\)
\(128\) 0 0
\(129\) −170.859 + 50.1686i −0.116615 + 0.0342411i
\(130\) 0 0
\(131\) −260.043 + 300.105i −0.173435 + 0.200155i −0.835812 0.549016i \(-0.815003\pi\)
0.662376 + 0.749171i \(0.269548\pi\)
\(132\) 0 0
\(133\) −2100.01 616.620i −1.36913 0.402013i
\(134\) 0 0
\(135\) −144.777 1006.94i −0.0922992 0.641955i
\(136\) 0 0
\(137\) −907.321 −0.565823 −0.282911 0.959146i \(-0.591300\pi\)
−0.282911 + 0.959146i \(0.591300\pi\)
\(138\) 0 0
\(139\) 2830.06 1.72692 0.863462 0.504414i \(-0.168291\pi\)
0.863462 + 0.504414i \(0.168291\pi\)
\(140\) 0 0
\(141\) −43.1963 300.437i −0.0257999 0.179442i
\(142\) 0 0
\(143\) 23.8935 + 7.01577i 0.0139726 + 0.00410271i
\(144\) 0 0
\(145\) −282.313 + 325.806i −0.161688 + 0.186598i
\(146\) 0 0
\(147\) 5778.37 1696.68i 3.24212 0.951972i
\(148\) 0 0
\(149\) 742.090 476.913i 0.408016 0.262216i −0.320495 0.947250i \(-0.603849\pi\)
0.728511 + 0.685034i \(0.240213\pi\)
\(150\) 0 0
\(151\) 886.322 + 1022.87i 0.477668 + 0.551258i 0.942529 0.334126i \(-0.108441\pi\)
−0.464860 + 0.885384i \(0.653896\pi\)
\(152\) 0 0
\(153\) −215.005 + 1495.39i −0.113609 + 0.790166i
\(154\) 0 0
\(155\) −1896.30 + 4152.31i −0.982672 + 2.15175i
\(156\) 0 0
\(157\) −512.185 1121.53i −0.260362 0.570113i 0.733632 0.679547i \(-0.237824\pi\)
−0.993994 + 0.109434i \(0.965096\pi\)
\(158\) 0 0
\(159\) −334.628 215.052i −0.166904 0.107263i
\(160\) 0 0
\(161\) 3808.86 714.181i 1.86448 0.349599i
\(162\) 0 0
\(163\) −27.3953 17.6059i −0.0131642 0.00846012i 0.534042 0.845458i \(-0.320672\pi\)
−0.547206 + 0.836998i \(0.684309\pi\)
\(164\) 0 0
\(165\) 191.999 + 420.420i 0.0905886 + 0.198361i
\(166\) 0 0
\(167\) 1411.67 3091.12i 0.654120 1.43232i −0.233782 0.972289i \(-0.575110\pi\)
0.887902 0.460034i \(-0.152163\pi\)
\(168\) 0 0
\(169\) 306.525 2131.93i 0.139520 0.970381i
\(170\) 0 0
\(171\) 761.094 + 878.349i 0.340364 + 0.392801i
\(172\) 0 0
\(173\) −2007.69 + 1290.26i −0.882322 + 0.567034i −0.901499 0.432782i \(-0.857532\pi\)
0.0191763 + 0.999816i \(0.493896\pi\)
\(174\) 0 0
\(175\) 6760.94 1985.19i 2.92045 0.857521i
\(176\) 0 0
\(177\) 2845.19 3283.53i 1.20824 1.39438i
\(178\) 0 0
\(179\) 958.182 + 281.348i 0.400100 + 0.117480i 0.475591 0.879667i \(-0.342234\pi\)
−0.0754911 + 0.997146i \(0.524052\pi\)
\(180\) 0 0
\(181\) 275.971 + 1919.42i 0.113330 + 0.788228i 0.964641 + 0.263567i \(0.0848988\pi\)
−0.851311 + 0.524661i \(0.824192\pi\)
\(182\) 0 0
\(183\) −364.577 −0.147270
\(184\) 0 0
\(185\) −6961.25 −2.76649
\(186\) 0 0
\(187\) 43.6900 + 303.871i 0.0170852 + 0.118830i
\(188\) 0 0
\(189\) 1900.54 + 558.050i 0.731451 + 0.214773i
\(190\) 0 0
\(191\) −2410.96 + 2782.39i −0.913355 + 1.05407i 0.0849798 + 0.996383i \(0.472917\pi\)
−0.998335 + 0.0576852i \(0.981628\pi\)
\(192\) 0 0
\(193\) −1864.73 + 547.533i −0.695471 + 0.204209i −0.610315 0.792159i \(-0.708957\pi\)
−0.0851562 + 0.996368i \(0.527139\pi\)
\(194\) 0 0
\(195\) −673.727 + 432.978i −0.247418 + 0.159006i
\(196\) 0 0
\(197\) −425.734 491.323i −0.153971 0.177692i 0.673524 0.739166i \(-0.264780\pi\)
−0.827495 + 0.561474i \(0.810235\pi\)
\(198\) 0 0
\(199\) −280.996 + 1954.37i −0.100097 + 0.696189i 0.876546 + 0.481319i \(0.159842\pi\)
−0.976643 + 0.214870i \(0.931067\pi\)
\(200\) 0 0
\(201\) 2427.73 5315.98i 0.851933 1.86547i
\(202\) 0 0
\(203\) −348.699 763.545i −0.120561 0.263992i
\(204\) 0 0
\(205\) 5112.58 + 3285.65i 1.74184 + 1.11941i
\(206\) 0 0
\(207\) −1906.53 774.446i −0.640160 0.260037i
\(208\) 0 0
\(209\) 198.678 + 127.683i 0.0657552 + 0.0422583i
\(210\) 0 0
\(211\) 612.017 + 1340.13i 0.199682 + 0.437243i 0.982811 0.184617i \(-0.0591045\pi\)
−0.783128 + 0.621860i \(0.786377\pi\)
\(212\) 0 0
\(213\) −760.198 + 1664.60i −0.244544 + 0.535477i
\(214\) 0 0
\(215\) 67.6732 470.678i 0.0214664 0.149302i
\(216\) 0 0
\(217\) −5820.50 6717.22i −1.82084 2.10136i
\(218\) 0 0
\(219\) −2082.56 + 1338.38i −0.642585 + 0.412964i
\(220\) 0 0
\(221\) −510.403 + 149.868i −0.155355 + 0.0456163i
\(222\) 0 0
\(223\) −697.786 + 805.287i −0.209539 + 0.241821i −0.850784 0.525515i \(-0.823873\pi\)
0.641245 + 0.767336i \(0.278418\pi\)
\(224\) 0 0
\(225\) −3590.17 1054.17i −1.06376 0.312347i
\(226\) 0 0
\(227\) 322.778 + 2244.97i 0.0943767 + 0.656405i 0.981014 + 0.193938i \(0.0621262\pi\)
−0.886637 + 0.462466i \(0.846965\pi\)
\(228\) 0 0
\(229\) 3931.50 1.13450 0.567251 0.823545i \(-0.308007\pi\)
0.567251 + 0.823545i \(0.308007\pi\)
\(230\) 0 0
\(231\) −899.922 −0.256323
\(232\) 0 0
