Properties

Label 184.4.i.a.25.2
Level $184$
Weight $4$
Character 184.25
Analytic conductor $10.856$
Analytic rank $0$
Dimension $90$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [184,4,Mod(9,184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(184, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 0, 10])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("184.9"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 184.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [90,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8563514411\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(9\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 25.2
Character \(\chi\) \(=\) 184.25
Dual form 184.4.i.a.81.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.978797 - 6.80768i) q^{3} +(-0.683572 - 0.200715i) q^{5} +(16.8123 - 19.4024i) q^{7} +(-19.4802 + 5.71990i) q^{9} +(15.5835 - 10.0149i) q^{11} +(-26.7041 - 30.8182i) q^{13} +(-0.697325 + 4.85000i) q^{15} +(-0.485449 + 1.06298i) q^{17} +(10.2971 + 22.5474i) q^{19} +(-148.541 - 95.4616i) q^{21} +(-97.0007 + 52.5153i) q^{23} +(-104.730 - 67.3057i) q^{25} +(-19.1351 - 41.9001i) q^{27} +(-36.0087 + 78.8481i) q^{29} +(-7.68183 + 53.4283i) q^{31} +(-83.4315 - 96.2851i) q^{33} +(-15.3867 + 9.88846i) q^{35} +(-49.4724 + 14.5264i) q^{37} +(-183.663 + 211.958i) q^{39} +(-12.3721 - 3.63277i) q^{41} +(-17.1107 - 119.007i) q^{43} +14.4642 q^{45} +440.460 q^{47} +(-44.9864 - 312.887i) q^{49} +(7.71161 + 2.26433i) q^{51} +(298.542 - 344.536i) q^{53} +(-12.6626 + 3.71808i) q^{55} +(143.417 - 92.1685i) q^{57} +(-28.8535 - 33.2988i) q^{59} +(126.095 - 877.009i) q^{61} +(-216.526 + 474.127i) q^{63} +(12.0685 + 26.4264i) q^{65} +(-211.202 - 135.731i) q^{67} +(452.452 + 608.948i) q^{69} +(538.204 + 345.883i) q^{71} +(271.204 + 593.853i) q^{73} +(-355.687 + 778.845i) q^{75} +(67.6809 - 470.731i) q^{77} +(840.560 + 970.058i) q^{79} +(-727.663 + 467.641i) q^{81} +(727.514 - 213.617i) q^{83} +(0.545196 - 0.629190i) q^{85} +(572.018 + 167.960i) q^{87} +(64.8654 + 451.149i) q^{89} -1046.90 q^{91} +371.242 q^{93} +(-2.51318 - 17.4796i) q^{95} +(-501.787 - 147.338i) q^{97} +(-246.286 + 284.229i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 2 q^{3} - 87 q^{7} - 113 q^{9} - 6 q^{11} - 8 q^{13} - 6 q^{15} + 306 q^{17} + 275 q^{19} + 350 q^{21} - 23 q^{23} - 289 q^{25} + 511 q^{27} + 309 q^{29} - 314 q^{31} - 1444 q^{33} - 1895 q^{35}+ \cdots + 5967 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/184\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(93\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.978797 6.80768i −0.188370 1.31014i −0.836229 0.548380i \(-0.815245\pi\)
0.647860 0.761760i \(-0.275664\pi\)
\(4\) 0 0
\(5\) −0.683572 0.200715i −0.0611405 0.0179525i 0.251019 0.967982i \(-0.419234\pi\)
−0.312160 + 0.950030i \(0.601052\pi\)
\(6\) 0 0
\(7\) 16.8123 19.4024i 0.907777 1.04763i −0.0908821 0.995862i \(-0.528969\pi\)
0.998659 0.0517688i \(-0.0164859\pi\)
\(8\) 0 0
\(9\) −19.4802 + 5.71990i −0.721489 + 0.211848i
\(10\) 0 0
\(11\) 15.5835 10.0149i 0.427146 0.274510i −0.309355 0.950947i \(-0.600113\pi\)
0.736501 + 0.676437i \(0.236477\pi\)
\(12\) 0 0
\(13\) −26.7041 30.8182i −0.569722 0.657495i 0.395640 0.918405i \(-0.370523\pi\)
−0.965363 + 0.260911i \(0.915977\pi\)
\(14\) 0 0
\(15\) −0.697325 + 4.85000i −0.0120032 + 0.0834843i
\(16\) 0 0
\(17\) −0.485449 + 1.06298i −0.00692580 + 0.0151654i −0.913063 0.407818i \(-0.866290\pi\)
0.906137 + 0.422983i \(0.139017\pi\)
\(18\) 0 0
\(19\) 10.2971 + 22.5474i 0.124332 + 0.272249i 0.961555 0.274613i \(-0.0885496\pi\)
−0.837223 + 0.546862i \(0.815822\pi\)
\(20\) 0 0
\(21\) −148.541 95.4616i −1.54354 0.991972i
\(22\) 0 0
\(23\) −97.0007 + 52.5153i −0.879393 + 0.476096i
\(24\) 0 0
\(25\) −104.730 67.3057i −0.837838 0.538446i
\(26\) 0 0
\(27\) −19.1351 41.9001i −0.136391 0.298655i
\(28\) 0 0
\(29\) −36.0087 + 78.8481i −0.230574 + 0.504887i −0.989188 0.146654i \(-0.953150\pi\)
0.758614 + 0.651541i \(0.225877\pi\)
\(30\) 0 0
\(31\) −7.68183 + 53.4283i −0.0445064 + 0.309549i 0.955393 + 0.295339i \(0.0954324\pi\)
−0.999899 + 0.0142101i \(0.995477\pi\)
\(32\) 0 0
\(33\) −83.4315 96.2851i −0.440108 0.507912i
\(34\) 0 0
\(35\) −15.3867 + 9.88846i −0.0743095 + 0.0477558i
\(36\) 0 0
\(37\) −49.4724 + 14.5264i −0.219817 + 0.0645439i −0.389786 0.920905i \(-0.627451\pi\)
0.169970 + 0.985449i \(0.445633\pi\)
\(38\) 0 0
\(39\) −183.663 + 211.958i −0.754091 + 0.870268i
\(40\) 0 0
\(41\) −12.3721 3.63277i −0.0471267 0.0138376i 0.258084 0.966122i \(-0.416909\pi\)
−0.305211 + 0.952285i \(0.598727\pi\)
\(42\) 0 0
\(43\) −17.1107 119.007i −0.0606826 0.422057i −0.997406 0.0719854i \(-0.977066\pi\)
0.936723 0.350071i \(-0.113843\pi\)
\(44\) 0 0
\(45\) 14.4642 0.0479154
\(46\) 0 0
\(47\) 440.460 1.36697 0.683486 0.729964i \(-0.260463\pi\)
0.683486 + 0.729964i \(0.260463\pi\)
\(48\) 0 0
\(49\) −44.9864 312.887i −0.131156 0.912208i
\(50\) 0 0
\(51\) 7.71161 + 2.26433i 0.0211734 + 0.00621706i
\(52\) 0 0
\(53\) 298.542 344.536i 0.773734 0.892936i −0.222907 0.974840i \(-0.571555\pi\)
0.996640 + 0.0819037i \(0.0261000\pi\)
\(54\) 0 0
\(55\) −12.6626 + 3.71808i −0.0310441 + 0.00911537i
\(56\) 0 0
\(57\) 143.417 92.1685i 0.333264 0.214176i
\(58\) 0 0
\(59\) −28.8535 33.2988i −0.0636680 0.0734768i 0.723022 0.690825i \(-0.242752\pi\)
−0.786690 + 0.617348i \(0.788207\pi\)
\(60\) 0 0
\(61\) 126.095 877.009i 0.264669 1.84081i −0.231809 0.972761i \(-0.574464\pi\)
0.496477 0.868050i \(-0.334627\pi\)
\(62\) 0 0
