Properties

Label 184.2.h.c.91.6
Level $184$
Weight $2$
Character 184.91
Analytic conductor $1.469$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [184,2,Mod(91,184)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("184.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(184, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 184.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.46924739719\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.64974433091584.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{11} + 8x^{10} - 10x^{9} + 24x^{7} - 46x^{6} + 48x^{5} - 80x^{3} + 128x^{2} - 128x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 23 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.6
Root \(0.408906 + 1.35381i\) of defining polynomial
Character \(\chi\) \(=\) 184.91
Dual form 184.2.h.c.91.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.344446 - 1.37163i) q^{2} +0.311108 q^{3} +(-1.76271 + 0.944902i) q^{4} +2.74325 q^{5} +(-0.107160 - 0.426723i) q^{6} +3.33118 q^{7} +(1.90321 + 2.09232i) q^{8} -2.90321 q^{9} +(-0.944902 - 3.76271i) q^{10} +1.78568i q^{11} +(-0.548394 + 0.293966i) q^{12} -3.98212i q^{13} +(-1.14741 - 4.56914i) q^{14} +0.853447 q^{15} +(2.21432 - 3.33118i) q^{16} -5.73975i q^{17} +(1.00000 + 3.98212i) q^{18} +5.18421i q^{19} +(-4.83557 + 2.59210i) q^{20} +1.03636 q^{21} +(2.44928 - 0.615071i) q^{22} +(-4.63306 - 1.23887i) q^{23} +(0.592104 + 0.650936i) q^{24} +2.52543 q^{25} +(-5.46198 + 1.37163i) q^{26} -1.83654 q^{27} +(-5.87192 + 3.14764i) q^{28} +5.87192i q^{29} +(-0.293966 - 1.17061i) q^{30} +3.53370i q^{31} +(-5.33185 - 1.88980i) q^{32} +0.555539i q^{33} +(-7.87278 + 1.97703i) q^{34} +9.13828 q^{35} +(5.11753 - 2.74325i) q^{36} +6.92788 q^{37} +(7.11079 - 1.78568i) q^{38} -1.23887i q^{39} +(5.22099 + 5.73975i) q^{40} -5.70964 q^{41} +(-0.356969 - 1.42149i) q^{42} +11.4795i q^{43} +(-1.68729 - 3.14764i) q^{44} -7.96424 q^{45} +(-0.103426 + 6.78154i) q^{46} -9.02020i q^{47} +(0.688892 - 1.03636i) q^{48} +4.09679 q^{49} +(-0.869874 - 3.46394i) q^{50} -1.78568i q^{51} +(3.76271 + 7.01934i) q^{52} +1.30187 q^{53} +(0.632587 + 2.51904i) q^{54} +4.89857i q^{55} +(6.33995 + 6.96989i) q^{56} +1.61285i q^{57} +(8.05408 - 2.02256i) q^{58} -6.62222 q^{59} +(-1.50438 + 0.806424i) q^{60} -5.48650 q^{61} +(4.84691 - 1.21717i) q^{62} -9.67113 q^{63} +(-0.755569 + 7.96424i) q^{64} -10.9240i q^{65} +(0.761992 - 0.191353i) q^{66} -3.39853i q^{67} +(5.42350 + 10.1175i) q^{68} +(-1.44138 - 0.385422i) q^{69} +(-3.14764 - 12.5343i) q^{70} +5.42350i q^{71} +(-5.52543 - 6.07444i) q^{72} -11.8573 q^{73} +(-2.38628 - 9.50246i) q^{74} +0.785680 q^{75} +(-4.89857 - 9.13828i) q^{76} +5.94843i q^{77} +(-1.69926 + 0.426723i) q^{78} -0.405022 q^{79} +(6.07444 - 9.13828i) q^{80} +8.13828 q^{81} +(1.96666 + 7.83148i) q^{82} +3.39853i q^{83} +(-1.82680 + 0.979256i) q^{84} -15.7456i q^{85} +(15.7456 - 3.95407i) q^{86} +1.82680i q^{87} +(-3.73621 + 3.39853i) q^{88} -16.6637i q^{89} +(2.74325 + 10.9240i) q^{90} -13.2652i q^{91} +(9.33736 - 2.19401i) q^{92} +1.09936i q^{93} +(-12.3723 + 3.10697i) q^{94} +14.2216i q^{95} +(-1.65878 - 0.587933i) q^{96} +14.4953i q^{97} +(-1.41112 - 5.61926i) q^{98} -5.18421i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 4 q^{3} - 8 q^{4} + 12 q^{6} - 4 q^{8} - 8 q^{9} - 20 q^{12} + 12 q^{18} - 20 q^{24} + 4 q^{25} - 12 q^{26} + 4 q^{27} + 16 q^{32} - 24 q^{35} + 8 q^{36} + 12 q^{41} + 20 q^{46} + 8 q^{48}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/184\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(93\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.344446 1.37163i −0.243560 0.969886i
\(3\) 0.311108 0.179618 0.0898091 0.995959i \(-0.471374\pi\)
0.0898091 + 0.995959i \(0.471374\pi\)
\(4\) −1.76271 + 0.944902i −0.881357 + 0.472451i
\(5\) 2.74325 1.22682 0.613410 0.789765i \(-0.289797\pi\)
0.613410 + 0.789765i \(0.289797\pi\)
\(6\) −0.107160 0.426723i −0.0437478 0.174209i
\(7\) 3.33118 1.25907 0.629535 0.776972i \(-0.283246\pi\)
0.629535 + 0.776972i \(0.283246\pi\)
\(8\) 1.90321 + 2.09232i 0.672887 + 0.739745i
\(9\) −2.90321 −0.967737
\(10\) −0.944902 3.76271i −0.298804 1.18987i
\(11\) 1.78568i 0.538403i 0.963084 + 0.269201i \(0.0867597\pi\)
−0.963084 + 0.269201i \(0.913240\pi\)
\(12\) −0.548394 + 0.293966i −0.158308 + 0.0848608i
\(13\) 3.98212i 1.10444i −0.833698 0.552221i \(-0.813781\pi\)
0.833698 0.552221i \(-0.186219\pi\)
\(14\) −1.14741 4.56914i −0.306659 1.22115i
\(15\) 0.853447 0.220359
\(16\) 2.21432 3.33118i 0.553580 0.832796i
\(17\) 5.73975i 1.39209i −0.717997 0.696047i \(-0.754941\pi\)
0.717997 0.696047i \(-0.245059\pi\)
\(18\) 1.00000 + 3.98212i 0.235702 + 0.938595i
\(19\) 5.18421i 1.18934i 0.803970 + 0.594669i \(0.202717\pi\)
−0.803970 + 0.594669i \(0.797283\pi\)
\(20\) −4.83557 + 2.59210i −1.08127 + 0.579612i
\(21\) 1.03636 0.226152
\(22\) 2.44928 0.615071i 0.522189 0.131133i
\(23\) −4.63306 1.23887i −0.966059 0.258322i
\(24\) 0.592104 + 0.650936i 0.120863 + 0.132872i
\(25\) 2.52543 0.505086
\(26\) −5.46198 + 1.37163i −1.07118 + 0.268998i
\(27\) −1.83654 −0.353441
\(28\) −5.87192 + 3.14764i −1.10969 + 0.594849i
\(29\) 5.87192i 1.09039i 0.838310 + 0.545194i \(0.183544\pi\)
−0.838310 + 0.545194i \(0.816456\pi\)
\(30\) −0.293966 1.17061i −0.0536707 0.213723i
\(31\) 3.53370i 0.634670i 0.948313 + 0.317335i \(0.102788\pi\)
−0.948313 + 0.317335i \(0.897212\pi\)
\(32\) −5.33185 1.88980i −0.942547 0.334073i
\(33\) 0.555539i 0.0967069i
\(34\) −7.87278 + 1.97703i −1.35017 + 0.339058i
\(35\) 9.13828 1.54465
\(36\) 5.11753 2.74325i 0.852922 0.457209i
\(37\) 6.92788 1.13894 0.569468 0.822013i \(-0.307149\pi\)
0.569468 + 0.822013i \(0.307149\pi\)
\(38\) 7.11079 1.78568i 1.15352 0.289676i
\(39\) 1.23887i 0.198378i
\(40\) 5.22099 + 5.73975i 0.825511 + 0.907534i
\(41\) −5.70964 −0.891695 −0.445848 0.895109i \(-0.647098\pi\)
−0.445848 + 0.895109i \(0.647098\pi\)
\(42\) −0.356969 1.42149i −0.0550816 0.219341i
\(43\) 11.4795i 1.75061i 0.483574 + 0.875303i \(0.339338\pi\)
−0.483574 + 0.875303i \(0.660662\pi\)
\(44\) −1.68729 3.14764i −0.254369 0.474525i
\(45\) −7.96424 −1.18724
\(46\) −0.103426 + 6.78154i −0.0152493 + 0.999884i
\(47\) 9.02020i 1.31573i −0.753135 0.657866i \(-0.771460\pi\)
0.753135 0.657866i \(-0.228540\pi\)
\(48\) 0.688892 1.03636i 0.0994330 0.149585i
\(49\) 4.09679 0.585255
\(50\) −0.869874 3.46394i −0.123019 0.489875i
\(51\) 1.78568i 0.250045i
\(52\) 3.76271 + 7.01934i 0.521795 + 0.973407i
\(53\) 1.30187 0.178826 0.0894129 0.995995i \(-0.471501\pi\)
0.0894129 + 0.995995i \(0.471501\pi\)
\(54\) 0.632587 + 2.51904i 0.0860842 + 0.342798i
\(55\) 4.89857i 0.660523i