\(233\) 631.441 + 4391.77i 0.177541 + 1.23483i 0.862429 + 0.506178i \(0.168942\pi\)
−0.684888 + 0.728648i \(0.740149\pi\)
\(234\) 0 0
\(235\) 777.695 + 228.352i 0.215878 + 0.0633874i
\(236\) 0 0
\(237\) 3927.68 4532.78i 1.07650 1.24235i
\(238\) 0 0
\(239\) −952.822 + 279.774i −0.257878 + 0.0757199i −0.408116 0.912930i \(-0.633814\pi\)
0.150238 + 0.988650i \(0.451996\pi\)
\(240\) 0 0
\(241\) −3766.64 + 2420.67i −1.00677 + 0.647009i −0.936554 0.350523i \(-0.886004\pi\)
−0.0702113 + 0.997532i \(0.522367\pi\)
\(242\) 0 0
\(243\) −2917.63 3367.12i −0.770231 0.888894i
\(244\) 0 0
\(245\) −2288.68 + 15918.1i −0.596809 + 4.15090i
\(246\) 0 0
\(247\) −169.998 + 372.244i −0.0437924 + 0.0958920i
\(248\) 0 0
\(249\) −1455.56 3187.24i −0.370453 0.811178i
\(250\) 0 0
\(251\) 1655.08 + 1063.66i 0.416207 + 0.267480i 0.731941 0.681368i \(-0.238614\pi\)
−0.315734 + 0.948848i \(0.602251\pi\)
\(252\) 0 0
\(253\) −416.059 41.8488i −0.103389 0.0103992i
\(254\) 0 0
\(255\) −8305.73 5337.77i −2.03970 1.31084i
\(256\) 0 0
\(257\) 897.265 + 1964.74i 0.217781 + 0.476875i 0.986716 0.162452i \(-0.0519403\pi\)
−0.768935 + 0.639327i \(0.779213\pi\)
\(258\) 0 0
\(259\) 5630.63 12329.4i 1.35085 2.95795i
\(260\) 0 0
\(261\) −63.4348 + 441.199i −0.0150441 + 0.104634i
\(262\) 0 0
\(263\) −3908.47 4510.61i −0.916374 1.05755i −0.998144 0.0609010i \(-0.980603\pi\)
0.0817696 0.996651i \(-0.473943\pi\)
\(264\) 0 0
\(265\) 893.579 574.269i 0.207140 0.133121i
\(266\) 0 0
\(267\) −1699.92 + 499.141i −0.389638 + 0.114408i
\(268\) 0 0
\(269\) −4023.71 + 4643.61i −0.912007 + 1.05251i 0.0864094 + 0.996260i \(0.472461\pi\)
−0.998417 + 0.0562526i \(0.982085\pi\)
\(270\) 0 0
\(271\) 695.177 + 204.122i 0.155827 + 0.0457548i 0.358715 0.933447i \(-0.383215\pi\)
−0.202889 + 0.979202i \(0.565033\pi\)
\(272\) 0 0
\(273\) −221.919 1543.48i −0.0491984 0.342182i
\(274\) 0 0
\(275\) −760.339 −0.166728
\(276\) 0 0
\(277\) 3912.32 0.848624 0.424312 0.905516i \(-0.360516\pi\)
0.424312 + 0.905516i \(0.360516\pi\)
\(278\) 0 0
\(279\) 671.692 + 4671.72i 0.144133 + 1.00247i
\(280\) 0 0
\(281\) 3747.53 + 1100.37i 0.795582 + 0.233604i 0.654171 0.756347i \(-0.273018\pi\)
0.141411 + 0.989951i \(0.454836\pi\)
\(282\) 0 0
\(283\) 3815.09 4402.84i 0.801355 0.924813i −0.197100 0.980383i \(-0.563152\pi\)
0.998455 + 0.0555709i \(0.0176979\pi\)
\(284\) 0 0
\(285\) −7287.58 + 2139.83i −1.51466 + 0.444745i
\(286\) 0 0
\(287\) −9954.68 + 6397.48i −2.04741 + 1.31579i
\(288\) 0 0
\(289\) −1077.19 1243.14i −0.219252 0.253030i
\(290\) 0 0
\(291\) −1260.25 + 8765.24i −0.253874 + 1.76573i
\(292\) 0 0
\(293\) 4156.13 9100.65i 0.828681 1.81456i 0.348963 0.937136i \(-0.386534\pi\)
0.479718 0.877423i \(-0.340739\pi\)
\(294\) 0 0
\(295\) 4819.66 + 10553.6i 0.951225 + 2.08289i
\(296\) 0 0
\(297\) −179.806 115.554i −0.0351294 0.0225763i
\(298\) 0 0
\(299\) −30.8235 723.914i −0.00596176 0.140017i
\(300\) 0 0
\(301\) 778.899 + 500.568i 0.149153 + 0.0958547i
\(302\) 0 0
\(303\) 2211.95 + 4843.50i 0.419384 + 0.918323i
\(304\) 0 0
\(305\) 404.430 885.578i 0.0759265 0.166256i
\(306\) 0 0
\(307\) −88.3275 + 614.331i −0.0164206 + 0.114208i −0.996383 0.0849740i \(-0.972919\pi\)
0.979963 + 0.199182i \(0.0638284\pi\)
\(308\) 0 0
\(309\) 8977.62 + 10360.7i 1.65281 + 1.90745i
\(310\) 0 0
\(311\) 1163.41 747.678i 0.212125 0.136324i −0.430264 0.902703i \(-0.641580\pi\)
0.642389 + 0.766379i \(0.277943\pi\)
\(312\) 0 0
\(313\) −2801.71 + 822.657i −0.505949 + 0.148560i −0.524739 0.851263i \(-0.675837\pi\)
0.0187894 + 0.999823i \(0.494019\pi\)
\(314\) 0 0
\(315\) 7744.47 8937.59i 1.38524 1.59865i
\(316\) 0 0
\(317\) 3831.56 + 1125.05i 0.678869 + 0.199334i 0.602949 0.797780i \(-0.293992\pi\)
0.0759205 + 0.997114i \(0.475810\pi\)
\(318\) 0 0
\(319\) 12.8902 + 89.6536i 0.00226243 + 0.0157355i
\(320\) 0 0
\(321\) −3246.37 −0.564470
\(322\) 0 0
\(323\) −5044.94 −0.869065
\(324\) 0 0
\(325\) −187.498 1304.08i −0.0320016 0.222576i
\(326\) 0 0
\(327\) −4666.73 1370.27i −0.789207 0.231732i
\(328\) 0 0
\(329\) −1033.48 + 1192.70i −0.173185 + 0.199866i
\(330\) 0 0
\(331\) 438.503 128.756i 0.0728166 0.0213809i −0.245121 0.969492i \(-0.578828\pi\)
0.317938 + 0.948112i \(0.397010\pi\)
\(332\) 0 0
\(333\) −6054.95 + 3891.28i −0.996423 + 0.640362i
\(334\) 0 0
\(335\) 10219.7 + 11794.2i 1.66675 + 1.92353i
\(336\) 0 0
\(337\) 632.880 4401.78i 0.102300 0.711513i −0.872529 0.488562i \(-0.837522\pi\)
0.974830 0.222952i \(-0.0715692\pi\)
\(338\) 0 0
\(339\) −6140.87 + 13446.6i −0.983853 + 2.15434i