\(63\) −216.526 + 474.127i −0.433012 + 0.948164i
\(64\) 0 0
\(65\) 12.0685 + 26.4264i 0.0230295 + 0.0504275i
\(66\) 0 0
\(67\) −211.202 135.731i −0.385111 0.247496i 0.333733 0.942668i \(-0.391692\pi\)
−0.718843 + 0.695172i \(0.755328\pi\)
\(68\) 0 0
\(69\) 452.452 + 608.948i 0.789403 + 1.06245i
\(70\) 0 0
\(71\) 538.204 + 345.883i 0.899621 + 0.578151i 0.906678 0.421824i \(-0.138610\pi\)
−0.00705689 + 0.999975i \(0.502246\pi\)
\(72\) 0 0
\(73\) 271.204 + 593.853i 0.434822 + 0.952127i 0.992520 + 0.122083i \(0.0389574\pi\)
−0.557698 + 0.830044i \(0.688315\pi\)
\(74\) 0 0
\(75\) −355.687 + 778.845i −0.547616 + 1.19911i
\(76\) 0 0
\(77\) 67.6809 470.731i 0.100168 0.696685i
\(78\) 0 0
\(79\) 840.560 + 970.058i 1.19709 + 1.38152i 0.905154 + 0.425083i \(0.139755\pi\)
0.291939 + 0.956437i \(0.405699\pi\)
\(80\) 0 0
\(81\) −727.663 + 467.641i −0.998166 + 0.641482i
\(82\) 0 0
\(83\) 727.514 213.617i 0.962109 0.282501i 0.237289 0.971439i \(-0.423741\pi\)
0.724820 + 0.688938i \(0.241923\pi\)
\(84\) 0 0
\(85\) 0.545196 0.629190i 0.000695703 0.000802885i
\(86\) 0 0
\(87\) 572.018 + 167.960i 0.704905 + 0.206979i
\(88\) 0 0
\(89\) 64.8654 + 451.149i 0.0772553 + 0.537322i 0.991291 + 0.131689i \(0.0420400\pi\)
−0.914036 + 0.405634i \(0.867051\pi\)
\(90\) 0 0
\(91\) −1046.90 −1.20599
\(92\) 0 0
\(93\) 371.242 0.413935
\(94\) 0 0
\(95\) −2.51318 17.4796i −0.00271418 0.0188775i
\(96\) 0 0
\(97\) −501.787 147.338i −0.525245 0.154226i 0.00835115 0.999965i \(-0.497342\pi\)
−0.533597 + 0.845739i \(0.679160\pi\)
\(98\) 0 0
\(99\) −246.286 + 284.229i −0.250027 + 0.288546i
\(100\) 0 0
\(101\) −774.256 + 227.342i −0.762785 + 0.223974i −0.639912 0.768448i \(-0.721029\pi\)
−0.122874 + 0.992422i \(0.539211\pi\)
\(102\) 0 0
\(103\) 1086.98 698.560i 1.03984 0.668264i 0.0948919 0.995488i \(-0.469749\pi\)
0.944947 + 0.327224i \(0.106113\pi\)
\(104\) 0 0
\(105\) 82.3780 + 95.0693i 0.0765645 + 0.0883601i
\(106\) 0 0
\(107\) 256.832 1786.31i 0.232046 1.61391i −0.457184 0.889372i \(-0.651142\pi\)
0.689230 0.724543i \(-0.257949\pi\)
\(108\) 0 0
\(109\) 32.0286 70.1328i 0.0281448 0.0616285i −0.895038 0.445991i \(-0.852851\pi\)
0.923182 + 0.384362i \(0.125579\pi\)
\(110\) 0 0
\(111\) 147.315 + 322.574i 0.125968 + 0.275832i
\(112\) 0 0
\(113\) 9.36050 + 6.01563i 0.00779258 + 0.00500799i 0.544531 0.838741i \(-0.316708\pi\)
−0.536739 + 0.843749i \(0.680344\pi\)
\(114\) 0 0
\(115\) 76.8476 16.4285i 0.0623137 0.0133215i
\(116\) 0 0
\(117\) 696.479 + 447.600i 0.550337 + 0.353680i
\(118\) 0 0
\(119\) 12.4629 + 27.2900i 0.00960064 + 0.0210225i
\(120\) 0 0
\(121\) −410.370 + 898.585i −0.308317 + 0.675120i
\(122\) 0 0
\(123\) −12.6210 + 87.7809i −0.00925200 + 0.0643491i
\(124\) 0 0
\(125\) 116.399 + 134.331i 0.0832883 + 0.0961198i
\(126\) 0 0
\(127\) 1263.84 812.222i 0.883054 0.567505i −0.0186653 0.999826i \(-0.505942\pi\)
0.901720 + 0.432321i \(0.142305\pi\)
\(128\) 0 0
\(129\) −793.416 + 232.968i −0.541522 + 0.159005i
\(130\) 0 0
\(131\) 787.483 908.804i 0.525212 0.606127i −0.429716 0.902964i \(-0.641386\pi\)
0.954928 + 0.296837i \(0.0959319\pi\)
\(132\) 0 0
\(133\) 610.591 + 179.286i 0.398082 + 0.116887i
\(134\) 0 0
\(135\) 4.67027 + 32.4824i 0.00297743 + 0.0207085i
\(136\) 0 0
\(137\) 703.671 0.438823 0.219411 0.975632i \(-0.429586\pi\)
0.219411 + 0.975632i \(0.429586\pi\)
\(138\) 0 0
\(139\) −1086.49 −0.662984 −0.331492 0.943458i \(-0.607552\pi\)
−0.331492 + 0.943458i \(0.607552\pi\)
\(140\) 0 0
\(141\) −431.121 2998.51i −0.257496 1.79092i
\(142\) 0 0
\(143\) −724.786 212.816i −0.423844 0.124452i
\(144\) 0 0
\(145\) 40.4405 46.6708i 0.0231614 0.0267297i
\(146\) 0 0
\(147\) −2086.01 + 612.507i −1.17041 + 0.343665i
\(148\) 0 0
\(149\) −35.3064 + 22.6901i −0.0194122 + 0.0124754i −0.550311 0.834960i \(-0.685491\pi\)
0.530899 + 0.847435i \(0.321854\pi\)
\(150\) 0 0
\(151\) −2081.98 2402.73i −1.12205 1.29491i −0.950842 0.309675i \(-0.899780\pi\)
−0.171204 0.985236i \(-0.554766\pi\)
\(152\) 0 0
\(153\) 3.37647 23.4839i 0.00178413 0.0124089i
\(154\) 0 0
\(155\) 15.9749 34.9802i 0.00827831 0.0181270i
\(156\) 0 0
\(157\) −249.366 546.035i −0.126761 0.277569i 0.835602 0.549336i \(-0.185119\pi\)
−0.962363 + 0.271767i \(0.912392\pi\)
\(158\) 0 0
\(159\) −2637.70 1695.15i −1.31562 0.845497i
\(160\) 0 0
\(161\) −611.879 + 2764.95i −0.299520 + 1.35347i
\(162\) 0 0
\(163\) −828.989 532.759i −0.398352 0.256005i 0.326093 0.945338i \(-0.394268\pi\)
−0.724445 + 0.689332i \(0.757904\pi\)
\(164\) 0 0
\(165\) 37.7056 + 82.5637i 0.0177902 + 0.0389550i
\(166\) 0 0
\(167\) −258.828 + 566.755i −0.119933 + 0.262616i −0.960071 0.279756i \(-0.909746\pi\)
0.840139 + 0.542372i \(0.182474\pi\)
\(168\) 0 0
\(169\) 76.0143 528.691i 0.0345992 0.240642i
\(170\) 0 0
\(171\) −329.558 380.330i −0.147380 0.170085i
\(172\) 0 0
\(173\) 3131.80 2012.69i 1.37634 0.884518i 0.377203 0.926130i \(-0.376886\pi\)
0.999134 + 0.0416123i \(0.0132494\pi\)
\(174\) 0 0
\(175\) −3066.63 + 900.445i −1.32466 + 0.388956i
\(176\) 0 0
\(177\) −198.446 + 229.019i −0.0842717 + 0.0972547i
\(178\) 0 0
\(179\) 4474.65 + 1313.88i 1.86844 + 0.548624i 0.998456 + 0.0555460i \(0.0176900\pi\)
0.869985 + 0.493078i \(0.164128\pi\)
\(180\) 0 0
\(181\) 633.260 + 4404.42i 0.260055 + 1.80872i 0.532371 + 0.846511i \(0.321301\pi\)
−0.272316 + 0.962208i \(0.587790\pi\)
\(182\) 0 0
\(183\) −6093.82 −2.46157
\(184\) 0 0
\(185\) 36.7336 0.0145984
\(186\) 0 0
\(187\) 3.08070 + 21.4268i 0.00120472 + 0.00837904i
\(188\) 0 0
\(189\) −1134.67 333.168i −0.436693 0.128224i
\(190\) 0 0
\(191\) −263.606 + 304.218i −0.0998633 + 0.115248i −0.803481 0.595330i \(-0.797021\pi\)