\(56\) 6.33995 + 6.96989i 0.847211 + 0.931391i
\(57\) 1.61285i 0.213627i
\(58\) 8.05408 2.02256i 1.05755 0.265575i
\(59\) −6.62222 −0.862139 −0.431070 0.902319i \(-0.641864\pi\)
−0.431070 + 0.902319i \(0.641864\pi\)
\(60\) −1.50438 + 0.806424i −0.194215 + 0.104109i
\(61\) −5.48650 −0.702475 −0.351237 0.936286i \(-0.614239\pi\)
−0.351237 + 0.936286i \(0.614239\pi\)
\(62\) 4.84691 1.21717i 0.615558 0.154580i
\(63\) −9.67113 −1.21845
\(64\) −0.755569 + 7.96424i −0.0944461 + 0.995530i
\(65\) 10.9240i 1.35495i
\(66\) 0.761992 0.191353i 0.0937947 0.0235540i
\(67\) 3.39853i 0.415196i −0.978214 0.207598i \(-0.933435\pi\)
0.978214 0.207598i \(-0.0665646\pi\)
\(68\) 5.42350 + 10.1175i 0.657696 + 1.22693i
\(69\) −1.44138 0.385422i −0.173522 0.0463993i
\(70\) −3.14764 12.5343i −0.376215 1.49813i
\(71\) 5.42350i 0.643651i 0.946799 + 0.321826i \(0.104296\pi\)
−0.946799 + 0.321826i \(0.895704\pi\)
\(72\) −5.52543 6.07444i −0.651178 0.715879i
\(73\) −11.8573 −1.38779 −0.693895 0.720076i \(-0.744107\pi\)
−0.693895 + 0.720076i \(0.744107\pi\)
\(74\) −2.38628 9.50246i −0.277400 1.10464i
\(75\) 0.785680 0.0907225
\(76\) −4.89857 9.13828i −0.561904 1.04823i
\(77\) 5.94843i 0.677886i
\(78\) −1.69926 + 0.426723i −0.192404 + 0.0483169i
\(79\) −0.405022 −0.0455686 −0.0227843 0.999740i \(-0.507253\pi\)
−0.0227843 + 0.999740i \(0.507253\pi\)
\(80\) 6.07444 9.13828i 0.679143 1.02169i
\(81\) 8.13828 0.904253
\(82\) 1.96666 + 7.83148i 0.217181 + 0.864843i
\(83\) 3.39853i 0.373037i 0.982451 + 0.186518i \(0.0597204\pi\)
−0.982451 + 0.186518i \(0.940280\pi\)
\(84\) −1.82680 + 0.979256i −0.199320 + 0.106846i
\(85\) 15.7456i 1.70785i
\(86\) 15.7456 3.95407i 1.69789 0.426378i
\(87\) 1.82680i 0.195854i
\(88\) −3.73621 + 3.39853i −0.398281 + 0.362284i
\(89\) 16.6637i 1.76635i −0.469045 0.883174i \(-0.655402\pi\)
0.469045 0.883174i \(-0.344598\pi\)
\(90\) 2.74325 + 10.9240i 0.289164 + 1.15149i
\(91\) 13.2652i 1.39057i
\(92\) 9.33736 2.19401i 0.973487 0.228742i
\(93\) 1.09936i 0.113998i
\(94\) −12.3723 + 3.10697i −1.27611 + 0.320460i
\(95\) 14.2216i 1.45910i
\(96\) −1.65878 0.587933i −0.169299 0.0600057i
\(97\) 14.4953i 1.47178i 0.677103 + 0.735888i \(0.263235\pi\)
−0.677103 + 0.735888i \(0.736765\pi\)
\(98\) −1.41112 5.61926i −0.142545 0.567631i
\(99\) 5.18421i 0.521033i
\(100\) −4.45161 + 2.38628i −0.445161 + 0.238628i
\(101\) 6.47946i 0.644730i −0.946615 0.322365i \(-0.895522\pi\)
0.946615 0.322365i \(-0.104478\pi\)
\(102\) −2.44928 + 0.615071i −0.242515 + 0.0609011i
\(103\) 6.74497 0.664602 0.332301 0.943173i \(-0.392175\pi\)
0.332301 + 0.943173i \(0.392175\pi\)
\(104\) 8.33185 7.57882i 0.817005 0.743164i
\(105\) 2.84299 0.277447
\(106\) −0.448425 1.78568i −0.0435548 0.173441i
\(107\) 11.4795i 1.10976i −0.831929 0.554882i \(-0.812763\pi\)
0.831929 0.554882i \(-0.187237\pi\)
\(108\) 3.23729 1.73535i 0.311508 0.166984i
\(109\) −3.77961 −0.362021 −0.181010 0.983481i \(-0.557937\pi\)
−0.181010 + 0.983481i \(0.557937\pi\)
\(110\) 6.71900 1.68729i 0.640632 0.160877i
\(111\) 2.15532 0.204574
\(112\) 7.37631 11.0968i 0.696995 1.04855i
\(113\) 2.16839i 0.203985i 0.994785 + 0.101992i \(0.0325217\pi\)
−0.994785 + 0.101992i \(0.967478\pi\)
\(114\) 2.21222 0.555539i 0.207194 0.0520310i
\(115\) −12.7096 3.39853i −1.18518 0.316914i
\(116\) −5.54839 10.3505i −0.515155 0.961022i
\(117\) 11.5609i 1.06881i
\(118\) 2.28100 + 9.08320i 0.209983 + 0.836176i
\(119\) 19.1202i 1.75274i
\(120\) 1.62429 + 1.78568i 0.148277 + 0.163010i
\(121\) 7.81135 0.710122
\(122\) 1.88980 + 7.52543i 0.171095 + 0.681320i
\(123\) −1.77631 −0.160165
\(124\) −3.33900 6.22889i −0.299851 0.559371i
\(125\) −6.78837 −0.607171
\(126\) 3.33118 + 13.2652i 0.296765 + 1.18176i
\(127\) 5.24059i 0.465027i −0.972593 0.232514i \(-0.925305\pi\)
0.972593 0.232514i \(-0.0746950\pi\)
\(128\) 11.1842 1.70689i 0.988554 0.150870i
\(129\) 3.57136i 0.314441i
\(130\) −14.9836 + 3.76271i −1.31415 + 0.330012i
\(131\) −0.887390 −0.0775317 −0.0387658 0.999248i \(-0.512343\pi\)
−0.0387658 + 0.999248i \(0.512343\pi\)
\(132\) −0.524930 0.979256i −0.0456893 0.0852333i
\(133\) 17.2696i 1.49746i
\(134\) −4.66151 + 1.17061i −0.402693 + 0.101125i
\(135\) −5.03808 −0.433609
\(136\) 12.0094 10.9240i 1.02979 0.936721i
\(137\) 15.0509i 1.28588i 0.765916 + 0.642941i \(0.222286\pi\)
−0.765916 + 0.642941i \(0.777714\pi\)
\(138\) −0.0321767 + 2.10979i −0.00273906 + 0.179597i
\(139\) 16.0716 1.36318 0.681588 0.731737i \(-0.261290\pi\)
0.681588 + 0.731737i \(0.261290\pi\)
\(140\) −16.1082 + 8.63478i −1.36139 + 0.729772i
\(141\) 2.80625i 0.236329i
\(142\) 7.43901 1.86810i 0.624268 0.156768i
\(143\) 7.11079 0.594634
\(144\) −6.42864 + 9.67113i −0.535720 + 0.805928i
\(145\) 16.1082i 1.33771i
\(146\) 4.08419 + 16.2637i 0.338010 + 1.34600i
\(147\) 1.27454 0.105123
\(148\) −12.2119 + 6.54617i −1.00381 + 0.538092i
\(149\) 7.55922 0.619275 0.309638 0.950855i \(-0.399792\pi\)
0.309638 + 0.950855i \(0.399792\pi\)
\(150\) −0.270624 1.07766i −0.0220964 0.0879905i
\(151\) 0.0630028i 0.00512710i 0.999997 + 0.00256355i \(0.000816004\pi\)
−0.999997 + 0.00256355i \(0.999184\pi\)
\(152\) −10.8470 + 9.86665i −0.879808 + 0.800291i
\(153\) 16.6637i 1.34718i
\(154\) 8.15902 2.04891i 0.657472 0.165106i
\(155\) 9.69381i 0.778626i
\(156\) 1.17061 + 2.18377i 0.0937238 + 0.174842i
\(157\) 7.06739 0.564039 0.282020 0.959409i \(-0.408996\pi\)
0.282020 + 0.959409i \(0.408996\pi\)
\(158\) 0.139508 + 0.555539i 0.0110987 + 0.0441963i
\(159\) 0.405022 0.0321204
\(160\) −14.6266 5.18421i −1.15633 0.409848i
\(161\) −15.4336 4.12690i −1.21634 0.325245i
\(162\) −2.80320 11.1627i −0.220240 0.877022i
\(163\) −1.73038 −0.135534 −0.0677669 0.997701i \(-0.521587\pi\)
−0.0677669 + 0.997701i \(0.521587\pi\)
\(164\) 10.0645 5.39505i 0.785902 0.421282i
\(165\) 1.52398i 0.118642i
\(166\) 4.66151 1.17061i 0.361803 0.0908569i
\(167\) 11.7438i 0.908766i −0.890806 0.454383i \(-0.849860\pi\)
0.890806 0.454383i \(-0.150140\pi\)
\(168\) 1.97241 + 2.16839i 0.152175 + 0.167295i
\(169\) −2.85728 −0.219791
\(170\) −21.5970 + 5.42350i −1.65642 + 0.415963i
\(171\) 15.0509i 1.15097i
\(172\) −10.8470 20.2351i −0.827076 1.54291i
\(173\) 0.992955i 0.0754930i −0.999287 0.0377465i \(-0.987982\pi\)
0.999287 0.0377465i \(-0.0120179\pi\)
\(174\) 2.50569 0.629235i 0.189956 0.0477022i
\(175\) 8.41266 0.635938
\(176\) 5.94843 + 3.95407i 0.448380 + 0.298049i
\(177\) −2.06022 −0.154856
\(178\) −22.8564 + 5.73975i −1.71316 + 0.430212i
\(179\) −9.83654 −0.735217 −0.367609 0.929981i \(-0.619823\pi\)
−0.367609 + 0.929981i \(0.619823\pi\)
\(180\) 14.0387 7.52543i 1.04638 0.560912i
\(181\) 14.8921 1.10692 0.553461 0.832875i \(-0.313307\pi\)
0.553461 + 0.832875i \(0.313307\pi\)