\(340\) 0 0
\(341\) 398.415 + 872.408i 0.0632709 + 0.138544i
\(342\) 0 0
\(343\) −16204.6 10414.0i −2.55092 1.63938i
\(344\) 0 0
\(345\) 9779.53 9230.99i 1.52612 1.44052i
\(346\) 0 0
\(347\) −5525.55 3551.05i −0.854833 0.549368i 0.0382460 0.999268i \(-0.487823\pi\)
−0.893079 + 0.449901i \(0.851459\pi\)
\(348\) 0 0
\(349\) −1825.80 3997.95i −0.280037 0.613196i 0.716385 0.697705i \(-0.245795\pi\)
−0.996423 + 0.0845084i \(0.973068\pi\)
\(350\) 0 0
\(351\) 153.851 336.886i 0.0233959 0.0512298i
\(352\) 0 0
\(353\) 385.513 2681.30i 0.0581269 0.404281i −0.939898 0.341456i \(-0.889080\pi\)
0.998025 0.0628250i \(-0.0200110\pi\)
\(354\) 0 0
\(355\) −3200.11 3693.12i −0.478434 0.552143i
\(356\) 0 0
\(357\) 16172.0 10393.1i 2.39752 1.54079i
\(358\) 0 0
\(359\) 11200.1 3288.66i 1.64658 0.483479i 0.678598 0.734510i \(-0.262588\pi\)
0.967979 + 0.251031i \(0.0807698\pi\)
\(360\) 0 0
\(361\) 1950.16 2250.60i 0.284321 0.328124i
\(362\) 0 0
\(363\) −8535.98 2506.39i −1.23422 0.362400i
\(364\) 0 0
\(365\) −940.787 6543.31i −0.134912 0.938336i
\(366\) 0 0
\(367\) −4095.67 −0.582540 −0.291270 0.956641i \(-0.594078\pi\)
−0.291270 + 0.956641i \(0.594078\pi\)
\(368\) 0 0
\(369\) 6283.61 0.886481
\(370\) 0 0
\(371\) 294.336 + 2047.15i 0.0411892 + 0.286477i
\(372\) 0 0
\(373\) 8172.61 + 2399.70i 1.13448 + 0.333114i 0.794468 0.607306i \(-0.207750\pi\)
0.340014 + 0.940420i \(0.389568\pi\)
\(374\) 0 0
\(375\) 6033.16 6962.64i 0.830803 0.958798i
\(376\) 0 0
\(377\) −150.589 + 44.2168i −0.0205722 + 0.00604054i
\(378\) 0 0
\(379\) −5017.29 + 3224.42i −0.680002 + 0.437011i −0.834519 0.550979i \(-0.814254\pi\)
0.154517 + 0.987990i \(0.450618\pi\)
\(380\) 0 0
\(381\) −11104.1 12814.8i −1.49312 1.72315i
\(382\) 0 0
\(383\) 964.135 6705.71i 0.128629 0.894636i −0.818665 0.574271i \(-0.805285\pi\)
0.947294 0.320365i \(-0.103806\pi\)
\(384\) 0 0
\(385\) 998.293 2185.96i 0.132150 0.289368i
\(386\) 0 0
\(387\) −204.242 447.228i −0.0268274 0.0587438i
\(388\) 0 0
\(389\) 2181.41 + 1401.91i 0.284323 + 0.182724i 0.675027 0.737793i \(-0.264132\pi\)
−0.390704 + 0.920517i \(0.627768\pi\)
\(390\) 0 0
\(391\) 7960.10 4053.00i 1.02956 0.524218i
\(392\) 0 0
\(393\) −2257.21 1450.62i −0.289723 0.186193i
\(394\) 0 0
\(395\) 6653.35 + 14568.8i 0.847510 + 1.85579i
\(396\) 0 0
\(397\) 1355.07 2967.19i 0.171307 0.375110i −0.804433 0.594044i \(-0.797531\pi\)
0.975740 + 0.218934i \(0.0702578\pi\)
\(398\) 0 0
\(399\) 2104.65 14638.1i 0.264070 1.83665i
\(400\) 0 0
\(401\) 4219.66 + 4869.74i 0.525485 + 0.606442i 0.954996 0.296620i \(-0.0958593\pi\)
−0.429511 + 0.903062i \(0.641314\pi\)
\(402\) 0 0
\(403\) −1398.04 + 898.467i −0.172808 + 0.111057i
\(404\) 0 0
\(405\) 15315.9 4497.14i 1.87914 0.551765i
\(406\) 0 0
\(407\) −957.780 + 1105.34i −0.116647 + 0.134618i
\(408\) 0 0
\(409\) 3492.90 + 1025.61i 0.422280 + 0.123993i 0.485967 0.873977i \(-0.338468\pi\)
−0.0636866 + 0.997970i \(0.520286\pi\)
\(410\) 0 0
\(411\) −872.489 6068.29i −0.104712 0.728289i
\(412\) 0 0
\(413\) −22590.3 −2.69151
\(414\) 0 0
\(415\) 9356.66 1.10675
\(416\) 0 0
\(417\) 2721.41 + 18927.8i 0.319588 + 2.22278i
\(418\) 0 0
\(419\) −4452.93 1307.50i −0.519188 0.152447i 0.0116313 0.999932i \(-0.496298\pi\)
−0.530819 + 0.847485i \(0.678116\pi\)
\(420\) 0 0
\(421\) −9105.30 + 10508.1i −1.05407 + 1.21647i −0.0784721 + 0.996916i \(0.525004\pi\)
−0.975601 + 0.219549i \(0.929541\pi\)
\(422\) 0 0
\(423\) 804.092 236.103i 0.0924262 0.0271388i
\(424\) 0 0
\(425\) 13663.7 8781.11i 1.55950 1.00223i
\(426\) 0 0
\(427\) 1241.36 + 1432.61i 0.140688 + 0.162362i
\(428\) 0 0
\(429\) −23.9462 + 166.549i −0.00269495 + 0.0187438i
\(430\) 0 0
\(431\) 1454.03 3183.89i 0.162502 0.355830i −0.810812 0.585306i \(-0.800974\pi\)
0.973314 + 0.229477i \(0.0737015\pi\)
\(432\) 0 0
\(433\) 3702.79 + 8107.97i 0.410957 + 0.899871i 0.996041 + 0.0888978i \(0.0283345\pi\)
−0.585083 + 0.810973i \(0.698938\pi\)
\(434\) 0 0
\(435\) −2450.51 1574.85i −0.270099 0.173582i
\(436\) 0 0
\(437\) 1653.75 6669.75i 0.181029 0.730109i
\(438\) 0 0
\(439\) 8265.38 + 5311.84i 0.898600 + 0.577495i 0.906375 0.422475i \(-0.138839\pi\)
−0.00777494 + 0.999970i \(0.502475\pi\)
\(440\) 0 0
\(441\) 6907.37 + 15125.0i 0.745856 + 1.63320i
\(442\) 0 0
\(443\) −4181.41 + 9156.02i −0.448454 + 0.981976i 0.541515 + 0.840691i \(0.317851\pi\)
−0.989969 + 0.141286i \(0.954876\pi\)
\(444\) 0 0
\(445\) 673.298 4682.89i 0.0717245 0.498855i
\(446\) 0 0
\(447\) 3903.26 + 4504.60i 0.413015 + 0.476645i
\(448\) 0 0