0.703618 + 0.710579i \(0.251567\pi\)
\(192\) 0 0
\(193\) −4032.26 + 1183.98i −1.50388 + 0.441578i −0.926940 0.375210i \(-0.877571\pi\)
−0.576937 + 0.816788i \(0.695752\pi\)
\(194\) 0 0
\(195\) 168.090 108.025i 0.0617290 0.0396708i
\(196\) 0 0
\(197\) 990.187 + 1142.74i 0.358111 + 0.413282i 0.906006 0.423265i \(-0.139116\pi\)
−0.547895 + 0.836547i \(0.684571\pi\)
\(198\) 0 0
\(199\) 105.127 731.174i 0.0374485 0.260460i −0.962493 0.271308i \(-0.912544\pi\)
0.999941 + 0.0108477i \(0.00345298\pi\)
\(200\) 0 0
\(201\) −717.291 + 1570.65i −0.251711 + 0.551169i
\(202\) 0 0
\(203\) 924.453 + 2024.27i 0.319625 + 0.699881i
\(204\) 0 0
\(205\) 7.72805 + 4.96652i 0.00263293 + 0.00169208i
\(206\) 0 0
\(207\) 1589.21 1577.84i 0.533612 0.529796i
\(208\) 0 0
\(209\) 386.275 + 248.244i 0.127843 + 0.0821598i
\(210\) 0 0
\(211\) −1703.75 3730.68i −0.555880 1.21721i −0.953981 0.299866i \(-0.903058\pi\)
0.398102 0.917341i \(-0.369669\pi\)
\(212\) 0 0
\(213\) 1827.87 4002.47i 0.587997 1.28753i
\(214\) 0 0
\(215\) −12.1902 + 84.7844i −0.00386680 + 0.0268942i
\(216\) 0 0
\(217\) 907.488 + 1047.30i 0.283891 + 0.327627i
\(218\) 0 0
\(219\) 3777.31 2427.53i 1.16551 0.749029i
\(220\) 0 0
\(221\) 45.7227 13.4254i 0.0139169 0.00408638i
\(222\) 0 0
\(223\) 3596.29 4150.34i 1.07993 1.24631i 0.112376 0.993666i \(-0.464154\pi\)
0.967559 0.252645i \(-0.0813006\pi\)
\(224\) 0 0
\(225\) 2425.14 + 712.084i 0.718559 + 0.210988i
\(226\) 0 0
\(227\) 610.429 + 4245.63i 0.178483 + 1.24138i 0.860275 + 0.509830i \(0.170292\pi\)
−0.681793 + 0.731545i \(0.738799\pi\)
\(228\) 0 0
\(229\) −687.818 −0.198481 −0.0992407 0.995063i \(-0.531641\pi\)
−0.0992407 + 0.995063i \(0.531641\pi\)
\(230\) 0 0
\(231\) −3270.83 −0.931624
\(232\) 0 0
\(233\) 256.528 + 1784.19i 0.0721276 + 0.501658i 0.993577 + 0.113160i \(0.0360971\pi\)
−0.921449 + 0.388499i \(0.872994\pi\)
\(234\) 0 0
\(235\) −301.086 88.4069i −0.0835774 0.0245405i
\(236\) 0 0
\(237\) 5781.11 6671.76i 1.58449 1.82860i
\(238\) 0 0
\(239\) 3178.66 933.340i 0.860296 0.252606i 0.178313 0.983974i \(-0.442936\pi\)
0.681983 + 0.731368i \(0.261118\pi\)
\(240\) 0 0
\(241\) −3764.70 + 2419.43i −1.00625 + 0.646677i −0.936420 0.350882i \(-0.885882\pi\)
−0.0698291 + 0.997559i \(0.522245\pi\)
\(242\) 0 0
\(243\) 3081.34 + 3556.05i 0.813448 + 0.938769i
\(244\) 0 0
\(245\) −32.0497 + 222.911i −0.00835747 + 0.0581275i
\(246\) 0 0
\(247\) 419.897 919.446i 0.108168 0.236854i
\(248\) 0 0
\(249\) −2166.33 4743.60i −0.551347 1.20728i
\(250\) 0 0
\(251\) 2670.94 + 1716.51i 0.671667 + 0.431654i 0.831526 0.555486i \(-0.187468\pi\)
−0.159859 + 0.987140i \(0.551104\pi\)
\(252\) 0 0
\(253\) −985.676 + 1789.83i −0.244936 + 0.444765i
\(254\) 0 0
\(255\) −4.81696 3.09567i −0.00118294 0.000760229i
\(256\) 0 0
\(257\) 2155.46 + 4719.79i 0.523166 + 1.14557i 0.968227 + 0.250074i \(0.0804548\pi\)
−0.445061 + 0.895500i \(0.646818\pi\)
\(258\) 0 0
\(259\) −549.896 + 1204.10i −0.131926 + 0.288878i
\(260\) 0 0
\(261\) 250.453 1741.94i 0.0593972 0.413117i
\(262\) 0 0
\(263\) 4637.62 + 5352.10i 1.08733 + 1.25485i 0.964970 + 0.262362i \(0.0845014\pi\)
0.122362 + 0.992486i \(0.460953\pi\)
\(264\) 0 0
\(265\) −273.228 + 175.593i −0.0633369 + 0.0407042i
\(266\) 0 0
\(267\) 3007.79 883.167i 0.689415 0.202430i
\(268\) 0 0
\(269\) 3296.31 3804.15i 0.747137 0.862242i −0.247151 0.968977i \(-0.579494\pi\)
0.994287 + 0.106735i \(0.0340397\pi\)
\(270\) 0 0
\(271\) 2733.40 + 802.599i 0.612702 + 0.179905i 0.573337 0.819319i \(-0.305648\pi\)
0.0393645 + 0.999225i \(0.487467\pi\)
\(272\) 0 0
\(273\) 1024.71 + 7126.99i 0.227172 + 1.58002i
\(274\) 0 0
\(275\) −2306.12 −0.505688
\(276\) 0 0
\(277\) 891.602 0.193398 0.0966988 0.995314i \(-0.469172\pi\)
0.0966988 + 0.995314i \(0.469172\pi\)
\(278\) 0 0
\(279\) −155.961 1084.73i −0.0334665 0.232764i
\(280\) 0 0
\(281\) −8921.67 2619.64i −1.89403 0.556137i −0.992303 0.123830i \(-0.960482\pi\)
−0.901726 0.432307i \(-0.857700\pi\)
\(282\) 0 0
\(283\) −3832.96 + 4423.48i −0.805110 + 0.929146i −0.998650 0.0519462i \(-0.983458\pi\)
0.193540 + 0.981092i \(0.438003\pi\)
\(284\) 0 0
\(285\) −116.535 + 34.2179i −0.0242209 + 0.00711190i
\(286\) 0 0
\(287\) −278.487 + 178.973i −0.0572772 + 0.0368098i
\(288\) 0 0
\(289\) 3216.44 + 3711.97i 0.654679 + 0.755540i
\(290\) 0 0
\(291\) −511.883 + 3560.22i −0.103117 + 0.717196i
\(292\) 0 0
\(293\) −1107.98 + 2426.13i −0.220917 + 0.483741i −0.987345 0.158590i \(-0.949305\pi\)
0.766428 + 0.642331i \(0.222032\pi\)
\(294\) 0 0
\(295\) 13.0399 + 28.5534i 0.00257360 + 0.00563541i
\(296\) 0 0
\(297\) −717.819 461.314i −0.140243 0.0901285i
\(298\) 0 0
\(299\) 4208.75 + 1587.01i 0.814041 + 0.306954i
\(300\) 0 0
\(301\) −2596.69 1668.79i −0.497246 0.319560i
\(302\) 0 0
\(303\) 2305.51 + 5048.37i 0.437123 + 0.957165i
\(304\) 0 0
\(305\) −262.224 + 574.190i −0.0492291 + 0.107797i
\(306\) 0 0
\(307\) 445.905 3101.34i 0.0828963 0.576557i −0.905464 0.424424i \(-0.860477\pi\)
0.988360 0.152133i \(-0.0486142\pi\)
\(308\) 0 0
\(309\) −5819.51 6716.07i −1.07139 1.23645i
\(310\) 0 0
\(311\) 2060.32 1324.09i 0.375660 0.241422i −0.339163 0.940728i \(-0.610144\pi\)
0.714823 + 0.699306i \(0.246507\pi\)
\(312\) 0 0
\(313\) 2933.92 861.475i 0.529823 0.155570i −0.00586994 0.999983i \(-0.501868\pi\)
0.535693 + 0.844413i \(0.320050\pi\)
\(314\) 0 0
\(315\) 243.176 280.640i 0.0434965 0.0501976i
\(316\) 0 0
\(317\) 4018.10 + 1179.82i 0.711920 + 0.209039i 0.617588 0.786502i \(-0.288110\pi\)
0.0943327 + 0.995541i \(0.469928\pi\)
\(318\) 0 0
\(319\) 228.515 + 1589.35i 0.0401077 + 0.278955i