\(182\) −18.1949 + 4.56914i −1.34869 + 0.338687i
\(183\) −1.70689 −0.126177
\(184\) −6.22558 12.0516i −0.458956 0.888459i
\(185\) 19.0049 1.39727
\(186\) 1.50791 0.378670i 0.110565 0.0277655i
\(187\) 10.2494 0.749507
\(188\) 8.52320 + 15.9000i 0.621619 + 1.15963i
\(189\) −6.11784 −0.445007
\(190\) 19.5067 4.89857i 1.41516 0.355380i
\(191\) −9.58853 −0.693802 −0.346901 0.937902i \(-0.612766\pi\)
−0.346901 + 0.937902i \(0.612766\pi\)
\(192\) −0.235063 + 2.47774i −0.0169642 + 0.178815i
\(193\) 18.9956 1.36733 0.683665 0.729796i \(-0.260385\pi\)
0.683665 + 0.729796i \(0.260385\pi\)
\(194\) 19.8821 4.99285i 1.42745 0.358466i
\(195\) 3.39853i 0.243374i
\(196\) −7.22146 + 3.87106i −0.515819 + 0.276505i
\(197\) 20.4985i 1.46046i −0.683201 0.730230i \(-0.739413\pi\)
0.683201 0.730230i \(-0.260587\pi\)
\(198\) −7.11079 + 1.78568i −0.505342 + 0.126903i
\(199\) 6.70577 0.475359 0.237680 0.971344i \(-0.423613\pi\)
0.237680 + 0.971344i \(0.423613\pi\)
\(200\) 4.80642 + 5.28399i 0.339865 + 0.373635i
\(201\) 1.05731i 0.0745768i
\(202\) −8.88739 + 2.23182i −0.625315 + 0.157031i
\(203\) 19.5605i 1.37288i
\(204\) 1.68729 + 3.14764i 0.118134 + 0.220379i
\(205\) −15.6630 −1.09395
\(206\) −2.32328 9.25158i −0.161871 0.644588i
\(207\) 13.4507 + 3.59670i 0.934891 + 0.249988i
\(208\) −13.2652 8.81769i −0.919774 0.611397i
\(209\) −9.25734 −0.640343
\(210\) −0.979256 3.89952i −0.0675751 0.269092i
\(211\) −18.9590 −1.30519 −0.652595 0.757707i \(-0.726320\pi\)
−0.652595 + 0.757707i \(0.726320\pi\)
\(212\) −2.29483 + 1.23014i −0.157609 + 0.0844864i
\(213\) 1.68729i 0.115611i
\(214\) −15.7456 + 3.95407i −1.07634 + 0.270294i
\(215\) 31.4911i 2.14768i
\(216\) −3.49532 3.84261i −0.237826 0.261457i
\(217\) 11.7714i 0.799094i
\(218\) 1.30187 + 5.18421i 0.0881739 + 0.351119i
\(219\) −3.68889 −0.249272
\(220\) −4.62867 8.63478i −0.312065 0.582156i
\(221\) −22.8564 −1.53749
\(222\) −0.742391 2.95629i −0.0498260 0.198413i
\(223\) 16.1114i 1.07890i −0.842018 0.539449i \(-0.818632\pi\)
0.842018 0.539449i \(-0.181368\pi\)
\(224\) −17.7614 6.29529i −1.18673 0.420622i
\(225\) −7.33185 −0.488790
\(226\) 2.97421 0.746892i 0.197842 0.0496825i
\(227\) 0.674602i 0.0447749i 0.999749 + 0.0223875i \(0.00712674\pi\)
−0.999749 + 0.0223875i \(0.992873\pi\)
\(228\) −1.52398 2.84299i −0.100928 0.188282i
\(229\) 22.5908 1.49285 0.746423 0.665472i \(-0.231770\pi\)
0.746423 + 0.665472i \(0.231770\pi\)
\(230\) −0.283724 + 18.6035i −0.0187082 + 1.22668i
\(231\) 1.85060i 0.121761i
\(232\) −12.2859 + 11.1755i −0.806610 + 0.733709i
\(233\) 14.1842 0.929238 0.464619 0.885511i \(-0.346191\pi\)
0.464619 + 0.885511i \(0.346191\pi\)
\(234\) 15.8573 3.98212i 1.03662 0.260319i
\(235\) 24.7447i 1.61416i
\(236\) 11.6731 6.25735i 0.759852 0.407319i
\(237\) −0.126006 −0.00818495
\(238\) −26.2257 + 6.58586i −1.69996 + 0.426898i
\(239\) 28.6714i 1.85460i 0.374322 + 0.927299i \(0.377875\pi\)
−0.374322 + 0.927299i \(0.622125\pi\)
\(240\) 1.88980 2.84299i 0.121986 0.183514i
\(241\) 7.35260i 0.473622i −0.971556 0.236811i \(-0.923898\pi\)
0.971556 0.236811i \(-0.0761023\pi\)
\(242\) −2.69059 10.7142i −0.172958 0.688738i
\(243\) 8.04149 0.515862
\(244\) 9.67113 5.18421i 0.619131 0.331885i
\(245\) 11.2385 0.718003
\(246\) 0.611844 + 2.43644i 0.0390097 + 0.155341i
\(247\) 20.6441 1.31356
\(248\) −7.39361 + 6.72537i −0.469494 + 0.427061i
\(249\) 1.05731i 0.0670042i
\(250\) 2.33823 + 9.31111i 0.147883 + 0.588886i
\(251\) 6.96989i 0.439935i 0.975507 + 0.219968i \(0.0705952\pi\)
−0.975507 + 0.219968i \(0.929405\pi\)
\(252\) 17.0474 9.13828i 1.07389 0.575657i
\(253\) 2.21222 8.27316i 0.139081 0.520129i
\(254\) −7.18813 + 1.80510i −0.451023 + 0.113262i
\(255\) 4.89857i 0.306760i
\(256\) −6.19358 14.7526i −0.387099 0.922038i
\(257\) −8.37778 −0.522592 −0.261296 0.965259i \(-0.584150\pi\)
−0.261296 + 0.965259i \(0.584150\pi\)
\(258\) 4.89857 1.23014i 0.304972 0.0765852i
\(259\) 23.0781 1.43400
\(260\) 10.3221 + 19.2558i 0.640148 + 1.19419i
\(261\) 17.0474i 1.05521i
\(262\) 0.305658 + 1.21717i 0.0188836 + 0.0751969i
\(263\) 2.11192 0.130226 0.0651132 0.997878i \(-0.479259\pi\)
0.0651132 + 0.997878i \(0.479259\pi\)
\(264\) −1.16236 + 1.05731i −0.0715385 + 0.0650728i
\(265\) 3.57136 0.219387
\(266\) 23.6874 5.94843i 1.45237 0.364722i
\(267\) 5.18421i 0.317268i
\(268\) 3.21128 + 5.99063i 0.196160 + 0.365936i
\(269\) 9.99965i 0.609689i −0.952402 0.304845i \(-0.901395\pi\)
0.952402 0.304845i \(-0.0986046\pi\)
\(270\) 1.73535 + 6.91036i 0.105610 + 0.420551i
\(271\) 27.0275i 1.64180i −0.571070 0.820902i \(-0.693471\pi\)
0.571070 0.820902i \(-0.306529\pi\)
\(272\) −19.1202 12.7096i −1.15933 0.770635i
\(273\) 4.12690i 0.249771i
\(274\) 20.6441 5.18421i 1.24716 0.313189i
\(275\) 4.50961i 0.271939i
\(276\) 2.90493 0.682575i 0.174856 0.0410862i
\(277\) 12.6603i 0.760684i 0.924846 + 0.380342i \(0.124194\pi\)
−0.924846 + 0.380342i \(0.875806\pi\)
\(278\) −5.53580 22.0442i −0.332015 1.32212i
\(279\) 10.2591i 0.614194i
\(280\) 17.3921 + 19.1202i 1.03938 + 1.14265i
\(281\) 13.3842i 0.798437i −0.916856 0.399218i \(-0.869282\pi\)
0.916856 0.399218i \(-0.130718\pi\)
\(282\) −3.84913 + 0.966603i −0.229212 + 0.0575604i
\(283\) 4.50961i 0.268068i −0.990977 0.134034i \(-0.957207\pi\)
0.990977 0.134034i \(-0.0427932\pi\)
\(284\) −5.12468 9.56008i −0.304094 0.567286i
\(285\) 4.42445i 0.262082i
\(286\) −2.44928 9.75335i −0.144829 0.576727i
\(287\) −19.0198 −1.12271
\(288\) 15.4795 + 5.48650i 0.912138 + 0.323295i
\(289\) −15.9447 −0.937923
\(290\) 22.0944 5.54839i 1.29743 0.325813i
\(291\) 4.50961i 0.264358i
\(292\) 20.9010 11.2040i 1.22314 0.655663i
\(293\) 15.5235 0.906890 0.453445 0.891284i \(-0.350195\pi\)
0.453445 + 0.891284i \(0.350195\pi\)
\(294\) −0.439011 1.74820i −0.0256037 0.101957i
\(295\) −18.1664 −1.05769
\(296\) 13.1852 + 14.4953i 0.766376 + 0.842523i
\(297\) 3.27946i 0.190294i
\(298\) −2.60374 10.3684i −0.150831 0.600626i
\(299\) −4.93332 + 18.4494i −0.285301 + 1.06696i
\(300\) −1.38493 + 0.742391i −0.0799589 + 0.0428620i
\(301\) 38.2403i 2.20413i
\(302\) 0.0864163 0.0217011i 0.00497270 0.00124876i
\(303\) 2.01581i 0.115805i
\(304\) 17.2696 + 11.4795i 0.990477 + 0.658394i
\(305\) −15.0509 −0.861809
\(306\) 22.8564 5.73975i 1.30661 0.328120i
\(307\) −30.8385 −1.76005 −0.880024 0.474929i \(-0.842474\pi\)
−0.880024 + 0.474929i \(0.842474\pi\)
\(308\) −5.62068 10.4854i −0.320268 0.597460i
\(309\) 2.09841 0.119375
\(310\) 13.2963 3.33900i 0.755178 0.189642i
\(311\) 5.64561i 0.320133i −0.987106 0.160067i \(-0.948829\pi\)
0.987106 0.160067i \(-0.0511709\pi\)
\(312\) 2.59210 2.35783i 0.146749 0.133486i
\(313\) 12.3269i 0.696759i −0.937354 0.348380i \(-0.886732\pi\)
0.937354 0.348380i \(-0.113268\pi\)