\(449\) −10932.0 + 7025.60i −1.14903 + 0.738437i −0.969446 0.245305i \(-0.921112\pi\)
−0.179585 + 0.983742i \(0.557476\pi\)
\(450\) 0 0
\(451\) 1225.14 359.732i 0.127914 0.0375591i
\(452\) 0 0
\(453\) −5988.80 + 6911.45i −0.621145 + 0.716839i
\(454\) 0 0
\(455\) 3995.37 + 1173.15i 0.411662 + 0.120875i
\(456\) 0 0
\(457\) 1337.51 + 9302.57i 0.136906 + 0.952201i 0.936252 + 0.351330i \(0.114270\pi\)
−0.799346 + 0.600871i \(0.794821\pi\)
\(458\) 0 0
\(459\) 4565.74 0.464293
\(460\) 0 0
\(461\) 3882.86 0.392283 0.196142 0.980576i \(-0.437159\pi\)
0.196142 + 0.980576i \(0.437159\pi\)
\(462\) 0 0
\(463\) 1159.57 + 8064.96i 0.116392 + 0.809526i 0.961475 + 0.274891i \(0.0886417\pi\)
−0.845083 + 0.534635i \(0.820449\pi\)
\(464\) 0 0
\(465\) −29594.7 8689.80i −2.95145 0.866623i
\(466\) 0 0
\(467\) 6099.28 7038.95i 0.604371 0.697481i −0.368290 0.929711i \(-0.620057\pi\)
0.972661 + 0.232230i \(0.0746022\pi\)
\(468\) 0 0
\(469\) −29155.3 + 8560.78i −2.87051 + 0.842857i
\(470\) 0 0
\(471\) 7008.42 4504.04i 0.685628 0.440627i
\(472\) 0 0
\(473\) −65.4252 75.5047i −0.00635995 0.00733977i
\(474\) 0 0
\(475\) 1778.20 12367.7i 0.171768 1.19467i
\(476\) 0 0
\(477\) 456.231 999.006i 0.0437932 0.0958938i
\(478\) 0 0
\(479\) −5827.33 12760.1i −0.555861 1.21717i −0.953991 0.299837i \(-0.903068\pi\)
0.398130 0.917329i \(-0.369659\pi\)
\(480\) 0 0
\(481\) −2131.98 1370.14i −0.202100 0.129882i
\(482\) 0 0
\(483\) 8439.18 + 24787.4i 0.795023 + 2.33513i
\(484\) 0 0
\(485\) −19893.2 12784.6i −1.86248 1.19695i
\(486\) 0 0
\(487\) 1410.63 + 3088.85i 0.131256 + 0.287411i 0.963837 0.266493i \(-0.0858649\pi\)
−0.832581 + 0.553904i \(0.813138\pi\)
\(488\) 0 0
\(489\) 91.4070 200.153i 0.00845311 0.0185097i
\(490\) 0 0
\(491\) 1132.93 7879.70i 0.104131 0.724248i −0.869136 0.494573i \(-0.835324\pi\)
0.973267 0.229675i \(-0.0737664\pi\)
\(492\) 0 0
\(493\) −1267.05 1462.25i −0.115751 0.133583i
\(494\) 0 0
\(495\) −1073.52 + 689.912i −0.0974774 + 0.0626449i
\(496\) 0 0
\(497\) 9129.46 2680.65i 0.823968 0.241939i
\(498\) 0 0
\(499\) 155.342 179.274i 0.0139360 0.0160830i −0.748739 0.662865i \(-0.769340\pi\)
0.762675 + 0.646782i \(0.223886\pi\)
\(500\) 0 0
\(501\) 22031.3 + 6468.97i 1.96464 + 0.576871i
\(502\) 0 0
\(503\) 290.965 + 2023.71i 0.0257923 + 0.179389i 0.998645 0.0520348i \(-0.0165707\pi\)
−0.972853 + 0.231424i \(0.925662\pi\)
\(504\) 0 0
\(505\) −14218.9 −1.25293
\(506\) 0 0
\(507\) 14553.4 1.27483
\(508\) 0 0
\(509\) −1936.80 13470.8i −0.168659 1.17305i −0.881660 0.471885i \(-0.843574\pi\)
0.713001 0.701163i \(-0.247335\pi\)
\(510\) 0 0
\(511\) 12350.1 + 3626.31i 1.06915 + 0.313931i
\(512\) 0 0
\(513\) 2300.12 2654.48i 0.197959 0.228457i
\(514\) 0 0
\(515\) −35125.7 + 10313.8i −3.00548 + 0.882490i
\(516\) 0 0
\(517\) 143.260 92.0674i 0.0121868 0.00783196i
\(518\) 0 0
\(519\) −10560.1 12187.0i −0.893132 1.03073i
\(520\) 0 0
\(521\) 2904.54 20201.5i 0.244242 1.69874i −0.386127 0.922446i \(-0.626187\pi\)
0.630369 0.776295i \(-0.282904\pi\)
\(522\) 0 0
\(523\) −317.755 + 695.787i −0.0265669 + 0.0581733i −0.922450 0.386116i \(-0.873816\pi\)
0.895883 + 0.444289i \(0.146544\pi\)
\(524\) 0 0
\(525\) 19778.6 + 43309.1i 1.64421 + 3.60031i
\(526\) 0 0
\(527\) −17235.1 11076.3i −1.42462 0.915546i
\(528\) 0 0
\(529\) 2748.99 + 11852.4i 0.225938 + 0.974142i
\(530\) 0 0
\(531\) 10091.5 + 6485.43i 0.824737 + 0.530026i
\(532\) 0 0
\(533\) 919.103 + 2012.56i 0.0746919 + 0.163552i
\(534\) 0 0
\(535\) 3601.24 7885.62i 0.291019 0.637243i
\(536\) 0 0
\(537\) −960.295 + 6679.00i −0.0771691 + 0.536723i
\(538\) 0 0
\(539\) 2212.65 + 2553.54i 0.176819 + 0.204060i
\(540\) 0 0
\(541\) 9247.66 5943.11i 0.734913 0.472300i −0.118883 0.992908i \(-0.537931\pi\)
0.853796 + 0.520608i \(0.174295\pi\)
\(542\) 0 0
\(543\) −12572.0 + 3691.46i −0.993580 + 0.291742i
\(544\) 0 0
\(545\) 8505.33 9815.67i 0.668492 0.771481i
\(546\) 0 0
\(547\) 2473.75 + 726.358i 0.193364 + 0.0567767i 0.376980 0.926221i \(-0.376962\pi\)
−0.183617 + 0.982998i \(0.558781\pi\)
\(548\) 0 0
\(549\) −143.254 996.355i −0.0111365 0.0774561i
\(550\) 0 0
\(551\) −1488.45 −0.115082
\(552\) 0 0
\(553\) −31185.0 −2.39805
\(554\) 0 0
\(555\) −6694.00 46557.8i −0.511972 3.56084i
\(556\) 0 0
\(557\) 7336.74 + 2154.26i 0.558111 + 0.163876i 0.548609 0.836079i \(-0.315157\pi\)
0.00950130 + 0.999955i \(0.496976\pi\)
\(558\) 0 0
\(559\) 113.367 130.832i 0.00857762 0.00989911i
\(560\) 0 0
\(561\) −1990.32 + 584.410i −0.149788 + 0.0439818i
\(562\) 0 0