\(320\) 0 0
\(321\) −12412.0 −2.15816
\(322\) 0 0
\(323\) −28.9662 −0.00498986
\(324\) 0 0
\(325\) 722.475 + 5024.92i 0.123310 + 0.857638i
\(326\) 0 0
\(327\) −508.792 149.395i −0.0860435 0.0252647i
\(328\) 0 0
\(329\) 7405.13 8545.98i 1.24091 1.43208i
\(330\) 0 0
\(331\) −9921.53 + 2913.23i −1.64754 + 0.483762i −0.968225 0.250081i \(-0.919543\pi\)
−0.679318 + 0.733844i \(0.737724\pi\)
\(332\) 0 0
\(333\) 880.642 565.954i 0.144922 0.0931354i
\(334\) 0 0
\(335\) 117.128 + 135.173i 0.0191027 + 0.0220457i
\(336\) 0 0
\(337\) 693.640 4824.37i 0.112122 0.779823i −0.853728 0.520719i \(-0.825664\pi\)
0.965850 0.259104i \(-0.0834271\pi\)
\(338\) 0 0
\(339\) 31.7905 69.6114i 0.00509328 0.0111527i
\(340\) 0 0
\(341\) 415.370 + 909.534i 0.0659635 + 0.144440i
\(342\) 0 0
\(343\) 580.867 + 373.301i 0.0914399 + 0.0587648i
\(344\) 0 0
\(345\) −187.058 507.074i −0.0291910 0.0791302i
\(346\) 0 0
\(347\) −7037.06 4522.44i −1.08867 0.699647i −0.132127 0.991233i \(-0.542181\pi\)
−0.956545 + 0.291586i \(0.905817\pi\)
\(348\) 0 0
\(349\) 871.815 + 1909.01i 0.133717 + 0.292799i 0.964632 0.263600i \(-0.0849099\pi\)
−0.830915 + 0.556399i \(0.812183\pi\)
\(350\) 0 0
\(351\) −780.299 + 1708.62i −0.118659 + 0.259827i
\(352\) 0 0
\(353\) 594.996 4138.29i 0.0897122 0.623962i −0.894513 0.447042i \(-0.852477\pi\)
0.984225 0.176920i \(-0.0566135\pi\)
\(354\) 0 0
\(355\) −298.478 344.461i −0.0446241 0.0514989i
\(356\) 0 0
\(357\) 173.583 111.555i 0.0257339 0.0165382i
\(358\) 0 0
\(359\) 3161.77 928.379i 0.464824 0.136485i −0.0409307 0.999162i \(-0.513032\pi\)
0.505755 + 0.862677i \(0.331214\pi\)
\(360\) 0 0
\(361\) 4089.33 4719.34i 0.596200 0.688051i
\(362\) 0 0
\(363\) 6518.95 + 1914.14i 0.942579 + 0.276766i
\(364\) 0 0
\(365\) −66.1921 460.376i −0.00949220 0.0660197i
\(366\) 0 0
\(367\) −7706.16 −1.09607 −0.548036 0.836455i \(-0.684624\pi\)
−0.548036 + 0.836455i \(0.684624\pi\)
\(368\) 0 0
\(369\) 261.789 0.0369328
\(370\) 0 0
\(371\) −1665.65 11584.8i −0.233090 1.62117i
\(372\) 0 0
\(373\) 5030.83 + 1477.18i 0.698355 + 0.205056i 0.611592 0.791173i \(-0.290529\pi\)
0.0867631 + 0.996229i \(0.472348\pi\)
\(374\) 0 0
\(375\) 800.555 923.890i 0.110241 0.127225i
\(376\) 0 0
\(377\) 3391.54 995.845i 0.463324 0.136044i
\(378\) 0 0
\(379\) −6847.52 + 4400.64i −0.928057 + 0.596426i −0.914985 0.403488i \(-0.867798\pi\)
−0.0130723 + 0.999915i \(0.504161\pi\)
\(380\) 0 0
\(381\) −6766.40 7808.84i −0.909851 1.05002i
\(382\) 0 0
\(383\) −1822.14 + 12673.3i −0.243099 + 1.69079i 0.393284 + 0.919417i \(0.371339\pi\)
−0.636383 + 0.771374i \(0.719570\pi\)
\(384\) 0 0
\(385\) −140.747 + 308.194i −0.0186316 + 0.0407975i
\(386\) 0 0
\(387\) 1014.03 + 2220.41i 0.133194 + 0.291654i
\(388\) 0 0
\(389\) −9969.32 6406.89i −1.29939 0.835070i −0.306249 0.951952i \(-0.599074\pi\)
−0.993146 + 0.116881i \(0.962710\pi\)
\(390\) 0 0
\(391\) −8.73412 128.604i −0.00112968 0.0166337i
\(392\) 0 0
\(393\) −6957.64 4471.40i −0.893044 0.573925i
\(394\) 0 0
\(395\) −379.878 831.818i −0.0483893 0.105958i
\(396\) 0 0
\(397\) 3494.46 7651.80i 0.441768 0.967337i −0.549502 0.835492i \(-0.685183\pi\)
0.991270 0.131845i \(-0.0420900\pi\)
\(398\) 0 0
\(399\) 622.875 4332.19i 0.0781523 0.543561i
\(400\) 0 0
\(401\) 676.080 + 780.238i 0.0841941 + 0.0971652i 0.796283 0.604924i \(-0.206796\pi\)
−0.712089 + 0.702089i \(0.752251\pi\)
\(402\) 0 0
\(403\) 1851.70 1190.02i 0.228883 0.147094i
\(404\) 0 0
\(405\) 591.273 173.613i 0.0725446 0.0213010i
\(406\) 0 0
\(407\) −625.473 + 721.835i −0.0761758 + 0.0879116i
\(408\) 0 0
\(409\) −7219.15 2119.73i −0.872773 0.256269i −0.185479 0.982648i \(-0.559384\pi\)
−0.687294 + 0.726379i \(0.741202\pi\)
\(410\) 0 0
\(411\) −688.751 4790.37i −0.0826608 0.574919i
\(412\) 0 0
\(413\) −1131.17 −0.134773
\(414\) 0 0
\(415\) −540.185 −0.0638955
\(416\) 0 0
\(417\) 1063.45 + 7396.47i 0.124886 + 0.868601i
\(418\) 0 0
\(419\) 11816.4 + 3469.62i 1.37773 + 0.404539i 0.884980 0.465629i \(-0.154172\pi\)
0.492755 + 0.870168i \(0.335990\pi\)
\(420\) 0 0
\(421\) 4949.48 5712.01i 0.572977 0.661250i −0.393103 0.919494i \(-0.628598\pi\)
0.966080 + 0.258244i \(0.0831439\pi\)
\(422\) 0 0
\(423\) −8580.24 + 2519.39i −0.986255 + 0.289591i
\(424\) 0 0
\(425\) 122.386 78.6526i 0.0139684 0.00897696i
\(426\) 0 0
\(427\) −14896.1 17191.0i −1.68823 1.94832i
\(428\) 0 0
\(429\) −739.368 + 5142.42i −0.0832099 + 0.578737i
\(430\) 0 0
\(431\) 2336.39 5115.99i 0.261114 0.571760i −0.732984 0.680246i \(-0.761873\pi\)
0.994098 + 0.108486i \(0.0346002\pi\)
\(432\) 0 0
\(433\) 3100.74 + 6789.68i 0.344139 + 0.753559i 0.999999 0.00132331i \(-0.000421224\pi\)
−0.655860 + 0.754882i \(0.727694\pi\)
\(434\) 0 0
\(435\) −357.303 229.625i −0.0393825 0.0253096i
\(436\) 0 0
\(437\) −2182.91 1646.36i −0.238953 0.180220i
\(438\) 0 0
\(439\) 5820.25 + 3740.45i 0.632768 + 0.406655i 0.817334 0.576165i \(-0.195451\pi\)
−0.184565 + 0.982820i \(0.559088\pi\)
\(440\) 0 0
\(441\) 2666.03 + 5837.79i 0.287877 + 0.630363i
\(442\) 0 0
\(443\) −2657.74 + 5819.63i −0.285040 + 0.624151i −0.996943 0.0781263i \(-0.975106\pi\)
0.711903 + 0.702278i \(0.247834\pi\)
\(444\) 0 0
\(445\) 46.2121 321.412i 0.00492284 0.0342391i
\(446\) 0 0
\(447\) 189.025 + 218.146i 0.0200012 + 0.0230827i
\(448\) 0 0
\(449\) −13422.5 + 8626.10i −1.41079 + 0.906661i −0.999987 0.00506191i \(-0.998389\pi\)
−0.410805 + 0.911723i \(0.634752\pi\)
\(450\) 0 0
\(451\) −229.182 + 67.2940i −0.0239286 + 0.00702606i
\(452\) 0 0
\(453\) −14319.2 + 16525.2i −1.48515 + 1.71396i
\(454\) 0 0
\(455\) 715.634 + 210.129i 0.0737350 + 0.0216506i