\(314\) −2.43434 9.69381i −0.137377 0.547054i
\(315\) −26.5303 −1.49482
\(316\) 0.713939 0.382707i 0.0401622 0.0215289i
\(317\) 16.2766i 0.914185i 0.889419 + 0.457092i \(0.151109\pi\)
−0.889419 + 0.457092i \(0.848891\pi\)
\(318\) −0.139508 0.555539i −0.00782324 0.0311531i
\(319\) −10.4854 −0.587069
\(320\) −2.07271 + 21.8479i −0.115868 + 1.22134i
\(321\) 3.57136i 0.199334i
\(322\) −0.344531 + 22.5906i −0.0192000 + 1.25892i
\(323\) 29.7560 1.65567
\(324\) −14.3454 + 7.68987i −0.796969 + 0.427215i
\(325\) 10.0566i 0.557837i
\(326\) 0.596022 + 2.37343i 0.0330106 + 0.131452i
\(327\) −1.17587 −0.0650255
\(328\) −10.8666 11.9464i −0.600010 0.659627i
\(329\) 30.0479i 1.65660i
\(330\) 2.09033 0.524930i 0.115069 0.0288965i
\(331\) 6.13182 0.337035 0.168518 0.985699i \(-0.446102\pi\)
0.168518 + 0.985699i \(0.446102\pi\)
\(332\) −3.21128 5.99063i −0.176242 0.328779i
\(333\) −20.1131 −1.10219
\(334\) −16.1082 + 4.04512i −0.881400 + 0.221339i
\(335\) 9.32302i 0.509371i
\(336\) 2.29483 3.45230i 0.125193 0.188338i
\(337\) 11.9813i 0.652661i −0.945256 0.326331i \(-0.894188\pi\)
0.945256 0.326331i \(-0.105812\pi\)
\(338\) 0.984179 + 3.91912i 0.0535323 + 0.213172i
\(339\) 0.674602i 0.0366394i
\(340\) 14.8780 + 27.7549i 0.806874 + 1.50522i
\(341\) −6.31005 −0.341708
\(342\) −20.6441 + 5.18421i −1.11631 + 0.280330i
\(343\) −9.67113 −0.522192
\(344\) −24.0187 + 21.8479i −1.29500 + 1.17796i
\(345\) −3.95407 1.05731i −0.212880 0.0569236i
\(346\) −1.36196 + 0.342020i −0.0732196 + 0.0183871i
\(347\) 27.8938 1.49742 0.748710 0.662898i \(-0.230674\pi\)
0.748710 + 0.662898i \(0.230674\pi\)
\(348\) −1.72615 3.22013i −0.0925313 0.172617i
\(349\) 11.1755i 0.598212i 0.954220 + 0.299106i \(0.0966884\pi\)
−0.954220 + 0.299106i \(0.903312\pi\)
\(350\) −2.89771 11.5390i −0.154889 0.616787i
\(351\) 7.31330i 0.390355i
\(352\) 3.37459 9.52098i 0.179866 0.507470i
\(353\) −5.72393 −0.304654 −0.152327 0.988330i \(-0.548677\pi\)
−0.152327 + 0.988330i \(0.548677\pi\)
\(354\) 0.709636 + 2.82585i 0.0377167 + 0.150192i
\(355\) 14.8780i 0.789643i
\(356\) 15.7456 + 29.3733i 0.834513 + 1.55678i
\(357\) 5.94843i 0.314824i
\(358\) 3.38816 + 13.4920i 0.179070 + 0.713077i
\(359\) −21.0100 −1.10886 −0.554432 0.832229i \(-0.687064\pi\)
−0.554432 + 0.832229i \(0.687064\pi\)
\(360\) −15.1576 16.6637i −0.798878 0.878254i
\(361\) −7.87601 −0.414527
\(362\) −5.12953 20.4264i −0.269602 1.07359i
\(363\) 2.43017 0.127551
\(364\) 12.5343 + 23.3827i 0.656975 + 1.22559i
\(365\) −32.5275 −1.70257
\(366\) 0.587933 + 2.34122i 0.0307317 + 0.122377i
\(367\) 22.7995 1.19012 0.595061 0.803681i \(-0.297128\pi\)
0.595061 + 0.803681i \(0.297128\pi\)
\(368\) −14.3860 + 12.6903i −0.749920 + 0.661528i
\(369\) 16.5763 0.862927
\(370\) −6.54617 26.0676i −0.340319 1.35519i
\(371\) 4.33677 0.225154
\(372\) −1.03879 1.93786i −0.0538586 0.100473i
\(373\) −17.4091 −0.901407 −0.450703 0.892674i \(-0.648827\pi\)
−0.450703 + 0.892674i \(0.648827\pi\)
\(374\) −3.53035 14.0583i −0.182550 0.726936i
\(375\) −2.11192 −0.109059
\(376\) 18.8731 17.1673i 0.973306 0.885338i
\(377\) 23.3827 1.20427
\(378\) 2.10727 + 8.39138i 0.108386 + 0.431606i
\(379\) 24.5718i 1.26217i 0.775713 + 0.631085i \(0.217390\pi\)
−0.775713 + 0.631085i \(0.782610\pi\)
\(380\) −13.4380 25.0686i −0.689355 1.28599i
\(381\) 1.63039i 0.0835273i
\(382\) 3.30273 + 13.1519i 0.168982 + 0.672908i
\(383\) −21.1360 −1.08000 −0.539999 0.841666i \(-0.681575\pi\)
−0.539999 + 0.841666i \(0.681575\pi\)
\(384\) 3.47949 0.531028i 0.177562 0.0270989i
\(385\) 16.3180i 0.831644i
\(386\) −6.54294 26.0548i −0.333027 1.32615i
\(387\) 33.3274i 1.69413i
\(388\) −13.6967 25.5511i −0.695342 1.29716i
\(389\) 37.2175 1.88700 0.943500 0.331373i \(-0.107512\pi\)
0.943500 + 0.331373i \(0.107512\pi\)
\(390\) −4.66151 + 1.17061i −0.236045 + 0.0592761i
\(391\) −7.11079 + 26.5926i −0.359608 + 1.34484i
\(392\) 7.79706 + 8.57177i 0.393811 + 0.432940i
\(393\) −0.276074 −0.0139261
\(394\) −28.1163 + 7.06064i −1.41648 + 0.355710i
\(395\) −1.11108 −0.0559044
\(396\) 4.89857 + 9.13828i 0.246162 + 0.459216i
\(397\) 11.0495i 0.554559i −0.960789 0.277280i \(-0.910567\pi\)
0.960789 0.277280i \(-0.0894328\pi\)
\(398\) −2.30978 9.19781i −0.115779 0.461044i
\(399\) 5.37269i 0.268971i
\(400\) 5.59210 8.41266i 0.279605 0.420633i
\(401\) 16.4538i 0.821665i −0.911711 0.410833i \(-0.865238\pi\)
0.911711 0.410833i \(-0.134762\pi\)
\(402\) −1.45023 + 0.364186i −0.0723310 + 0.0181639i
\(403\) 14.0716 0.700956
\(404\) 6.12245 + 11.4214i 0.304603 + 0.568237i
\(405\) 22.3253 1.10935
\(406\) 26.8296 6.73752i 1.33153 0.334378i
\(407\) 12.3710i 0.613207i
\(408\) 3.73621 3.39853i 0.184970 0.168252i
\(409\) −18.4193 −0.910774 −0.455387 0.890293i \(-0.650499\pi\)
−0.455387 + 0.890293i \(0.650499\pi\)
\(410\) 5.39505 + 21.4837i 0.266442 + 1.06101i
\(411\) 4.68244i 0.230968i
\(412\) −11.8895 + 6.37334i −0.585751 + 0.313992i
\(413\) −22.0598 −1.08549
\(414\) 0.300268 19.6883i 0.0147574 0.967625i
\(415\) 9.32302i 0.457649i
\(416\) −7.52543 + 21.2321i −0.368964 + 1.04099i
\(417\) 5.00000 0.244851
\(418\) 3.18865 + 12.6976i 0.155962 + 0.621060i
\(419\) 31.7146i 1.54936i 0.632355 + 0.774679i \(0.282088\pi\)
−0.632355 + 0.774679i \(0.717912\pi\)
\(420\) −5.01138 + 2.68635i −0.244530 + 0.131080i
\(421\) −18.5457 −0.903863 −0.451932 0.892053i \(-0.649265\pi\)
−0.451932 + 0.892053i \(0.649265\pi\)
\(422\) 6.53035 + 26.0046i 0.317892 + 1.26589i
\(423\) 26.1875i 1.27328i
\(424\) 2.47774 + 2.72393i 0.120330 + 0.132286i
\(425\) 14.4953i 0.703126i
\(426\) 2.31433 0.581182i 0.112130 0.0281583i
\(427\) −18.2766 −0.884464
\(428\) 10.8470 + 20.2351i 0.524310 + 0.978099i
\(429\) 2.21222 0.106807
\(430\) 43.1941 10.8470i 2.08300 0.523089i
\(431\) 3.65360 0.175988 0.0879939 0.996121i \(-0.471954\pi\)
0.0879939 + 0.996121i \(0.471954\pi\)
\(432\) −4.06668 + 6.11784i −0.195658 + 0.294345i
\(433\) 2.51405i 0.120818i 0.998174 + 0.0604088i \(0.0192404\pi\)
−0.998174 + 0.0604088i \(0.980760\pi\)
\(434\) 16.1459 4.05461i 0.775030 0.194627i
\(435\) 5.01138i 0.240277i
\(436\) 6.66237 3.57136i 0.319070 0.171037i
\(437\) 6.42255 24.0187i 0.307232 1.14897i
\(438\) 1.27062 + 5.05978i 0.0607128 + 0.241766i
\(439\) 15.6257i 0.745772i −0.927877 0.372886i \(-0.878368\pi\)
0.927877 0.372886i \(-0.121632\pi\)
\(440\) −10.2494 + 9.32302i −0.488619 + 0.444457i
\(441\) −11.8938 −0.566374
\(442\) 7.87278 + 31.3504i 0.374470 + 1.49119i
\(443\) −29.6987 −1.41103 −0.705515 0.708695i \(-0.749284\pi\)
−0.705515 + 0.708695i \(0.749284\pi\)
\(444\) −3.79921 + 2.03657i −0.180302 + 0.0966511i
\(445\) 45.7127i 2.16699i
\(446\) −22.0988 + 5.54951i −1.04641 + 0.262777i
\(447\) 2.35173 0.111233