\(563\) −14851.5 + 9544.51i −1.11175 + 0.714481i −0.961675 0.274192i \(-0.911589\pi\)
−0.150080 + 0.988674i \(0.547953\pi\)
\(564\) 0 0
\(565\) −25850.4 29833.0i −1.92484 2.22139i
\(566\) 0 0
\(567\) −4423.21 + 30764.1i −0.327614 + 2.27861i
\(568\) 0 0
\(569\) −7675.59 + 16807.2i −0.565514 + 1.23830i 0.383637 + 0.923484i \(0.374671\pi\)
−0.949152 + 0.314819i \(0.898056\pi\)
\(570\) 0 0
\(571\) −4506.11 9867.01i −0.330254 0.723155i 0.669554 0.742763i \(-0.266485\pi\)
−0.999808 + 0.0196085i \(0.993758\pi\)
\(572\) 0 0
\(573\) −20927.4 13449.2i −1.52575 0.980542i
\(574\) 0 0
\(575\) 7130.22 + 20942.8i 0.517131 + 1.51891i
\(576\) 0 0
\(577\) 15165.6 + 9746.36i 1.09420 + 0.703200i 0.957795 0.287453i \(-0.0928087\pi\)
0.136405 + 0.990653i \(0.456445\pi\)
\(578\) 0 0
\(579\) −5455.11 11945.0i −0.391549 0.857372i
\(580\) 0 0
\(581\) −7568.16 + 16572.0i −0.540413 + 1.18334i
\(582\) 0 0
\(583\) 31.7604 220.898i 0.00225623 0.0156924i
\(584\) 0 0
\(585\) −1448.02 1671.10i −0.102339 0.118105i
\(586\) 0 0
\(587\) −9873.34 + 6345.21i −0.694236 + 0.446158i −0.839589 0.543221i \(-0.817204\pi\)
0.145354 + 0.989380i \(0.453568\pi\)
\(588\) 0 0
\(589\) −15122.4 + 4440.33i −1.05790 + 0.310629i
\(590\) 0 0
\(591\) 2876.65 3319.83i 0.200219 0.231065i
\(592\) 0 0
\(593\) 14094.7 + 4138.59i 0.976056 + 0.286596i 0.730596 0.682810i \(-0.239243\pi\)
0.245461 + 0.969406i \(0.421061\pi\)
\(594\) 0 0
\(595\) 7305.66 + 50812.0i 0.503366 + 3.50099i
\(596\) 0 0
\(597\) −13341.3 −0.914612
\(598\) 0 0
\(599\) 14379.4 0.980844 0.490422 0.871485i \(-0.336843\pi\)
0.490422 + 0.871485i \(0.336843\pi\)
\(600\) 0 0
\(601\) 434.055 + 3018.92i 0.0294600 + 0.204899i 0.999235 0.0391010i \(-0.0124494\pi\)
−0.969775 + 0.244000i \(0.921540\pi\)
\(602\) 0 0
\(603\) 15482.0 + 4545.92i 1.04556 + 0.307005i
\(604\) 0 0
\(605\) 15557.2 17954.0i 1.04544 1.20650i
\(606\) 0 0
\(607\) 2886.71 847.615i 0.193028 0.0566781i −0.183790 0.982966i \(-0.558837\pi\)
0.376818 + 0.926287i \(0.377018\pi\)
\(608\) 0 0
\(609\) 4771.38 3066.38i 0.317481 0.204033i
\(610\) 0 0
\(611\) 193.235 + 223.005i 0.0127945 + 0.0147657i
\(612\) 0 0
\(613\) 1761.88 12254.1i 0.116087 0.807405i −0.845710 0.533643i \(-0.820823\pi\)
0.961797 0.273763i \(-0.0882682\pi\)
\(614\) 0 0
\(615\) −17058.6 + 37353.1i −1.11849 + 2.44914i
\(616\) 0 0
\(617\) −5097.92 11162.9i −0.332633 0.728364i 0.667231 0.744851i \(-0.267479\pi\)
−0.999864 + 0.0164864i \(0.994752\pi\)
\(618\) 0 0
\(619\) −3940.59 2532.46i −0.255873 0.164440i 0.406416 0.913688i \(-0.366778\pi\)
−0.662289 + 0.749249i \(0.730415\pi\)
\(620\) 0 0
\(621\) −1496.67 + 6036.22i −0.0967136 + 0.390057i
\(622\) 0 0
\(623\) 7749.46 + 4980.28i 0.498356 + 0.320274i
\(624\) 0 0
\(625\) −194.812 426.579i −0.0124680 0.0273010i
\(626\) 0 0
\(627\) −662.908 + 1451.57i −0.0422233 + 0.0924561i
\(628\) 0 0
\(629\) 4446.32 30924.8i 0.281854 1.96034i
\(630\) 0 0
\(631\) −3230.92 3728.68i −0.203837 0.235240i 0.644622 0.764501i \(-0.277015\pi\)
−0.848459 + 0.529261i \(0.822469\pi\)
\(632\) 0 0
\(633\) −8374.45 + 5381.93i −0.525836 + 0.337935i
\(634\) 0 0
\(635\) 43445.6 12756.8i 2.71510 0.797224i
\(636\) 0 0
\(637\) −3834.01 + 4424.68i −0.238475 + 0.275215i
\(638\) 0 0
\(639\) −4847.90 1423.47i −0.300125 0.0881247i
\(640\) 0 0
\(641\) 1446.16 + 10058.2i 0.0891104 + 0.619776i 0.984617 + 0.174728i \(0.0559045\pi\)
−0.895506 + 0.445049i \(0.853186\pi\)
\(642\) 0 0
\(643\) 12736.3 0.781139 0.390570 0.920573i \(-0.372278\pi\)
0.390570 + 0.920573i \(0.372278\pi\)
\(644\) 0 0
\(645\) 3213.03 0.196144
\(646\) 0 0
\(647\) −1120.28 7791.75i −0.0680725 0.473455i −0.995133 0.0985426i \(-0.968582\pi\)
0.927060 0.374912i \(-0.122327\pi\)
\(648\) 0 0
\(649\) 2338.87 + 686.753i 0.141462 + 0.0415369i
\(650\) 0 0
\(651\) 39328.6 45387.7i 2.36776 2.73254i
\(652\) 0 0
\(653\) 21089.3 6192.37i 1.26384 0.371097i 0.419918 0.907562i \(-0.362059\pi\)
0.843922 + 0.536465i \(0.180241\pi\)
\(654\) 0 0
\(655\) 6027.57 3873.69i 0.359568 0.231080i
\(656\) 0 0
\(657\) −4475.96 5165.53i −0.265790 0.306738i
\(658\) 0 0
\(659\) −1352.73 + 9408.42i −0.0799617 + 0.556146i 0.909978 + 0.414656i \(0.136098\pi\)
−0.989940 + 0.141489i \(0.954811\pi\)
\(660\) 0 0
\(661\) 17.1956 37.6532i 0.00101185 0.00221564i −0.909125 0.416523i \(-0.863249\pi\)
0.910137 + 0.414307i \(0.135976\pi\)
\(662\) 0 0
\(663\) −1493.15 3269.53i −0.0874645 0.191520i
\(664\) 0 0
\(665\) 33222.1 + 21350.5i 1.93729 + 1.24502i
\(666\) 0 0
\(667\) 2348.54 1195.79i 0.136336 0.0694172i