\(456\) 0 0
\(457\) 841.013 + 5849.37i 0.0860851 + 0.598735i 0.986507 + 0.163718i \(0.0523487\pi\)
−0.900422 + 0.435017i \(0.856742\pi\)
\(458\) 0 0
\(459\) 53.8283 0.00547383
\(460\) 0 0
\(461\) 12168.4 1.22937 0.614686 0.788772i \(-0.289283\pi\)
0.614686 + 0.788772i \(0.289283\pi\)
\(462\) 0 0
\(463\) −991.879 6898.67i −0.0995606 0.692459i −0.977073 0.212905i \(-0.931708\pi\)
0.877512 0.479554i \(-0.159202\pi\)
\(464\) 0 0
\(465\) −253.771 74.5138i −0.0253082 0.00743117i
\(466\) 0 0
\(467\) −2092.75 + 2415.16i −0.207368 + 0.239316i −0.849901 0.526943i \(-0.823338\pi\)
0.642533 + 0.766258i \(0.277884\pi\)
\(468\) 0 0
\(469\) −6184.29 + 1815.87i −0.608879 + 0.178783i
\(470\) 0 0
\(471\) −3473.15 + 2232.06i −0.339776 + 0.218361i
\(472\) 0 0
\(473\) −1458.49 1683.19i −0.141779 0.163622i
\(474\) 0 0
\(475\) 439.161 3054.44i 0.0424213 0.295047i
\(476\) 0 0
\(477\) −3844.94 + 8419.25i −0.369073 + 0.808157i
\(478\) 0 0
\(479\) 6377.61 + 13965.0i 0.608352 + 1.33210i 0.923696 + 0.383127i \(0.125153\pi\)
−0.315344 + 0.948977i \(0.602120\pi\)
\(480\) 0 0
\(481\) 1768.79 + 1136.74i 0.167672 + 0.107756i
\(482\) 0 0
\(483\) 19421.8 + 1459.15i 1.82965 + 0.137461i
\(484\) 0 0
\(485\) 313.435 + 201.432i 0.0293450 + 0.0188589i
\(486\) 0 0
\(487\) 607.933 + 1331.19i 0.0565669 + 0.123864i 0.935805 0.352519i \(-0.114675\pi\)
−0.879238 + 0.476383i \(0.841948\pi\)
\(488\) 0 0
\(489\) −2815.44 + 6164.96i −0.260365 + 0.570121i
\(490\) 0 0
\(491\) 1731.48 12042.7i 0.159146 1.10689i −0.741065 0.671433i \(-0.765679\pi\)
0.900211 0.435453i \(-0.143412\pi\)
\(492\) 0 0
\(493\) −66.3339 76.5534i −0.00605989 0.00699349i
\(494\) 0 0
\(495\) 225.403 144.858i 0.0204669 0.0131533i
\(496\) 0 0
\(497\) 15759.4 4627.37i 1.42234 0.417638i
\(498\) 0 0
\(499\) 11454.6 13219.3i 1.02761 1.18592i 0.0452374 0.998976i \(-0.485596\pi\)
0.982370 0.186946i \(-0.0598590\pi\)
\(500\) 0 0
\(501\) 4111.63 + 1207.28i 0.366655 + 0.107660i
\(502\) 0 0
\(503\) −1218.45 8474.50i −0.108008 0.751211i −0.969792 0.243935i \(-0.921562\pi\)
0.861784 0.507276i \(-0.169348\pi\)
\(504\) 0 0
\(505\) 574.890 0.0506580
\(506\) 0 0
\(507\) −3673.57 −0.321792
\(508\) 0 0
\(509\) 2142.89 + 14904.1i 0.186605 + 1.29787i 0.840720 + 0.541470i \(0.182132\pi\)
−0.654115 + 0.756395i \(0.726959\pi\)
\(510\) 0 0
\(511\) 16081.7 + 4722.02i 1.39220 + 0.408786i
\(512\) 0 0
\(513\) 747.703 862.896i 0.0643507 0.0742647i
\(514\) 0 0
\(515\) −883.241 + 259.343i −0.0755733 + 0.0221903i
\(516\) 0 0
\(517\) 6863.92 4411.17i 0.583897 0.375248i
\(518\) 0 0
\(519\) −16767.1 19350.3i −1.41810 1.63658i
\(520\) 0 0
\(521\) 267.676 1861.73i 0.0225088 0.156552i −0.975467 0.220145i \(-0.929347\pi\)
0.997976 + 0.0635930i \(0.0202560\pi\)
\(522\) 0 0
\(523\) −5130.00 + 11233.1i −0.428908 + 0.939179i 0.564594 + 0.825369i \(0.309033\pi\)
−0.993503 + 0.113810i \(0.963695\pi\)
\(524\) 0 0
\(525\) 9131.56 + 19995.3i 0.759112 + 1.66222i
\(526\) 0 0
\(527\) −53.0643 34.1024i −0.00438618 0.00281883i
\(528\) 0 0
\(529\) 6651.28 10188.1i 0.546665 0.837351i
\(530\) 0 0
\(531\) 752.538 + 483.627i 0.0615016 + 0.0395247i
\(532\) 0 0
\(533\) 218.430 + 478.295i 0.0177509 + 0.0388691i
\(534\) 0 0
\(535\) −534.102 + 1169.52i −0.0431612 + 0.0945098i
\(536\) 0 0
\(537\) 4564.67 31748.0i 0.366816 2.55126i
\(538\) 0 0
\(539\) −3834.59 4425.35i −0.306433 0.353643i
\(540\) 0 0
\(541\) 785.258 504.655i 0.0624046 0.0401050i −0.509067 0.860727i \(-0.670009\pi\)
0.571471 + 0.820622i \(0.306373\pi\)
\(542\) 0 0
\(543\) 29364.1 8622.07i 2.32069 0.681415i
\(544\) 0 0
\(545\) −35.9706 + 41.5122i −0.00282717 + 0.00326273i
\(546\) 0 0
\(547\) −16192.1 4754.44i −1.26568 0.371637i −0.421073 0.907027i \(-0.638347\pi\)
−0.844605 + 0.535390i \(0.820165\pi\)
\(548\) 0 0
\(549\) 2560.05 + 17805.6i 0.199017 + 1.38419i
\(550\) 0 0
\(551\) −2148.60 −0.166123
\(552\) 0 0
\(553\) 32953.2 2.53402
\(554\) 0 0
\(555\) −35.9547 250.071i −0.00274990 0.0191260i
\(556\) 0 0
\(557\) −10549.5 3097.61i −0.802505 0.235637i −0.145339 0.989382i \(-0.546427\pi\)
−0.657167 + 0.753745i \(0.728245\pi\)
\(558\) 0 0
\(559\) −3210.66 + 3705.30i −0.242928 + 0.280354i
\(560\) 0 0
\(561\) 142.851 41.9449i 0.0107508 0.00315671i
\(562\) 0 0
\(563\) −4019.27 + 2583.03i −0.300874 + 0.193360i −0.682363 0.731013i \(-0.739048\pi\)
0.381489 + 0.924373i \(0.375411\pi\)
\(564\) 0 0
\(565\) −5.19115 5.99091i −0.000386537 0.000446087i
\(566\) 0 0
\(567\) −3160.32 + 21980.5i −0.234076 + 1.62803i
\(568\) 0 0
\(569\) −1392.02 + 3048.10i −0.102560 + 0.224575i −0.953955 0.299950i \(-0.903030\pi\)
0.851395 + 0.524525i \(0.175757\pi\)
\(570\) 0 0
\(571\) −2903.31 6357.37i −0.212784 0.465933i 0.772901 0.634526i \(-0.218805\pi\)
−0.985686 + 0.168593i \(0.946077\pi\)
\(572\) 0 0
\(573\) 2329.04 + 1496.78i 0.169803 + 0.109126i
\(574\) 0 0
\(575\) 13693.4 + 1028.78i 0.993141 + 0.0746143i
\(576\) 0 0
\(577\) 6819.92 + 4382.89i 0.492057 + 0.316226i 0.763032 0.646361i \(-0.223710\pi\)
−0.270975 + 0.962586i \(0.587346\pi\)
\(578\) 0 0
\(579\) 12006.9 + 26291.5i 0.861814 + 1.88711i
\(580\) 0 0
\(581\) 8086.47 17706.9i 0.577424 1.26438i
\(582\) 0 0
\(583\) 1201.84 8358.95i 0.0853773 0.593812i
\(584\) 0 0
\(585\) −386.253 445.760i −0.0272985 0.0315041i
\(586\) 0 0
\(587\) −17748.7 + 11406.4i −1.24798 + 0.802029i −0.986592 0.163204i \(-0.947817\pi\)
−0.261390 + 0.965233i \(0.584181\pi\)
\(588\) 0 0
\(589\) −1283.77 + 376.949i −0.0898079 + 0.0263700i
\(590\) 0 0
\(591\) 6810.20 7859.39i 0.474000 0.547025i
\(592\) 0 0
\(593\) −1304.30 382.978i −0.0903226 0.0265211i 0.236259 0.971690i \(-0.424079\pi\)