\(448\) −2.51694 + 26.5303i −0.118914 + 1.25344i
\(449\) 15.6731 0.739658 0.369829 0.929100i \(-0.379416\pi\)
0.369829 + 0.929100i \(0.379416\pi\)
\(450\) 2.52543 + 10.0566i 0.119050 + 0.474071i
\(451\) 10.1956i 0.480091i
\(452\) −2.04891 3.82225i −0.0963728 0.179783i
\(453\) 0.0196007i 0.000920920i
\(454\) 0.925302 0.232364i 0.0434266 0.0109054i
\(455\) 36.3897i 1.70598i
\(456\) −3.37459 + 3.06959i −0.158029 + 0.143747i
\(457\) 33.8829i 1.58498i 0.609887 + 0.792489i \(0.291215\pi\)
−0.609887 + 0.792489i \(0.708785\pi\)
\(458\) −7.78133 30.9862i −0.363598 1.44789i
\(459\) 10.5412i 0.492023i
\(460\) 25.6147 6.01873i 1.19429 0.280625i
\(461\) 14.4241i 0.671797i 0.941898 + 0.335899i \(0.109040\pi\)
−0.941898 + 0.335899i \(0.890960\pi\)
\(462\) 2.53833 0.637433i 0.118094 0.0296561i
\(463\) 35.7057i 1.65938i 0.558222 + 0.829692i \(0.311484\pi\)
−0.558222 + 0.829692i \(0.688516\pi\)
\(464\) 19.5605 + 13.0023i 0.908072 + 0.603617i
\(465\) 3.01582i 0.139855i
\(466\) −4.88570 19.4554i −0.226325 0.901255i
\(467\) 27.0321i 1.25090i 0.780265 + 0.625449i \(0.215084\pi\)
−0.780265 + 0.625449i \(0.784916\pi\)
\(468\) −10.9240 20.3786i −0.504960 0.942002i
\(469\) 11.3211i 0.522761i
\(470\) −33.9404 + 8.52320i −1.56555 + 0.393146i
\(471\) 2.19872 0.101312
\(472\) −12.6035 13.8558i −0.580122 0.637763i
\(473\) −20.4987 −0.942532
\(474\) 0.0434021 + 0.172833i 0.00199353 + 0.00793846i
\(475\) 13.0923i 0.600718i
\(476\) 18.0667 + 33.7034i 0.828085 + 1.54479i
\(477\) −3.77961 −0.173056
\(478\) 39.3264 9.87575i 1.79875 0.451706i
\(479\) 21.7766 0.994998 0.497499 0.867464i \(-0.334252\pi\)
0.497499 + 0.867464i \(0.334252\pi\)
\(480\) −4.55045 1.61285i −0.207699 0.0736161i
\(481\) 27.5877i 1.25789i
\(482\) −10.0850 + 2.53257i −0.459360 + 0.115356i
\(483\) −4.80150 1.28391i −0.218476 0.0584200i
\(484\) −13.7692 + 7.38096i −0.625871 + 0.335498i
\(485\) 39.7643i 1.80560i
\(486\) −2.76986 11.0299i −0.125643 0.500327i
\(487\) 25.2576i 1.14453i −0.820068 0.572265i \(-0.806065\pi\)
0.820068 0.572265i \(-0.193935\pi\)
\(488\) −10.4420 11.4795i −0.472686 0.519652i
\(489\) −0.538335 −0.0243443
\(490\) −3.87106 15.4150i −0.174877 0.696381i
\(491\) 4.73530 0.213701 0.106851 0.994275i \(-0.465923\pi\)
0.106851 + 0.994275i \(0.465923\pi\)
\(492\) 3.13113 1.67844i 0.141162 0.0756700i
\(493\) 33.7034 1.51792
\(494\) −7.11079 28.3160i −0.319930 1.27400i
\(495\) 14.2216i 0.639213i
\(496\) 11.7714 + 7.82473i 0.528551 + 0.351341i
\(497\) 18.0667i 0.810401i
\(498\) 1.45023 0.364186i 0.0649864 0.0163196i
\(499\) 25.1956 1.12791 0.563955 0.825806i \(-0.309279\pi\)
0.563955 + 0.825806i \(0.309279\pi\)
\(500\) 11.9660 6.41435i 0.535134 0.286858i
\(501\) 3.65360i 0.163231i
\(502\) 9.56008 2.40075i 0.426687 0.107151i
\(503\) 36.5726 1.63069 0.815346 0.578974i \(-0.196547\pi\)
0.815346 + 0.578974i \(0.196547\pi\)
\(504\) −18.4062 20.2351i −0.819878 0.901341i
\(505\) 17.7748i 0.790967i
\(506\) −12.1097 0.184686i −0.538340 0.00821029i
\(507\) −0.888922 −0.0394784
\(508\) 4.95184 + 9.23766i 0.219703 + 0.409855i
\(509\) 5.46690i 0.242316i 0.992633 + 0.121158i \(0.0386608\pi\)
−0.992633 + 0.121158i \(0.961339\pi\)
\(510\) −6.71900 + 1.68729i −0.297522 + 0.0747146i
\(511\) −39.4988 −1.74732
\(512\) −18.1017 + 13.5767i −0.799990 + 0.600013i
\(513\) 9.52098i 0.420362i
\(514\) 2.88570 + 11.4912i 0.127283 + 0.506854i
\(515\) 18.5032 0.815346
\(516\) −3.37459 6.29529i −0.148558 0.277135i
\(517\) 16.1072 0.708393
\(518\) −7.94914 31.6544i −0.349265 1.39082i
\(519\) 0.308916i 0.0135599i
\(520\) 22.8564 20.7906i 1.00232 0.911728i
\(521\) 18.8859i 0.827405i −0.910412 0.413702i \(-0.864235\pi\)
0.910412 0.413702i \(-0.135765\pi\)
\(522\) −23.3827 + 5.87192i −1.02343 + 0.257007i
\(523\) 24.3990i 1.06689i −0.845834 0.533447i \(-0.820896\pi\)
0.845834 0.533447i \(-0.179104\pi\)
\(524\) 1.56422 0.838497i 0.0683331 0.0366299i
\(525\) 2.61725 0.114226
\(526\) −0.727441 2.89676i −0.0317179 0.126305i
\(527\) 20.2825 0.883520
\(528\) 1.85060 + 1.23014i 0.0805372 + 0.0535350i
\(529\) 19.9304 + 11.4795i 0.866540 + 0.499108i
\(530\) −1.23014 4.89857i −0.0534339 0.212780i
\(531\) 19.2257 0.834324
\(532\) −16.3180 30.4413i −0.707477 1.31980i
\(533\) 22.7365i 0.984825i
\(534\) −7.11079 + 1.78568i −0.307714 + 0.0772739i
\(535\) 31.4911i 1.36148i
\(536\) 7.11079 6.46812i 0.307139 0.279380i
\(537\) −3.06022 −0.132058
\(538\) −13.7158 + 3.44434i −0.591329 + 0.148496i
\(539\) 7.31555i 0.315103i
\(540\) 8.88069 4.76049i 0.382164 0.204859i
\(541\) 4.26114i 0.183201i 0.995796 + 0.0916003i \(0.0291982\pi\)
−0.995796 + 0.0916003i \(0.970802\pi\)
\(542\) −37.0716 + 9.30951i −1.59236 + 0.399878i
\(543\) 4.63306 0.198823
\(544\) −10.8470 + 30.6035i −0.465061 + 1.31211i
\(545\) −10.3684 −0.444134
\(546\) −5.66056 + 1.42149i −0.242250 + 0.0608343i
\(547\) −28.1733 −1.20460 −0.602302 0.798268i \(-0.705750\pi\)
−0.602302 + 0.798268i \(0.705750\pi\)
\(548\) −14.2216 26.5303i −0.607516 1.13332i
\(549\) 15.9285 0.679811
\(550\) 6.18549 1.55332i 0.263750 0.0662336i
\(551\) −30.4413 −1.29684
\(552\) −1.93683 3.74936i −0.0824368 0.159583i
\(553\) −1.34920 −0.0573740
\(554\) 17.3652 4.36079i 0.737776 0.185272i
\(555\) 5.91258 0.250975
\(556\) −28.3296 + 15.1861i −1.20144 + 0.644034i
\(557\) 26.7755 1.13451 0.567257 0.823541i \(-0.308005\pi\)
0.567257 + 0.823541i \(0.308005\pi\)
\(558\) −14.0716 + 3.53370i −0.595698 + 0.149593i
\(559\) 45.7127 1.93344
\(560\) 20.2351 30.4413i 0.855087 1.28638i
\(561\) 3.18865 0.134625
\(562\) −18.3582 + 4.61015i −0.774392 + 0.194467i
\(563\) 26.5303i 1.11812i −0.829127 0.559060i \(-0.811162\pi\)
0.829127 0.559060i \(-0.188838\pi\)
\(564\) 2.65164 + 4.94662i 0.111654 + 0.208290i
\(565\) 5.94843i 0.250252i
\(566\) −6.18549 + 1.55332i −0.259996 + 0.0652908i
\(567\) 27.1101 1.13852
\(568\) −11.3477 + 10.3221i −0.476138 + 0.433104i
\(569\) 0.291896i 0.0122369i 0.999981 + 0.00611845i \(0.00194757\pi\)
−0.999981 + 0.00611845i \(0.998052\pi\)
\(570\) 6.06868 1.52398i 0.254189 0.0638326i
\(571\) 23.1318i 0.968037i −0.875058 0.484018i \(-0.839177\pi\)
0.875058 0.484018i \(-0.160823\pi\)
\(572\) −12.5343 + 6.71900i −0.524085 + 0.280936i
\(573\) −2.98307 −0.124619
\(574\) 6.55131 + 26.0881i 0.273446 + 1.08890i
\(575\) −11.7004 3.12867i −0.487942 0.130475i
\(576\) 2.19358 23.1219i 0.0913990 0.963412i
\(577\) 44.2498 1.84214 0.921072 0.389392i \(-0.127315\pi\)
0.921072 + 0.389392i \(0.127315\pi\)
\(578\) 5.49209 + 21.8702i 0.228441 + 0.909679i
\(579\) 5.90967 0.245597
\(580\) −15.2206 28.3941i −0.632003 1.17900i
\(581\) 11.3211i 0.469679i
\(582\) 6.18549 1.55332i 0.256397 0.0643870i
\(583\) 2.32473i 0.0962803i
\(584\) −22.5669 24.8092i −0.933826 1.02661i