\(668\) 0 0
\(669\) −6056.87 3892.51i −0.350033 0.224953i
\(670\) 0 0
\(671\) −84.9714 186.061i −0.00488865 0.0107047i
\(672\) 0 0
\(673\) −2598.23 + 5689.33i −0.148818 + 0.325866i −0.969330 0.245764i \(-0.920961\pi\)
0.820512 + 0.571629i \(0.193688\pi\)
\(674\) 0 0
\(675\) −1609.30 + 11192.9i −0.0917659 + 0.638246i
\(676\) 0 0
\(677\) 8695.36 + 10035.0i 0.493633 + 0.569683i 0.946833 0.321726i \(-0.104263\pi\)
−0.453200 + 0.891409i \(0.649717\pi\)
\(678\) 0 0
\(679\) 38734.0 24892.8i 2.18921 1.40692i
\(680\) 0 0
\(681\) −14704.3 + 4317.57i −0.827414 + 0.242951i
\(682\) 0 0
\(683\) 15163.6 17499.7i 0.849515 0.980392i −0.150451 0.988617i \(-0.548073\pi\)
0.999966 + 0.00822516i \(0.00261818\pi\)
\(684\) 0 0
\(685\) 15708.1 + 4612.30i 0.876167 + 0.257266i
\(686\) 0 0
\(687\) 3780.57 + 26294.4i 0.209953 + 1.46025i
\(688\) 0 0
\(689\) 386.701 0.0213819
\(690\) 0 0
\(691\) −11372.4 −0.626085 −0.313043 0.949739i \(-0.601348\pi\)
−0.313043 + 0.949739i \(0.601348\pi\)
\(692\) 0 0
\(693\) −353.608 2459.40i −0.0193831 0.134812i
\(694\) 0 0
\(695\) −48995.6 14386.4i −2.67411 0.785190i
\(696\) 0 0
\(697\) −17861.8 + 20613.6i −0.970679 + 1.12022i
\(698\) 0 0
\(699\) −28765.6 + 8446.33i −1.55653 + 0.457038i
\(700\) 0 0
\(701\) 19074.9 12258.7i 1.02775 0.660492i 0.0858194 0.996311i \(-0.472649\pi\)
0.941927 + 0.335818i \(0.109013\pi\)
\(702\) 0 0
\(703\) −15739.5 18164.3i −0.844417 0.974509i
\(704\) 0 0
\(705\) −779.410 + 5420.92i −0.0416373 + 0.289594i
\(706\) 0 0
\(707\) 11501.0 25183.6i 0.611794 1.33964i
\(708\) 0 0
\(709\) 1637.37 + 3585.34i 0.0867316 + 0.189916i 0.948028 0.318187i \(-0.103074\pi\)
−0.861296 + 0.508103i \(0.830347\pi\)
\(710\) 0 0
\(711\) 13931.0 + 8952.89i 0.734813 + 0.472236i
\(712\) 0 0
\(713\) 20293.4 19155.1i 1.06591 1.00612i
\(714\) 0 0
\(715\) −377.994 242.922i −0.0197709 0.0127060i
\(716\) 0 0
\(717\) −2787.41 6103.57i −0.145185 0.317911i
\(718\) 0 0
\(719\) −7395.32 + 16193.5i −0.383587 + 0.839938i 0.615087 + 0.788459i \(0.289121\pi\)
−0.998674 + 0.0514791i \(0.983606\pi\)
\(720\) 0 0
\(721\) 10144.3 70555.0i 0.523984 3.64439i
\(722\) 0 0
\(723\) −19811.8 22864.1i −1.01910 1.17610i
\(724\) 0 0
\(725\) 4031.31 2590.77i 0.206509 0.132715i
\(726\) 0 0
\(727\) −5859.88 + 1720.62i −0.298942 + 0.0877774i −0.427764 0.903890i \(-0.640699\pi\)
0.128822 + 0.991668i \(0.458880\pi\)
\(728\) 0 0
\(729\) 4072.17 4699.53i 0.206888 0.238761i
\(730\) 0 0
\(731\) 2047.72 + 601.266i 0.103608 + 0.0304222i
\(732\) 0 0
\(733\) 5169.48 + 35954.5i 0.260490 + 1.81175i 0.529169 + 0.848517i \(0.322504\pi\)
−0.268679 + 0.963230i \(0.586587\pi\)
\(734\) 0 0
\(735\) −108663. −5.45321
\(736\) 0 0
\(737\) 3278.83 0.163877
\(738\) 0 0
\(739\) −1044.26 7263.00i −0.0519807 0.361534i −0.999165 0.0408456i \(-0.986995\pi\)
0.947185 0.320688i \(-0.103914\pi\)
\(740\) 0 0
\(741\) −2653.09 779.018i −0.131530 0.0386207i
\(742\) 0 0
\(743\) −4797.62 + 5536.75i −0.236888 + 0.273383i −0.861729 0.507369i \(-0.830618\pi\)
0.624841 + 0.780752i \(0.285164\pi\)
\(744\) 0 0
\(745\) −15271.8 + 4484.22i −0.751029 + 0.220522i
\(746\) 0 0
\(747\) 8138.49 5230.29i 0.398623 0.256180i
\(748\) 0 0
\(749\) 11053.7 + 12756.6i 0.539242 + 0.622318i
\(750\) 0 0
\(751\) 1441.99 10029.3i 0.0700653 0.487315i −0.924330 0.381593i \(-0.875376\pi\)
0.994396 0.105722i \(-0.0337154\pi\)
\(752\) 0 0
\(753\) −5522.35 + 12092.3i −0.267258 + 0.585214i
\(754\) 0 0
\(755\) −10144.8 22214.1i −0.489017 1.07080i
\(756\) 0 0
\(757\) −1989.87 1278.81i −0.0955391 0.0613992i 0.491999 0.870596i \(-0.336266\pi\)
−0.587538 + 0.809197i \(0.699903\pi\)
\(758\) 0 0
\(759\) −120.196 2822.90i −0.00574814 0.135000i
\(760\) 0 0
\(761\) 9485.02 + 6095.65i 0.451816 + 0.290364i 0.746691 0.665172i \(-0.231642\pi\)
−0.294875 + 0.955536i \(0.595278\pi\)
\(762\) 0 0
\(763\) 10505.4 + 23003.6i 0.498454 + 1.09146i
\(764\) 0 0
\(765\) 11324.0 24796.1i 0.535190 1.17190i
\(766\) 0 0
\(767\) −601.109 + 4180.81i −0.0282983 + 0.196819i
\(768\) 0 0
\(769\) 23998.1 + 27695.3i 1.12535 + 1.29872i 0.949311 + 0.314338i \(0.101782\pi\)
0.176037 + 0.984384i \(0.443672\pi\)
\(770\) 0 0
\(771\) −12277.6 + 7890.34i −0.573498 + 0.368565i
\(772\) 0 0
\(773\) −30136.3 + 8848.80i −1.40223 + 0.411733i −0.893450 0.449162i \(-0.851722\pi\)
−0.508783 + 0.860895i \(0.669904\pi\)
\(774\) 0 0
\(775\) 33228.5 38347.8i 1.54013 1.77741i
\(776\) 0 0
\(777\) 87874.9 + 25802.4i 4.05726 + 1.19132i
\(778\) 0 0
\(779\) 2986.19 + 20769.4i 0.137344 + 0.955251i