−0.326582 + 0.945169i \(0.605897\pi\)
\(594\) 0 0
\(595\) −3.04180 21.1562i −0.000209583 0.00145768i
\(596\) 0 0
\(597\) −5080.50 −0.348293
\(598\) 0 0
\(599\) −24090.0 −1.64322 −0.821612 0.570047i \(-0.806925\pi\)
−0.821612 + 0.570047i \(0.806925\pi\)
\(600\) 0 0
\(601\) 3345.58 + 23269.0i 0.227070 + 1.57931i 0.710354 + 0.703844i \(0.248535\pi\)
−0.483284 + 0.875464i \(0.660556\pi\)
\(602\) 0 0
\(603\) 4890.62 + 1436.02i 0.330284 + 0.0969803i
\(604\) 0 0
\(605\) 460.877 531.880i 0.0309707 0.0357421i
\(606\) 0 0
\(607\) −4709.91 + 1382.96i −0.314941 + 0.0924752i −0.435383 0.900245i \(-0.643387\pi\)
0.120442 + 0.992720i \(0.461569\pi\)
\(608\) 0 0
\(609\) 12875.7 8274.73i 0.856734 0.550589i
\(610\) 0 0
\(611\) −11762.1 13574.2i −0.778795 0.898777i
\(612\) 0 0
\(613\) −2826.48 + 19658.6i −0.186233 + 1.29528i 0.655423 + 0.755262i \(0.272490\pi\)
−0.841656 + 0.540014i \(0.818419\pi\)
\(614\) 0 0
\(615\) 26.2463 57.4714i 0.00172090 0.00376824i
\(616\) 0 0
\(617\) −1440.37 3153.96i −0.0939821 0.205792i 0.856802 0.515645i \(-0.172448\pi\)
−0.950785 + 0.309853i \(0.899720\pi\)
\(618\) 0 0
\(619\) −104.102 66.9020i −0.00675960 0.00434413i 0.537257 0.843419i \(-0.319461\pi\)
−0.544016 + 0.839075i \(0.683097\pi\)
\(620\) 0 0
\(621\) 4056.52 + 3059.45i 0.262130 + 0.197700i
\(622\) 0 0
\(623\) 9843.90 + 6326.29i 0.633046 + 0.406834i
\(624\) 0 0
\(625\) 6411.90 + 14040.1i 0.410362 + 0.898566i
\(626\) 0 0
\(627\) 1311.88 2872.62i 0.0835590 0.182969i
\(628\) 0 0
\(629\) 8.57496 59.6402i 0.000543571 0.00378062i
\(630\) 0 0
\(631\) −19973.2 23050.3i −1.26009 1.45423i −0.836116 0.548553i \(-0.815179\pi\)
−0.423978 0.905672i \(-0.639367\pi\)
\(632\) 0 0
\(633\) −23729.7 + 15250.1i −1.49000 + 0.957565i
\(634\) 0 0
\(635\) −1026.95 + 301.541i −0.0641785 + 0.0188445i
\(636\) 0 0
\(637\) −8441.31 + 9741.79i −0.525050 + 0.605940i
\(638\) 0 0
\(639\) −12462.7 3659.39i −0.771547 0.226546i
\(640\) 0 0
\(641\) −3211.80 22338.5i −0.197907 1.37647i −0.810344 0.585954i \(-0.800720\pi\)
0.612438 0.790519i \(-0.290189\pi\)
\(642\) 0 0
\(643\) 3572.97 0.219136 0.109568 0.993979i \(-0.465053\pi\)
0.109568 + 0.993979i \(0.465053\pi\)
\(644\) 0 0
\(645\) 589.117 0.0359635
\(646\) 0 0
\(647\) 906.620 + 6305.68i 0.0550895 + 0.383156i 0.998649 + 0.0519542i \(0.0165450\pi\)
−0.943560 + 0.331202i \(0.892546\pi\)
\(648\) 0 0
\(649\) −783.124 229.946i −0.0473657 0.0139078i
\(650\) 0 0
\(651\) 6241.42 7202.98i 0.375761 0.433651i
\(652\) 0 0
\(653\) −9108.84 + 2674.60i −0.545875 + 0.160283i −0.543031 0.839713i \(-0.682723\pi\)
−0.00284408 + 0.999996i \(0.500905\pi\)
\(654\) 0 0
\(655\) −720.712 + 463.173i −0.0429932 + 0.0276301i
\(656\) 0 0
\(657\) −8679.88 10017.1i −0.515425 0.594832i
\(658\) 0 0
\(659\) −2586.71 + 17990.9i −0.152904 + 1.06347i 0.758416 + 0.651771i \(0.225974\pi\)
−0.911320 + 0.411700i \(0.864935\pi\)
\(660\) 0 0
\(661\) −6117.04 + 13394.4i −0.359947 + 0.788175i 0.639859 + 0.768492i \(0.278993\pi\)
−0.999806 + 0.0196823i \(0.993735\pi\)
\(662\) 0 0
\(663\) −136.149 298.125i −0.00797526 0.0174634i
\(664\) 0 0
\(665\) −381.397 245.109i −0.0222405 0.0142931i
\(666\) 0 0
\(667\) −647.863 9539.33i −0.0376093 0.553769i
\(668\) 0 0
\(669\) −31774.2 20420.1i −1.83627 1.18010i
\(670\) 0 0
\(671\) −6818.17 14929.7i −0.392269 0.858950i
\(672\) 0 0
\(673\) 10790.6 23628.2i 0.618051 1.35334i −0.298877 0.954292i \(-0.596612\pi\)
0.916928 0.399052i \(-0.130661\pi\)
\(674\) 0 0
\(675\) −816.098 + 5676.09i −0.0465358 + 0.323663i
\(676\) 0 0
\(677\) −18220.0 21027.0i −1.03435 1.19370i −0.980776 0.195135i \(-0.937486\pi\)
−0.0535695 0.998564i \(-0.517060\pi\)
\(678\) 0 0
\(679\) −11294.9 + 7258.79i −0.638377 + 0.410260i
\(680\) 0 0
\(681\) 28305.4 8311.21i 1.59275 0.467675i
\(682\) 0 0
\(683\) 274.245 316.496i 0.0153641 0.0177312i −0.748015 0.663681i \(-0.768993\pi\)
0.763380 + 0.645950i \(0.223539\pi\)
\(684\) 0 0
\(685\) −481.010 141.237i −0.0268299 0.00787796i
\(686\) 0 0
\(687\) 673.234 + 4682.44i 0.0373879 + 0.260038i
\(688\) 0 0
\(689\) −18590.3 −1.02791
\(690\) 0 0
\(691\) 19726.7 1.08602 0.543008 0.839727i \(-0.317285\pi\)
0.543008 + 0.839727i \(0.317285\pi\)
\(692\) 0 0
\(693\) 1374.10 + 9557.06i 0.0753213 + 0.523871i
\(694\) 0 0
\(695\) 742.693 + 218.074i 0.0405352 + 0.0119022i
\(696\) 0 0
\(697\) 9.86758 11.3878i 0.000536243 0.000618857i
\(698\) 0 0
\(699\) 11895.1 3492.73i 0.643656 0.188994i
\(700\) 0 0
\(701\) −7752.11 + 4981.98i −0.417679 + 0.268426i −0.732556 0.680706i \(-0.761673\pi\)
0.314877 + 0.949132i \(0.398037\pi\)
\(702\) 0 0
\(703\) −836.953 965.895i −0.0449023 0.0518200i
\(704\) 0 0
\(705\) −307.144 + 2136.23i −0.0164081 + 0.114121i
\(706\) 0 0
\(707\) −8606.01 + 18844.5i −0.457797 + 1.00244i
\(708\) 0 0
\(709\) 9343.62 + 20459.7i 0.494932 + 1.08375i 0.978083 + 0.208213i \(0.0667649\pi\)
−0.483151 + 0.875537i \(0.660508\pi\)
\(710\) 0 0
\(711\) −21922.9 14089.0i −1.15636 0.743149i
\(712\) 0 0
\(713\) −2060.66 5586.00i −0.108236 0.293404i
\(714\) 0 0
\(715\) 452.728 + 290.951i 0.0236798 + 0.0152181i
\(716\) 0 0
\(717\) −9465.15 20725.8i −0.493002 1.07952i
\(718\) 0 0
\(719\) 5904.39 12928.8i 0.306254 0.670603i −0.692452 0.721464i \(-0.743469\pi\)
0.998706 + 0.0508615i \(0.0161967\pi\)
\(720\) 0 0
\(721\) 4720.87 32834.4i 0.243848 1.69600i
\(722\) 0 0
\(723\) 20155.6 + 23260.8i 1.03678 + 1.19651i
\(724\) 0 0
\(725\) 9078.10 5834.14i 0.465038 0.298862i
\(726\) 0 0
\(727\) 12029.9 3532.31i 0.613708 0.180201i 0.0399173 0.999203i \(-0.487291\pi\)
0.573791 + 0.819002i \(0.305472\pi\)