\(585\) 31.7146i 1.31124i
\(586\) −5.34699 21.2924i −0.220882 0.879580i
\(587\) 2.69826 0.111369 0.0556846 0.998448i \(-0.482266\pi\)
0.0556846 + 0.998448i \(0.482266\pi\)
\(588\) −2.24665 + 1.20432i −0.0926505 + 0.0496652i
\(589\) −18.3194 −0.754838
\(590\) 6.25735 + 24.9175i 0.257611 + 1.02584i
\(591\) 6.37725i 0.262325i
\(592\) 15.3405 23.0781i 0.630493 0.948502i
\(593\) −20.4558 −0.840021 −0.420010 0.907519i \(-0.637974\pi\)
−0.420010 + 0.907519i \(0.637974\pi\)
\(594\) −4.49820 + 1.12960i −0.184563 + 0.0463480i
\(595\) 52.4514i 2.15030i
\(596\) −13.3247 + 7.14272i −0.545802 + 0.292577i
\(597\) 2.08622 0.0853832
\(598\) 27.0049 + 0.411855i 1.10431 + 0.0168420i
\(599\) 19.2163i 0.785155i 0.919719 + 0.392578i \(0.128417\pi\)
−0.919719 + 0.392578i \(0.871583\pi\)
\(600\) 1.49532 + 1.64389i 0.0610460 + 0.0671116i
\(601\) −7.16193 −0.292141 −0.146071 0.989274i \(-0.546663\pi\)
−0.146071 + 0.989274i \(0.546663\pi\)
\(602\) 52.4514 13.1717i 2.13776 0.536839i
\(603\) 9.86665i 0.401801i
\(604\) −0.0595315 0.111056i −0.00242230 0.00451880i
\(605\) 21.4285 0.871192
\(606\) −2.76494 + 0.694338i −0.112318 + 0.0282055i
\(607\) 31.4519i 1.27659i 0.769790 + 0.638297i \(0.220361\pi\)
−0.769790 + 0.638297i \(0.779639\pi\)
\(608\) 9.79714 27.6414i 0.397326 1.12101i
\(609\) 6.08541i 0.246593i
\(610\) 5.18421 + 20.6441i 0.209902 + 0.835857i
\(611\) −35.9195 −1.45315
\(612\) −15.7456 29.3733i −0.636477 1.18735i
\(613\) −19.9736 −0.806726 −0.403363 0.915040i \(-0.632159\pi\)
−0.403363 + 0.915040i \(0.632159\pi\)
\(614\) 10.6222 + 42.2989i 0.428678 + 1.70705i
\(615\) −4.87287 −0.196493
\(616\) −12.4460 + 11.3211i −0.501463 + 0.456141i
\(617\) 31.3689i 1.26286i 0.775431 + 0.631432i \(0.217533\pi\)
−0.775431 + 0.631432i \(0.782467\pi\)
\(618\) −0.722790 2.87824i −0.0290749 0.115780i
\(619\) 10.6321i 0.427339i 0.976906 + 0.213669i \(0.0685415\pi\)
−0.976906 + 0.213669i \(0.931459\pi\)
\(620\) −9.15971 17.0874i −0.367863 0.686247i
\(621\) 8.50877 + 2.27523i 0.341445 + 0.0913017i
\(622\) −7.74367 + 1.94461i −0.310493 + 0.0779717i
\(623\) 55.5099i 2.22396i
\(624\) −4.12690 2.74325i −0.165208 0.109818i
\(625\) −31.2494 −1.24997
\(626\) −16.9079 + 4.24596i −0.675777 + 0.169703i
\(627\) −2.88003 −0.115017
\(628\) −12.4578 + 6.67799i −0.497120 + 0.266481i
\(629\) 39.7643i 1.58551i
\(630\) 9.13828 + 36.3897i 0.364078 + 1.44980i
\(631\) 2.19872 0.0875297 0.0437648 0.999042i \(-0.486065\pi\)
0.0437648 + 0.999042i \(0.486065\pi\)
\(632\) −0.770843 0.847435i −0.0306625 0.0337091i
\(633\) −5.89829 −0.234436
\(634\) 22.3254 5.60641i 0.886655 0.222659i
\(635\) 14.3763i 0.570504i
\(636\) −0.713939 + 0.382707i −0.0283095 + 0.0151753i
\(637\) 16.3139i 0.646380i
\(638\) 3.61165 + 14.3820i 0.142987 + 0.569389i
\(639\) 15.7456i 0.622885i
\(640\) 30.6811 4.68244i 1.21278 0.185090i
\(641\) 31.7146i 1.25265i 0.779562 + 0.626325i \(0.215442\pi\)
−0.779562 + 0.626325i \(0.784558\pi\)
\(642\) −4.89857 + 1.23014i −0.193331 + 0.0485498i
\(643\) 34.0020i 1.34091i 0.741951 + 0.670454i \(0.233901\pi\)
−0.741951 + 0.670454i \(0.766099\pi\)
\(644\) 31.1045 7.30866i 1.22569 0.288002i
\(645\) 9.79714i 0.385762i
\(646\) −10.2494 40.8142i −0.403255 1.60581i
\(647\) 13.6398i 0.536234i 0.963386 + 0.268117i \(0.0864014\pi\)
−0.963386 + 0.268117i \(0.913599\pi\)
\(648\) 15.4889 + 17.0278i 0.608460 + 0.668917i
\(649\) 11.8252i 0.464178i
\(650\) −13.7938 + 3.46394i −0.541038 + 0.135867i
\(651\) 3.66217i 0.143532i
\(652\) 3.05016 1.63504i 0.119454 0.0640331i
\(653\) 30.3349i 1.18710i −0.804799 0.593548i \(-0.797727\pi\)
0.804799 0.593548i \(-0.202273\pi\)
\(654\) 0.405022 + 1.61285i 0.0158376 + 0.0630673i
\(655\) −2.43434 −0.0951173
\(656\) −12.6430 + 19.0198i −0.493625 + 0.742600i
\(657\) 34.4242 1.34302
\(658\) −41.2145 + 10.3499i −1.60671 + 0.403481i
\(659\) 15.7255i 0.612577i 0.951939 + 0.306288i \(0.0990872\pi\)
−0.951939 + 0.306288i \(0.900913\pi\)
\(660\) −1.44002 2.68635i −0.0560525 0.104566i
\(661\) −21.4150 −0.832946 −0.416473 0.909148i \(-0.636734\pi\)
−0.416473 + 0.909148i \(0.636734\pi\)
\(662\) −2.11208 8.41056i −0.0820884 0.326886i
\(663\) −7.11079 −0.276160
\(664\) −7.11079 + 6.46812i −0.275952 + 0.251012i
\(665\) 47.3747i 1.83711i
\(666\) 6.92788 + 27.5877i 0.268450 + 1.06900i
\(667\) 7.27454 27.2050i 0.281671 1.05338i
\(668\) 11.0968 + 20.7010i 0.429348 + 0.800947i
\(669\) 5.01238i 0.193790i
\(670\) −12.7877 + 3.21128i −0.494031 + 0.124062i
\(671\) 9.79714i 0.378214i
\(672\) −5.52570 1.95851i −0.213159 0.0755513i
\(673\) 14.5526 0.560962 0.280481 0.959860i \(-0.409506\pi\)
0.280481 + 0.959860i \(0.409506\pi\)
\(674\) −16.4338 + 4.12690i −0.633007 + 0.158962i
\(675\) −4.63804 −0.178518
\(676\) 5.03657 2.69985i 0.193714 0.103840i
\(677\) −27.3457 −1.05098 −0.525490 0.850799i \(-0.676118\pi\)
−0.525490 + 0.850799i \(0.676118\pi\)
\(678\) 0.925302 0.232364i 0.0355360 0.00892389i
\(679\) 48.2866i 1.85307i
\(680\) 32.9447 29.9672i 1.26337 1.14919i
\(681\) 0.209874i 0.00804239i
\(682\) 2.17347 + 8.65503i 0.0832265 + 0.331418i
\(683\) −44.3196 −1.69584 −0.847921 0.530123i \(-0.822146\pi\)
−0.847921 + 0.530123i \(0.822146\pi\)
\(684\) 14.2216 + 26.5303i 0.543776 + 1.01441i
\(685\) 41.2883i 1.57754i
\(686\) 3.33118 + 13.2652i 0.127185 + 0.506467i
\(687\) 7.02819 0.268142
\(688\) 38.2403 + 25.4193i 1.45790 + 0.969101i
\(689\) 5.18421i 0.197503i
\(690\) −0.0882687 + 5.78769i −0.00336033 + 0.220333i
\(691\) −0.723926 −0.0275394 −0.0137697 0.999905i \(-0.504383\pi\)
−0.0137697 + 0.999905i \(0.504383\pi\)
\(692\) 0.938246 + 1.75030i 0.0356667 + 0.0665363i
\(693\) 17.2696i 0.656016i
\(694\) −9.60793 38.2599i −0.364712 1.45233i
\(695\) 44.0884 1.67237
\(696\) −3.82225 + 3.47679i −0.144882 + 0.131787i
\(697\) 32.7719i 1.24132i
\(698\) 15.3286 3.84936i 0.580197 0.145701i
\(699\) 4.41282 0.166908
\(700\) −14.8291 + 7.94914i −0.560488 + 0.300449i
\(701\) −0.631335 −0.0238452 −0.0119226 0.999929i \(-0.503795\pi\)
−0.0119226 + 0.999929i \(0.503795\pi\)
\(702\) 10.0311 2.51904i 0.378600 0.0950750i
\(703\) 35.9156i 1.35458i
\(704\) −14.2216 1.34920i −0.535996 0.0508500i
\(705\) 7.69826i 0.289933i
\(706\) 1.97158 + 7.85108i 0.0742015 + 0.295479i
\(707\) 21.5843i 0.811760i
\(708\) 3.63158 1.94671i 0.136483 0.0731618i
\(709\) −45.9390 −1.72528 −0.862638 0.505821i \(-0.831190\pi\)
−0.862638 + 0.505821i \(0.831190\pi\)
\(710\) 20.4071 5.12468i 0.765864 0.192326i
\(711\) 1.17587 0.0440984
\(712\) 34.8657 31.7146i 1.30665 1.18855i
\(713\) 4.37778 16.3718i 0.163949 0.613129i
\(714\) −8.15902 + 2.04891i −0.305344 + 0.0766787i
\(715\) 19.5067 0.729509
\(716\) 17.3390 9.29456i 0.647989 0.347354i
\(717\) 8.91989i 0.333119i
\(718\) 7.23680 + 28.8178i 0.270075 + 1.07547i