\(780\) 0 0
\(781\) −1026.70 −0.0470402
\(782\) 0 0
\(783\) 1347.07 0.0614820
\(784\) 0 0
\(785\) 3166.03 + 22020.2i 0.143950 + 1.00119i
\(786\) 0 0
\(787\) 17104.0 + 5022.18i 0.774703 + 0.227473i 0.645106 0.764093i \(-0.276813\pi\)
0.129597 + 0.991567i \(0.458631\pi\)
\(788\) 0 0
\(789\) 26409.2 30477.8i 1.19162 1.37521i
\(790\) 0 0
\(791\) 73747.6 21654.3i 3.31500 0.973371i
\(792\) 0 0
\(793\) 298.165 191.619i 0.0133520 0.00858083i
\(794\) 0 0
\(795\) 4700.06 + 5424.16i 0.209678 + 0.241981i
\(796\) 0 0
\(797\) 1804.16 12548.2i 0.0801841 0.557693i −0.909640 0.415397i \(-0.863643\pi\)
0.989824 0.142296i \(-0.0454483\pi\)
\(798\) 0 0
\(799\) −1511.17 + 3309.00i −0.0669102 + 0.146513i
\(800\) 0 0
\(801\) −2032.06 4449.58i −0.0896369 0.196277i
\(802\) 0 0
\(803\) −1168.42 750.895i −0.0513481 0.0329994i
\(804\) 0 0
\(805\) −69571.7 6997.78i −3.04606 0.306384i
\(806\) 0 0
\(807\) −34926.3 22445.8i −1.52350 0.979095i
\(808\) 0 0
\(809\) 2704.51 + 5922.05i 0.117535 + 0.257365i 0.959251 0.282555i \(-0.0911819\pi\)
−0.841717 + 0.539920i \(0.818455\pi\)
\(810\) 0 0
\(811\) −3863.11 + 8459.02i −0.167265 + 0.366260i −0.974640 0.223780i \(-0.928160\pi\)
0.807375 + 0.590039i \(0.200888\pi\)
\(812\) 0 0
\(813\) −696.710 + 4845.73i −0.0300550 + 0.209037i
\(814\) 0 0
\(815\) 384.785 + 444.065i 0.0165379 + 0.0190858i
\(816\) 0 0
\(817\) 1381.17 887.624i 0.0591445 0.0380098i
\(818\) 0 0
\(819\) 4130.98 1212.97i 0.176249 0.0517515i
\(820\) 0 0
\(821\) 28083.4 32409.9i 1.19381 1.37773i 0.286059 0.958212i \(-0.407655\pi\)
0.907748 0.419515i \(-0.137800\pi\)
\(822\) 0 0
\(823\) −25657.5 7533.73i −1.08671 0.319088i −0.311152 0.950360i \(-0.600715\pi\)
−0.775561 + 0.631272i \(0.782533\pi\)
\(824\) 0 0
\(825\) −731.149 5085.25i −0.0308549 0.214601i
\(826\) 0 0
\(827\) −37323.6 −1.56937 −0.784685 0.619894i \(-0.787176\pi\)
−0.784685 + 0.619894i \(0.787176\pi\)
\(828\) 0 0
\(829\) 17948.3 0.751953 0.375976 0.926629i \(-0.377307\pi\)
0.375976 + 0.926629i \(0.377307\pi\)
\(830\) 0 0
\(831\) 3762.13 + 26166.2i 0.157048 + 1.09229i
\(832\) 0 0
\(833\) −69253.1 20334.6i −2.88053 0.845799i
\(834\) 0 0
\(835\) −40153.0 + 46339.1i −1.66414 + 1.92052i
\(836\) 0 0
\(837\) 13686.0 4018.56i 0.565180 0.165952i
\(838\) 0 0
\(839\) 22665.9 14566.5i 0.932675 0.599394i 0.0163661 0.999866i \(-0.494790\pi\)
0.916309 + 0.400472i \(0.131154\pi\)
\(840\) 0 0
\(841\) 15597.6 + 18000.6i 0.639533 + 0.738060i
\(842\) 0 0
\(843\) −3755.79 + 26122.1i −0.153448 + 1.06725i
\(844\) 0 0
\(845\) −16144.2 + 35350.9i −0.657253 + 1.43918i
\(846\) 0 0
\(847\) 19215.5 + 42076.2i 0.779520 + 1.70691i
\(848\) 0 0
\(849\) 33115.5 + 21282.0i 1.33866 + 0.860302i
\(850\) 0 0
\(851\) 39427.2 + 16015.6i 1.58819 + 0.645132i
\(852\) 0 0
\(853\) −27775.5 17850.2i −1.11491 0.716507i −0.152550 0.988296i \(-0.548749\pi\)
−0.962357 + 0.271789i \(0.912385\pi\)
\(854\) 0 0
\(855\) −8711.46 19075.4i −0.348451 0.763002i
\(856\) 0 0
\(857\) −236.239 + 517.292i −0.00941631 + 0.0206188i −0.914282 0.405079i \(-0.867244\pi\)
0.904865 + 0.425698i \(0.139971\pi\)
\(858\) 0 0
\(859\) −3350.23 + 23301.3i −0.133071 + 0.925531i 0.808447 + 0.588569i \(0.200309\pi\)
−0.941518 + 0.336962i \(0.890601\pi\)
\(860\) 0 0
\(861\) −52359.8 60426.4i −2.07249 2.39178i
\(862\) 0 0
\(863\) −20009.9 + 12859.6i −0.789277 + 0.507237i −0.872100 0.489327i \(-0.837242\pi\)
0.0828238 + 0.996564i \(0.473606\pi\)
\(864\) 0 0
\(865\) 41317.2 12131.8i 1.62408 0.476872i
\(866\) 0 0
\(867\) 7278.45 8399.78i 0.285108 0.329033i
\(868\) 0 0
\(869\) 3228.71 + 948.036i 0.126038 + 0.0370080i
\(870\) 0 0
\(871\) 808.552 + 5623.60i 0.0314544 + 0.218770i
\(872\) 0 0
\(873\) −24449.7 −0.947879
\(874\) 0 0
\(875\) −47902.1 −1.85073
\(876\) 0 0
\(877\) −1191.57 8287.53i −0.0458796 0.319099i −0.999818 0.0190959i \(-0.993921\pi\)
0.953938 0.300004i \(-0.0969879\pi\)
\(878\) 0 0
\(879\) 64863.0 + 19045.5i 2.48894 + 0.730817i
\(880\) 0 0
\(881\) −4576.92 + 5282.05i −0.175029 + 0.201994i −0.836485 0.547990i \(-0.815393\pi\)
0.661456 + 0.749984i \(0.269939\pi\)
\(882\) 0 0
\(883\) −12896.6 + 3786.78i −0.491512 + 0.144321i −0.518090 0.855326i \(-0.673357\pi\)
0.0265787 + 0.999647i \(0.491539\pi\)
\(884\) 0 0
\(885\) −65949.2 + 42383.0i −2.50492 + 1.60982i
\(886\) 0 0
\(887\) −6001.96 6926.63i −0.227200 0.262203i 0.630692 0.776034i \(-0.282771\pi\)
−0.857891 + 0.513831i \(0.828226\pi\)
\(888\) 0 0
\(889\) −12547.1 + 87266.7i −0.473357 + 3.29227i
\(890\) 0 0