\(728\) 0 0
\(729\) 5898.66 6807.41i 0.299683 0.345852i
\(730\) 0 0
\(731\) 134.809 + 39.5835i 0.00682093 + 0.00200280i
\(732\) 0 0
\(733\) 4554.45 + 31676.9i 0.229499 + 1.59620i 0.700227 + 0.713921i \(0.253082\pi\)
−0.470728 + 0.882278i \(0.656009\pi\)
\(734\) 0 0
\(735\) 1548.87 0.0777294
\(736\) 0 0
\(737\) −4650.61 −0.232439
\(738\) 0 0
\(739\) 539.986 + 3755.68i 0.0268791 + 0.186949i 0.998837 0.0482045i \(-0.0153499\pi\)
−0.971958 + 0.235153i \(0.924441\pi\)
\(740\) 0 0
\(741\) −6670.29 1958.57i −0.330687 0.0970985i
\(742\) 0 0
\(743\) 3916.38 4519.75i 0.193376 0.223167i −0.650779 0.759267i \(-0.725558\pi\)
0.844155 + 0.536100i \(0.180103\pi\)
\(744\) 0 0
\(745\) 28.6887 8.42377i 0.00141084 0.000414259i
\(746\) 0 0
\(747\) −12950.2 + 8322.62i −0.634304 + 0.407642i
\(748\) 0 0
\(749\) −30340.7 35015.0i −1.48014 1.70817i
\(750\) 0 0
\(751\) −3056.99 + 21261.8i −0.148537 + 1.03310i 0.770081 + 0.637947i \(0.220216\pi\)
−0.918617 + 0.395148i \(0.870693\pi\)
\(752\) 0 0
\(753\) 9071.15 19863.1i 0.439006 0.961288i
\(754\) 0 0
\(755\) 940.918 + 2060.32i 0.0453557 + 0.0993151i
\(756\) 0 0
\(757\) 2879.65 + 1850.64i 0.138260 + 0.0888541i 0.607942 0.793981i \(-0.291995\pi\)
−0.469683 + 0.882835i \(0.655632\pi\)
\(758\) 0 0
\(759\) 13149.4 + 4958.29i 0.628843 + 0.237120i
\(760\) 0 0
\(761\) −29096.9 18699.5i −1.38602 0.890742i −0.386520 0.922281i \(-0.626323\pi\)
−0.999503 + 0.0315386i \(0.989959\pi\)
\(762\) 0 0
\(763\) −822.271 1800.52i −0.0390147 0.0854303i
\(764\) 0 0
\(765\) −7.02162 + 15.3752i −0.000331852 + 0.000726656i
\(766\) 0 0
\(767\) −255.699 + 1778.43i −0.0120375 + 0.0837227i
\(768\) 0 0
\(769\) −22706.7 26204.9i −1.06479 1.22883i −0.972452 0.233105i \(-0.925111\pi\)
−0.0923378 0.995728i \(-0.529434\pi\)
\(770\) 0 0
\(771\) 30021.1 19293.4i 1.40231 0.901212i
\(772\) 0 0
\(773\) −23157.0 + 6799.51i −1.07749 + 0.316380i −0.771874 0.635775i \(-0.780681\pi\)
−0.305616 + 0.952155i \(0.598862\pi\)
\(774\) 0 0
\(775\) 4400.55 5078.50i 0.203964 0.235387i
\(776\) 0 0
\(777\) 8735.40 + 2564.94i 0.403321 + 0.118426i
\(778\) 0 0
\(779\) −45.4864 316.365i −0.00209207 0.0145507i
\(780\) 0 0
\(781\) 11851.1 0.542978
\(782\) 0 0
\(783\) 3992.77 0.182235
\(784\) 0 0
\(785\) 60.8621 + 423.305i 0.00276721 + 0.0192464i
\(786\) 0 0
\(787\) 22168.8 + 6509.36i 1.00411 + 0.294833i 0.742141 0.670244i \(-0.233810\pi\)
0.261968 + 0.965077i \(0.415629\pi\)
\(788\) 0 0
\(789\) 31896.1 36810.1i 1.43920 1.66093i
\(790\) 0 0
\(791\) 274.089 80.4797i 0.0123205 0.00361761i
\(792\) 0 0
\(793\) −30395.1 + 19533.7i −1.36111 + 0.874733i
\(794\) 0 0
\(795\) 1462.82 + 1688.18i 0.0652589 + 0.0753127i
\(796\) 0 0
\(797\) −4821.47 + 33534.0i −0.214285 + 1.49039i 0.544344 + 0.838862i \(0.316779\pi\)
−0.758629 + 0.651523i \(0.774130\pi\)
\(798\) 0 0
\(799\) −213.821 + 468.202i −0.00946737 + 0.0207307i
\(800\) 0 0
\(801\) −3844.12 8417.44i −0.169570 0.371306i
\(802\) 0 0
\(803\) 10173.7 + 6538.24i 0.447101 + 0.287334i
\(804\) 0 0
\(805\) 973.229 1767.23i 0.0426110 0.0773746i
\(806\) 0 0
\(807\) −29123.9 18716.8i −1.27039 0.816433i
\(808\) 0 0
\(809\) 15844.9 + 34695.4i 0.688598 + 1.50782i 0.853269 + 0.521471i \(0.174617\pi\)
−0.164671 + 0.986349i \(0.552656\pi\)
\(810\) 0 0
\(811\) 8352.81 18290.1i 0.361661 0.791926i −0.638098 0.769955i \(-0.720279\pi\)
0.999759 0.0219712i \(-0.00699421\pi\)
\(812\) 0 0
\(813\) 2788.39 19393.7i 0.120287 0.836613i
\(814\) 0 0
\(815\) 459.741 + 530.569i 0.0197595 + 0.0228037i
\(816\) 0 0
\(817\) 2507.12 1611.23i 0.107360 0.0689959i
\(818\) 0 0
\(819\) 20393.9 5988.18i 0.870110 0.255487i
\(820\) 0 0
\(821\) −13020.5 + 15026.4i −0.553493 + 0.638765i −0.961693 0.274128i \(-0.911611\pi\)
0.408201 + 0.912892i \(0.366156\pi\)
\(822\) 0 0
\(823\) −3292.84 966.864i −0.139467 0.0409511i 0.211254 0.977431i \(-0.432245\pi\)
−0.350721 + 0.936480i \(0.614063\pi\)
\(824\) 0 0
\(825\) 2257.22 + 15699.3i 0.0952562 + 0.662522i
\(826\) 0 0
\(827\) −43792.0 −1.84135 −0.920676 0.390329i \(-0.872361\pi\)
−0.920676 + 0.390329i \(0.872361\pi\)
\(828\) 0 0
\(829\) −28166.1 −1.18004 −0.590019 0.807390i \(-0.700880\pi\)
−0.590019 + 0.807390i \(0.700880\pi\)
\(830\) 0 0
\(831\) −872.697 6069.74i −0.0364302 0.253378i
\(832\) 0 0
\(833\) 354.433 + 104.071i 0.0147423 + 0.00432874i
\(834\) 0 0
\(835\) 290.684 335.467i 0.0120473 0.0139034i
\(836\) 0 0
\(837\) 2385.64 700.488i 0.0985184 0.0289276i
\(838\) 0 0
\(839\) −16011.3 + 10289.9i −0.658846 + 0.423415i −0.826889 0.562365i \(-0.809892\pi\)
0.168043 + 0.985780i \(0.446255\pi\)
\(840\) 0 0
\(841\) 11051.0 + 12753.5i 0.453114 + 0.522922i
\(842\) 0 0
\(843\) −9101.17 + 63300.0i −0.371840 + 2.58620i
\(844\) 0 0
\(845\) −158.078 + 346.141i −0.00643554 + 0.0140919i
\(846\) 0 0
\(847\) 10535.4 + 23069.4i 0.427393 + 0.935861i
\(848\) 0 0
\(849\) 33865.3 + 21763.9i 1.36897 + 0.879783i
\(850\) 0 0
\(851\) 4036.00 4007.13i 0.162576 0.161413i
\(852\) 0 0
\(853\) 21824.4 + 14025.7i 0.876028 + 0.562989i 0.899591 0.436733i \(-0.143865\pi\)
−0.0235630 + 0.999722i \(0.507501\pi\)
\(854\) 0 0
\(855\) 148.939 + 326.130i 0.00595742 + 0.0130449i
\(856\) 0 0
\(857\) −12170.4 + 26649.5i −0.485104 + 1.06223i 0.495925 + 0.868365i \(0.334829\pi\)
−0.981029 + 0.193863i \(0.937898\pi\)
\(858\) 0 0
\(859\) −2342.80 + 16294.6i −0.0930564 + 0.647222i 0.888898 + 0.458105i \(0.151472\pi\)
−0.981955 + 0.189117i \(0.939438\pi\)
\(860\) 0 0
\(861\) 1490.97 + 1720.67i 0.0590153 + 0.0681073i
\(862\) 0 0
\(863\) −14940.3 + 9601.54i −0.589308 + 0.378726i −0.801048 0.598601i \(-0.795724\pi\)
0.211739 + 0.977326i \(0.432087\pi\)