\(719\) 17.7614i 0.662388i −0.943563 0.331194i \(-0.892549\pi\)
0.943563 0.331194i \(-0.107451\pi\)
\(720\) −17.6354 + 26.5303i −0.657232 + 0.988728i
\(721\) 22.4687 0.836780
\(722\) 2.71286 + 10.8029i 0.100962 + 0.402044i
\(723\) 2.28745i 0.0850712i
\(724\) −26.2505 + 14.0716i −0.975594 + 0.522967i
\(725\) 14.8291i 0.550740i
\(726\) −0.837063 3.33328i −0.0310663 0.123710i
\(727\) −6.46596 −0.239809 −0.119905 0.992785i \(-0.538259\pi\)
−0.119905 + 0.992785i \(0.538259\pi\)
\(728\) 27.7549 25.2464i 1.02867 0.935695i
\(729\) −21.9131 −0.811595
\(730\) 11.2040 + 44.6155i 0.414677 + 1.65130i
\(731\) 65.8894 2.43701
\(732\) 3.00877 1.61285i 0.111207 0.0596126i
\(733\) 2.05921 0.0760587 0.0380294 0.999277i \(-0.487892\pi\)
0.0380294 + 0.999277i \(0.487892\pi\)
\(734\) −7.85318 31.2723i −0.289866 1.15428i
\(735\) 3.49639 0.128966
\(736\) 22.3615 + 15.3610i 0.824257 + 0.566215i
\(737\) 6.06868 0.223543
\(738\) −5.70964 22.7365i −0.210175 0.836940i
\(739\) −44.2321 −1.62711 −0.813553 0.581491i \(-0.802470\pi\)
−0.813553 + 0.581491i \(0.802470\pi\)
\(740\) −33.5002 + 17.9578i −1.23149 + 0.660142i
\(741\) 6.42255 0.235938
\(742\) −1.49378 5.94843i −0.0548386 0.218374i
\(743\) −53.7596 −1.97225 −0.986124 0.166013i \(-0.946911\pi\)
−0.986124 + 0.166013i \(0.946911\pi\)
\(744\) −2.30021 + 2.09232i −0.0843297 + 0.0767080i
\(745\) 20.7368 0.759739
\(746\) 5.99648 + 23.8787i 0.219547 + 0.874262i
\(747\) 9.86665i 0.361002i
\(748\) −18.0667 + 9.68464i −0.660583 + 0.354105i
\(749\) 38.2403i 1.39727i
\(750\) 0.727441 + 2.89676i 0.0265624 + 0.105775i
\(751\) −36.4858 −1.33139 −0.665693 0.746226i \(-0.731864\pi\)
−0.665693 + 0.746226i \(0.731864\pi\)
\(752\) −30.0479 19.9736i −1.09574 0.728362i
\(753\) 2.16839i 0.0790204i
\(754\) −8.05408 32.0723i −0.293312 1.16800i
\(755\) 0.172833i 0.00629002i
\(756\) 10.7840 5.78076i 0.392210 0.210244i
\(757\) −23.1084 −0.839888 −0.419944 0.907550i \(-0.637950\pi\)
−0.419944 + 0.907550i \(0.637950\pi\)
\(758\) 33.7034 8.46367i 1.22416 0.307414i
\(759\) 0.688240 2.57384i 0.0249815 0.0934246i
\(760\) −29.7560 + 27.0667i −1.07937 + 0.981812i
\(761\) −6.58565 −0.238730 −0.119365 0.992850i \(-0.538086\pi\)
−0.119365 + 0.992850i \(0.538086\pi\)
\(762\) −2.23628 + 0.561581i −0.0810120 + 0.0203439i
\(763\) −12.5906 −0.455809
\(764\) 16.9018 9.06022i 0.611487 0.327787i
\(765\) 45.7127i 1.65275i
\(766\) 7.28020 + 28.9906i 0.263044 + 1.04747i
\(767\) 26.3705i 0.952182i
\(768\) −1.92687 4.58965i −0.0695299 0.165615i
\(769\) 39.9146i 1.43936i −0.694308 0.719678i \(-0.744289\pi\)
0.694308 0.719678i \(-0.255711\pi\)
\(770\) 22.3822 5.62068i 0.806600 0.202555i
\(771\) −2.60639 −0.0938670
\(772\) −33.4837 + 17.9489i −1.20511 + 0.645997i
\(773\) 24.3369 0.875339 0.437670 0.899136i \(-0.355804\pi\)
0.437670 + 0.899136i \(0.355804\pi\)
\(774\) −45.7127 + 11.4795i −1.64311 + 0.412622i
\(775\) 8.92409i 0.320563i
\(776\) −30.3288 + 27.5877i −1.08874 + 0.990339i
\(777\) 7.17976 0.257573
\(778\) −12.8194 51.0484i −0.459598 1.83017i
\(779\) 29.5999i 1.06053i
\(780\) 3.21128 + 5.99063i 0.114982 + 0.214499i
\(781\) −9.68464 −0.346544
\(782\) 38.9243 + 0.593640i 1.39193 + 0.0212285i
\(783\) 10.7840i 0.385389i
\(784\) 9.07160 13.6472i 0.323986 0.487398i
\(785\) 19.3876 0.691974
\(786\) 0.0950927 + 0.378670i 0.00339184 + 0.0135067i
\(787\) 10.8702i 0.387480i −0.981053 0.193740i \(-0.937938\pi\)
0.981053 0.193740i \(-0.0620619\pi\)
\(788\) 19.3691 + 36.1330i 0.689996 + 1.28719i
\(789\) 0.657034 0.0233910
\(790\) 0.382707 + 1.52398i 0.0136161 + 0.0542209i
\(791\) 7.22330i 0.256831i
\(792\) 10.8470 9.86665i 0.385431 0.350596i
\(793\) 21.8479i 0.775842i
\(794\) −15.1558 + 3.80596i −0.537859 + 0.135068i
\(795\) 1.11108 0.0394059
\(796\) −11.8204 + 6.33630i −0.418961 + 0.224584i
\(797\) 2.47774 0.0877660 0.0438830 0.999037i \(-0.486027\pi\)
0.0438830 + 0.999037i \(0.486027\pi\)
\(798\) 7.36932 1.85060i 0.260871 0.0655106i
\(799\) −51.7737 −1.83162
\(800\) −13.4652 4.77256i −0.476067 0.168736i
\(801\) 48.3783i 1.70936i
\(802\) −22.5685 + 5.66746i −0.796921 + 0.200125i
\(803\) 21.1733i 0.747190i
\(804\) 0.999053 + 1.86373i 0.0352339 + 0.0657288i
\(805\) −42.3381 11.3211i −1.49222 0.399017i
\(806\) −4.84691 19.3010i −0.170725 0.679848i
\(807\) 3.11097i 0.109511i
\(808\) 13.5571 12.3318i 0.476936 0.433831i
\(809\) 10.5861 0.372188 0.186094 0.982532i \(-0.440417\pi\)
0.186094 + 0.982532i \(0.440417\pi\)
\(810\) −7.68987 30.6220i −0.270195 1.07595i
\(811\) 14.3022 0.502219 0.251109 0.967959i \(-0.419205\pi\)
0.251109 + 0.967959i \(0.419205\pi\)
\(812\) −18.4827 34.4795i −0.648616 1.20999i
\(813\) 8.40846i 0.294898i
\(814\) 16.9684 4.26114i 0.594741 0.149353i
\(815\) −4.74687 −0.166275
\(816\) −5.94843 3.95407i −0.208237 0.138420i
\(817\) −59.5121 −2.08206
\(818\) 6.34445 + 25.2643i 0.221828 + 0.883347i
\(819\) 38.5116i 1.34570i
\(820\) 27.6093 14.8000i 0.964159 0.516837i
\(821\) 32.4841i 1.13370i 0.823820 + 0.566851i \(0.191839\pi\)
−0.823820 + 0.566851i \(0.808161\pi\)
\(822\) 6.42255 1.61285i 0.224012 0.0562545i
\(823\) 30.3391i 1.05755i −0.848761 0.528777i \(-0.822651\pi\)
0.848761 0.528777i \(-0.177349\pi\)
\(824\) 12.8371 + 14.1126i 0.447202 + 0.491636i
\(825\) 1.40297i 0.0488453i
\(826\) 7.59842 + 30.2578i 0.264383 + 1.05280i
\(827\) 34.1748i 1.18838i −0.804326 0.594188i \(-0.797474\pi\)
0.804326 0.594188i \(-0.202526\pi\)
\(828\) −27.1083 + 6.36969i −0.942080 + 0.221362i
\(829\) 51.0163i 1.77187i 0.463810 + 0.885935i \(0.346482\pi\)
−0.463810 + 0.885935i \(0.653518\pi\)
\(830\) 12.7877 3.21128i 0.443867 0.111465i
\(831\) 3.93872i 0.136633i
\(832\) 31.7146 + 3.00877i 1.09950 + 0.104310i
\(833\) 23.5145i 0.814730i
\(834\) −1.72223 6.85813i −0.0596360 0.237478i
\(835\) 32.2163i 1.11489i
\(836\) 16.3180 8.74728i 0.564371 0.302531i
\(837\) 6.48976i 0.224319i
\(838\) 43.5005 10.9240i 1.50270 0.377362i
\(839\) 34.9483 1.20655 0.603275 0.797533i \(-0.293862\pi\)
0.603275 + 0.797533i \(0.293862\pi\)
\(840\) 5.41081 + 5.94843i 0.186691 + 0.205240i
\(841\) −5.47949 −0.188948
\(842\) 6.38800 + 25.4378i 0.220145 + 0.876644i
\(843\) 4.16394i 0.143414i
\(844\) 33.4193 17.9144i 1.15034 0.616639i
\(845\) −7.83823 −0.269643
\(846\) 35.9195 9.02020i 1.23494 0.310121i
\(847\) 26.0210 0.894093
\(848\) 2.88276 4.33677i 0.0989944 0.148925i
\(849\) 1.40297i 0.0481499i
\(850\) −19.8821 + 4.99285i −0.681952 + 0.171254i
\(851\) −32.0973 8.58274i −1.10028 0.294212i
\(852\) −1.59433 2.97421i −0.0546207 0.101895i
\(853\) 17.2005i 0.588932i −0.955662 0.294466i \(-0.904858\pi\)
0.955662 0.294466i \(-0.0951418\pi\)
\(854\) 6.29529 + 25.0686i 0.215420 + 0.857829i
\(855\) 41.2883i 1.41203i