\(891\) 1393.19 3050.67i 0.0523835 0.114704i
\(892\) 0 0
\(893\) 1162.53 + 2545.58i 0.0435639 + 0.0953915i
\(894\) 0 0
\(895\) −15158.4 9741.70i −0.566133 0.363831i
\(896\) 0 0
\(897\) 4812.00 902.274i 0.179117 0.0335854i
\(898\) 0 0
\(899\) −5085.03 3267.95i −0.188649 0.121237i
\(900\) 0 0
\(901\) 1980.39 + 4336.46i 0.0732258 + 0.160342i
\(902\) 0 0
\(903\) −2598.87 + 5690.73i −0.0957752 + 0.209718i
\(904\) 0 0
\(905\) 4979.46 34632.9i 0.182898 1.27209i
\(906\) 0 0
\(907\) 1691.13 + 1951.67i 0.0619109 + 0.0714490i 0.785860 0.618404i \(-0.212221\pi\)
−0.723949 + 0.689853i \(0.757675\pi\)
\(908\) 0 0
\(909\) −12367.7 + 7948.22i −0.451276 + 0.290017i
\(910\) 0 0
\(911\) 48713.5 14303.6i 1.77163 0.520196i 0.777544 0.628829i \(-0.216465\pi\)
0.994082 + 0.108633i \(0.0346472\pi\)
\(912\) 0 0
\(913\) 1287.36 1485.69i 0.0466652 0.0538545i
\(914\) 0 0
\(915\) 6311.77 + 1853.30i 0.228045 + 0.0669599i
\(916\) 0 0
\(917\) 1985.42 + 13808.9i 0.0714989 + 0.497286i
\(918\) 0 0
\(919\) −42333.9 −1.51955 −0.759776 0.650185i \(-0.774691\pi\)
−0.759776 + 0.650185i \(0.774691\pi\)
\(920\) 0 0
\(921\) −4193.67 −0.150039
\(922\) 0 0
\(923\) −253.183 1760.93i −0.00902886 0.0627971i
\(924\) 0 0
\(925\) 74245.0 + 21800.3i 2.63909 + 0.774907i
\(926\) 0 0
\(927\) −24787.3 + 28606.0i −0.878232 + 1.01353i
\(928\) 0 0
\(929\) −30922.4 + 9079.63i −1.09207 + 0.320660i −0.777696 0.628640i \(-0.783612\pi\)
−0.314371 + 0.949300i \(0.601794\pi\)
\(930\) 0 0
\(931\) −46710.6 + 30019.1i −1.64434 + 1.05675i
\(932\) 0 0
\(933\) 6119.32 + 7062.07i 0.214724 + 0.247805i
\(934\) 0 0
\(935\) 788.319 5482.88i 0.0275730 0.191775i
\(936\) 0 0
\(937\) 3215.99 7042.03i 0.112126 0.245521i −0.845247 0.534375i \(-0.820547\pi\)
0.957373 + 0.288854i \(0.0932743\pi\)
\(938\) 0 0
\(939\) −8196.19 17947.2i −0.284848 0.623731i
\(940\) 0 0
\(941\) −11927.8 7665.53i −0.413215 0.265557i 0.317475 0.948267i \(-0.397165\pi\)
−0.730690 + 0.682710i \(0.760801\pi\)
\(942\) 0 0
\(943\) −21397.4 30371.7i −0.738914 1.04882i
\(944\) 0 0
\(945\) −30066.5 19322.5i −1.03499 0.665146i
\(946\) 0 0
\(947\) −13659.2 29909.4i −0.468705 1.02632i −0.985416 0.170161i \(-0.945571\pi\)
0.516711 0.856160i \(-0.327156\pi\)
\(948\) 0 0
\(949\) 999.752 2189.15i 0.0341974 0.0748818i
\(950\) 0 0
\(951\) −3840.01 + 26707.8i −0.130937 + 0.910684i
\(952\) 0 0
\(953\) 3894.82 + 4494.86i 0.132388 + 0.152784i 0.818073 0.575115i \(-0.195043\pi\)
−0.685685 + 0.727898i \(0.740497\pi\)
\(954\) 0 0
\(955\) 55884.0 35914.5i 1.89357 1.21693i
\(956\) 0 0
\(957\) −587.220 + 172.423i −0.0198350 + 0.00582410i
\(958\) 0 0
\(959\) −20874.6 + 24090.5i −0.702893 + 0.811182i
\(960\) 0 0
\(961\) −32827.4 9638.99i −1.10192 0.323554i
\(962\) 0 0
\(963\) −1275.61 8872.03i −0.0426852 0.296882i
\(964\) 0 0
\(965\) 35066.5 1.16977
\(966\) 0 0
\(967\) 32809.8 1.09110 0.545549 0.838079i \(-0.316321\pi\)
0.545549 + 0.838079i \(0.316321\pi\)
\(968\) 0 0
\(969\) −4851.26 33741.3i −0.160831 1.11860i
\(970\) 0 0
\(971\) 11970.9 + 3514.97i 0.395638 + 0.116170i 0.473499 0.880795i \(-0.342991\pi\)
−0.0778610 + 0.996964i \(0.524809\pi\)
\(972\) 0 0
\(973\) 65110.6 75141.6i 2.14527 2.47577i
\(974\) 0 0
\(975\) 8541.55 2508.03i 0.280563 0.0823806i
\(976\) 0 0
\(977\) 5163.70 3318.51i 0.169091 0.108668i −0.453358 0.891328i \(-0.649774\pi\)
0.622449 + 0.782660i \(0.286138\pi\)
\(978\) 0 0
\(979\) −650.932 751.216i −0.0212501 0.0245240i
\(980\) 0 0
\(981\) 1911.12 13292.1i 0.0621992 0.432605i
\(982\) 0 0
\(983\) 1712.03 3748.83i 0.0555498 0.121637i −0.879822 0.475304i \(-0.842338\pi\)
0.935371 + 0.353667i \(0.115065\pi\)
\(984\) 0 0
\(985\) 4872.94 + 10670.3i 0.157629 + 0.345160i
\(986\) 0 0
\(987\) −8970.78 5765.17i −0.289304 0.185924i
\(988\) 0 0
\(989\) −1466.17 + 2510.13i −0.0471399 + 0.0807053i
\(990\) 0 0
\(991\) −8397.18 5396.54i −0.269168 0.172984i 0.399094 0.916910i \(-0.369325\pi\)
−0.668261 + 0.743927i \(0.732961\pi\)
\(992\) 0 0
\(993\) 1282.81 + 2808.95i 0.0409956 + 0.0897678i
\(994\) 0 0
\(995\) 14799.7 32406.7i 0.471539 1.03253i
\(996\) 0 0
\(997\) −1418.16 + 9863.51i −0.0450487 + 0.313320i 0.954821 + 0.297181i \(0.0960466\pi\)
−0.999870 + 0.0161391i \(0.994863\pi\)
\(998\) 0 0
\(999\) 14244.4 + 16439.0i 0.451125 + 0.520626i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 184.4.i.a.25.8 90
23.12 even 11 inner 184.4.i.a.81.8 yes 90
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.4.i.a.25.8 90 1.1 even 1 trivial
184.4.i.a.81.8 yes 90 23.12 even 11 inner