\(864\) 0 0
\(865\) −2544.79 + 747.217i −0.100029 + 0.0293713i
\(866\) 0 0
\(867\) 22121.6 25529.7i 0.866540 1.00004i
\(868\) 0 0
\(869\) 22813.9 + 6698.78i 0.890575 + 0.261497i
\(870\) 0 0
\(871\) 1456.97 + 10133.4i 0.0566791 + 0.394212i
\(872\) 0 0
\(873\) 10617.7 0.411631
\(874\) 0 0
\(875\) 4563.28 0.176305
\(876\) 0 0
\(877\) 4273.51 + 29722.9i 0.164545 + 1.14444i 0.889931 + 0.456095i \(0.150752\pi\)
−0.725386 + 0.688343i \(0.758339\pi\)
\(878\) 0 0
\(879\) 17600.8 + 5168.06i 0.675382 + 0.198310i
\(880\) 0 0
\(881\) 13911.3 16054.5i 0.531991 0.613950i −0.424601 0.905381i \(-0.639586\pi\)
0.956592 + 0.291430i \(0.0941311\pi\)
\(882\) 0 0
\(883\) −9508.33 + 2791.90i −0.362379 + 0.106404i −0.457853 0.889028i \(-0.651381\pi\)
0.0954740 + 0.995432i \(0.469563\pi\)
\(884\) 0 0
\(885\) 181.619 116.720i 0.00689838 0.00443332i
\(886\) 0 0
\(887\) 30140.2 + 34783.7i 1.14094 + 1.31671i 0.941582 + 0.336783i \(0.109339\pi\)
0.199354 + 0.979928i \(0.436116\pi\)
\(888\) 0 0
\(889\) 5489.00 38176.9i 0.207081 1.44028i
\(890\) 0 0
\(891\) −6656.17 + 14575.0i −0.250269 + 0.548014i
\(892\) 0 0
\(893\) 4535.44 + 9931.23i 0.169958 + 0.372157i
\(894\) 0 0
\(895\) −2795.03 1796.26i −0.104388 0.0670863i
\(896\) 0 0
\(897\) 6684.36 30205.2i 0.248812 1.12433i
\(898\) 0 0
\(899\) −3936.11 2529.58i −0.146025 0.0938446i
\(900\) 0 0
\(901\) 221.309 + 484.600i 0.00818300 + 0.0179183i
\(902\) 0 0
\(903\) −8818.98 + 19310.9i −0.325003 + 0.711656i
\(904\) 0 0
\(905\) 451.154 3137.85i 0.0165711 0.115255i
\(906\) 0 0
\(907\) 6878.23 + 7937.90i 0.251806 + 0.290599i 0.867553 0.497344i \(-0.165691\pi\)
−0.615748 + 0.787943i \(0.711146\pi\)
\(908\) 0 0
\(909\) 13782.3 8857.33i 0.502892 0.323189i
\(910\) 0 0
\(911\) 29571.9 8683.11i 1.07548 0.315789i 0.304411 0.952541i \(-0.401540\pi\)
0.771069 + 0.636751i \(0.219722\pi\)
\(912\) 0 0
\(913\) 9197.87 10614.9i 0.333412 0.384778i
\(914\) 0 0
\(915\) 4165.56 + 1223.12i 0.150502 + 0.0441914i
\(916\) 0 0
\(917\) −4393.59 30558.1i −0.158222 1.10046i
\(918\) 0 0
\(919\) −37778.9 −1.35605 −0.678026 0.735038i \(-0.737164\pi\)
−0.678026 + 0.735038i \(0.737164\pi\)
\(920\) 0 0
\(921\) −21549.4 −0.770984
\(922\) 0 0
\(923\) −3712.78 25823.0i −0.132403 0.920882i
\(924\) 0 0
\(925\) 6158.94 + 1808.43i 0.218924 + 0.0642819i
\(926\) 0 0
\(927\) −17178.9 + 19825.5i −0.608661 + 0.702433i
\(928\) 0 0
\(929\) −9895.21 + 2905.50i −0.349463 + 0.102612i −0.451753 0.892143i \(-0.649201\pi\)
0.102290 + 0.994755i \(0.467383\pi\)
\(930\) 0 0
\(931\) 6591.58 4236.15i 0.232041 0.149124i
\(932\) 0 0
\(933\) −11030.6 12730.0i −0.387059 0.446690i
\(934\) 0 0
\(935\) 2.19479 15.2651i 7.67671e−5 0.000533927i
\(936\) 0 0
\(937\) 20168.0 44161.7i 0.703158 1.53970i −0.132943 0.991124i \(-0.542443\pi\)
0.836100 0.548577i \(-0.184830\pi\)
\(938\) 0 0
\(939\) −8736.36 19130.0i −0.303621 0.664838i
\(940\) 0 0
\(941\) 31966.3 + 20543.5i 1.10741 + 0.711689i 0.960727 0.277495i \(-0.0895041\pi\)
0.146682 + 0.989184i \(0.453141\pi\)
\(942\) 0 0
\(943\) 1390.88 297.343i 0.0480309 0.0102681i
\(944\) 0 0
\(945\) 708.755 + 455.489i 0.0243977 + 0.0156794i
\(946\) 0 0
\(947\) −11627.6 25460.9i −0.398994 0.873674i −0.997371 0.0724599i \(-0.976915\pi\)
0.598378 0.801214i \(-0.295812\pi\)
\(948\) 0 0
\(949\) 11059.2 24216.3i 0.378291 0.828341i
\(950\) 0 0
\(951\) 4098.94 28508.7i 0.139766 0.972091i
\(952\) 0 0
\(953\) 23815.9 + 27485.0i 0.809520 + 0.934236i 0.998863 0.0476751i \(-0.0151812\pi\)
−0.189343 + 0.981911i \(0.560636\pi\)
\(954\) 0 0
\(955\) 241.255 155.045i 0.00817469 0.00525356i
\(956\) 0 0
\(957\) 10596.2 3111.31i 0.357915 0.105093i
\(958\) 0 0
\(959\) 11830.3 13652.9i 0.398353 0.459724i
\(960\) 0 0
\(961\) 25788.7 + 7572.24i 0.865653 + 0.254179i
\(962\) 0 0
\(963\) 5214.36 + 36266.7i 0.174486 + 1.21358i
\(964\) 0 0
\(965\) 2993.98 0.0998753
\(966\) 0 0
\(967\) 34760.8 1.15598 0.577990 0.816044i \(-0.303837\pi\)
0.577990 + 0.816044i \(0.303837\pi\)
\(968\) 0 0
\(969\) 28.3521 + 197.193i 0.000939938 + 0.00653741i
\(970\) 0 0
\(971\) −19123.1 5615.05i −0.632018 0.185577i −0.0499947 0.998749i \(-0.515920\pi\)
−0.582023 + 0.813172i \(0.697739\pi\)
\(972\) 0 0
\(973\) −18266.3 + 21080.5i −0.601841 + 0.694562i
\(974\) 0 0
\(975\) 33500.9 9836.76i 1.10040 0.323106i
\(976\) 0 0
\(977\) 6391.96 4107.87i 0.209311 0.134516i −0.431785 0.901976i \(-0.642116\pi\)
0.641097 + 0.767460i \(0.278480\pi\)
\(978\) 0 0
\(979\) 5529.05 + 6380.87i 0.180500 + 0.208308i
\(980\) 0 0
\(981\) −222.770 + 1549.40i −0.00725026 + 0.0504267i
\(982\) 0 0
\(983\) 2932.27 6420.78i 0.0951423 0.208333i −0.856077 0.516849i \(-0.827105\pi\)
0.951219 + 0.308516i \(0.0998323\pi\)
\(984\) 0 0
\(985\) −447.500 979.888i −0.0144757 0.0316973i
\(986\) 0 0
\(987\) −65426.4 42047.0i −2.10998 1.35600i
\(988\) 0 0
\(989\) 7909.45 + 10645.2i 0.254303 + 0.342263i
\(990\) 0 0
\(991\) 14445.9 + 9283.83i 0.463057 + 0.297589i 0.751291 0.659971i \(-0.229432\pi\)
−0.288234 + 0.957560i \(0.593068\pi\)
\(992\) 0 0
\(993\) 29543.5 + 64691.2i 0.944143 + 2.06738i
\(994\) 0 0
\(995\) −218.619 + 478.710i −0.00696553 + 0.0152524i
\(996\) 0 0
\(997\) −893.647 + 6215.45i −0.0283873 + 0.197438i −0.999080 0.0428864i \(-0.986345\pi\)
0.970693 + 0.240324i \(0.0772537\pi\)
\(998\) 0 0
\(999\) 1555.32 + 1794.93i 0.0492574 + 0.0568460i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 184.4.i.a.25.2 90
23.12 even 11 inner 184.4.i.a.81.2 yes 90
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.4.i.a.25.2 90 1.1 even 1 trivial
184.4.i.a.81.2 yes 90 23.12 even 11 inner