\(856\) 24.0187 21.8479i 0.820943 0.746746i
\(857\) −32.8292 −1.12142 −0.560712 0.828011i \(-0.689472\pi\)
−0.560712 + 0.828011i \(0.689472\pi\)
\(858\) −0.761992 3.03434i −0.0260140 0.103591i
\(859\) 11.1497 0.380421 0.190211 0.981743i \(-0.439083\pi\)
0.190211 + 0.981743i \(0.439083\pi\)
\(860\) −29.7560 55.5099i −1.01467 1.89287i
\(861\) −5.91722 −0.201658
\(862\) −1.25847 5.01138i −0.0428636 0.170688i
\(863\) 12.3379i 0.419986i −0.977703 0.209993i \(-0.932656\pi\)
0.977703 0.209993i \(-0.0673442\pi\)
\(864\) 9.79213 + 3.47069i 0.333135 + 0.118075i
\(865\) 2.72393i 0.0926163i
\(866\) 3.44834 0.865955i 0.117179 0.0294264i
\(867\) −4.96052 −0.168468
\(868\) −11.1228 20.7496i −0.377533 0.704287i
\(869\) 0.723240i 0.0245343i
\(870\) 6.87373 1.72615i 0.233041 0.0585219i
\(871\) −13.5333 −0.458560
\(872\) −7.19340 7.90813i −0.243599 0.267803i
\(873\) 42.0830i 1.42429i
\(874\) −35.1569 0.536182i −1.18920 0.0181366i
\(875\) −22.6133 −0.764470
\(876\) 6.50246 3.48564i 0.219698 0.117769i
\(877\) 50.2063i 1.69535i −0.530520 0.847673i \(-0.678003\pi\)
0.530520 0.847673i \(-0.321997\pi\)
\(878\) −21.4326 + 5.38220i −0.723314 + 0.181640i
\(879\) 4.82947 0.162894
\(880\) 16.3180 + 10.8470i 0.550081 + 0.365652i
\(881\) 12.0350i 0.405471i −0.979234 0.202735i \(-0.935017\pi\)
0.979234 0.202735i \(-0.0649831\pi\)
\(882\) 4.09679 + 16.3139i 0.137946 + 0.549318i
\(883\) 14.4099 0.484932 0.242466 0.970160i \(-0.422044\pi\)
0.242466 + 0.970160i \(0.422044\pi\)
\(884\) 40.2892 21.5970i 1.35507 0.726387i
\(885\) −5.65171 −0.189980
\(886\) 10.2296 + 40.7355i 0.343671 + 1.36854i
\(887\) 8.19245i 0.275076i 0.990497 + 0.137538i \(0.0439188\pi\)
−0.990497 + 0.137538i \(0.956081\pi\)
\(888\) 4.10203 + 4.50961i 0.137655 + 0.151332i
\(889\) 17.4574i 0.585501i
\(890\) −62.7007 + 15.7456i −2.10173 + 0.527793i
\(891\) 14.5324i 0.486852i
\(892\) 15.2237 + 28.3998i 0.509727 + 0.950895i
\(893\) 46.7626 1.56485
\(894\) −0.810045 3.22570i −0.0270919 0.107883i
\(895\) −26.9841 −0.901979
\(896\) 37.2567 5.68598i 1.24466 0.189955i
\(897\) −1.53480 + 5.73975i −0.0512453 + 0.191645i
\(898\) −5.39853 21.4976i −0.180151 0.717384i
\(899\) −20.7496 −0.692038
\(900\) 12.9240 6.92788i 0.430799 0.230929i
\(901\) 7.47241i 0.248942i
\(902\) −13.9845 + 3.51183i −0.465634 + 0.116931i
\(903\) 11.8969i 0.395903i
\(904\) −4.53695 + 4.12690i −0.150897 + 0.137259i
\(905\) 40.8528 1.35799
\(906\) 0.0268848 0.00675137i 0.000893187 0.000224299i
\(907\) 11.1338i 0.369693i 0.982767 + 0.184846i \(0.0591788\pi\)
−0.982767 + 0.184846i \(0.940821\pi\)
\(908\) −0.637433 1.18913i −0.0211540 0.0394627i
\(909\) 18.8112i 0.623929i
\(910\) −49.9131 + 12.5343i −1.65460 + 0.415508i
\(911\) 57.7478 1.91327 0.956635 0.291290i \(-0.0940845\pi\)
0.956635 + 0.291290i \(0.0940845\pi\)
\(912\) 5.37269 + 3.57136i 0.177908 + 0.118260i
\(913\) −6.06868 −0.200844
\(914\) 46.4747 11.6708i 1.53725 0.386037i
\(915\) −4.68244 −0.154797
\(916\) −39.8212 + 21.3461i −1.31573 + 0.705296i
\(917\) −2.95606 −0.0976177
\(918\) 14.4586 3.63089i 0.477206 0.119837i
\(919\) −35.3141 −1.16491 −0.582453 0.812864i \(-0.697907\pi\)
−0.582453 + 0.812864i \(0.697907\pi\)
\(920\) −17.0783 33.0607i −0.563056 1.08998i
\(921\) −9.59411 −0.316137
\(922\) 19.7845 4.96832i 0.651567 0.163623i
\(923\) 21.5970 0.710875
\(924\) −1.74864 3.26208i −0.0575260 0.107315i
\(925\) 17.4959 0.575261
\(926\) 48.9748 12.2987i 1.60941 0.404160i
\(927\) −19.5821 −0.643160
\(928\) 11.0968 31.3082i 0.364270 1.02774i
\(929\) −12.3733 −0.405956 −0.202978 0.979183i \(-0.565062\pi\)
−0.202978 + 0.979183i \(0.565062\pi\)
\(930\) 4.13658 1.03879i 0.135644 0.0340632i
\(931\) 21.2386i 0.696067i
\(932\) −25.0027 + 13.4027i −0.818991 + 0.439020i
\(933\) 1.75639i 0.0575018i
\(934\) 37.0779 9.31111i 1.21323 0.304669i
\(935\) 28.1166 0.919510
\(936\) −24.1891 + 22.0029i −0.790646 + 0.719188i
\(937\) 19.1778i 0.626510i 0.949669 + 0.313255i \(0.101419\pi\)
−0.949669 + 0.313255i \(0.898581\pi\)
\(938\) −15.5283 + 3.89952i −0.507018 + 0.127324i
\(939\) 3.83500i 0.125151i
\(940\) 23.3813 + 43.6178i 0.762614 + 1.42265i
\(941\) −40.3657 −1.31589 −0.657943 0.753068i \(-0.728573\pi\)
−0.657943 + 0.753068i \(0.728573\pi\)
\(942\) −0.757341 3.01582i −0.0246755 0.0982608i
\(943\) 26.4531 + 7.07349i 0.861430 + 0.230344i
\(944\) −14.6637 + 22.0598i −0.477263 + 0.717986i
\(945\) −16.7828 −0.545943
\(946\) 7.06070 + 28.1166i 0.229563 + 0.914148i
\(947\) 29.1956 0.948729 0.474364 0.880329i \(-0.342678\pi\)
0.474364 + 0.880329i \(0.342678\pi\)
\(948\) 0.222112 0.119063i 0.00721386 0.00386699i
\(949\) 47.2171i 1.53273i
\(950\) 17.9578 4.50961i 0.582628 0.146311i
\(951\) 5.06378i 0.164204i
\(952\) 40.0054 36.3897i 1.29658 1.17940i
\(953\) 42.0830i 1.36320i −0.731724 0.681601i \(-0.761284\pi\)
0.731724 0.681601i \(-0.238716\pi\)
\(954\) 1.30187 + 5.18421i 0.0421496 + 0.167845i
\(955\) −26.3037 −0.851169
\(956\) −27.0917 50.5394i −0.876207 1.63456i
\(957\) −3.26208 −0.105448
\(958\) −7.50087 29.8693i −0.242342 0.965035i
\(959\) 50.1372i 1.61901i
\(960\) −0.644838 + 6.79706i −0.0208121 + 0.219374i
\(961\) 18.5130 0.597193
\(962\) −37.8399 + 9.50246i −1.22001 + 0.306372i
\(963\) 33.3274i 1.07396i
\(964\) 6.94748 + 12.9605i 0.223763 + 0.417430i
\(965\) 52.1096 1.67747
\(966\) −0.107186 + 7.02810i −0.00344867 + 0.226125i
\(967\) 44.6176i 1.43480i −0.696659 0.717402i \(-0.745331\pi\)
0.696659 0.717402i \(-0.254669\pi\)
\(968\) 14.8666 + 16.3438i 0.477832 + 0.525310i
\(969\) 9.25734 0.297389
\(970\) 54.5417 13.6967i 1.75123 0.439773i
\(971\) 43.6958i 1.40227i 0.713031 + 0.701133i \(0.247322\pi\)
−0.713031 + 0.701133i \(0.752678\pi\)
\(972\) −14.1748 + 7.59842i −0.454658 + 0.243719i
\(973\) 53.5375 1.71633
\(974\) −34.6440 + 8.69988i −1.11006 + 0.278762i
\(975\) 3.12867i 0.100198i
\(976\) −12.1489 + 18.2766i −0.388876 + 0.585018i
\(977\) 51.3941i 1.64424i 0.569313 + 0.822121i \(0.307209\pi\)
−0.569313 + 0.822121i \(0.692791\pi\)
\(978\) 0.185427 + 0.738393i 0.00592931 + 0.0236112i
\(979\) 29.7560 0.951007
\(980\) −19.8103 + 10.6193i −0.632817 + 0.339221i
\(981\) 10.9730 0.350341
\(982\) −1.63106 6.49506i −0.0520491 0.207266i
\(983\) 29.3400 0.935801 0.467901 0.883781i \(-0.345010\pi\)
0.467901 + 0.883781i \(0.345010\pi\)
\(984\) −3.38070 3.71661i −0.107773 0.118481i
\(985\) 56.2326i 1.79172i
\(986\) −11.6090 46.2284i −0.369706 1.47221i
\(987\) 9.34815i 0.297555i
\(988\) −36.3897 + 19.5067i −1.15771 + 0.620591i
\(989\) 14.2216 53.1851i 0.452220 1.69119i
\(990\) −19.5067 + 4.89857i −0.619963 + 0.155687i
\(991\) 31.5303i 1.00159i −0.865565 0.500797i \(-0.833040\pi\)
0.865565 0.500797i \(-0.166960\pi\)
\(992\) 6.67799 18.8411i 0.212026 0.598207i
\(993\) 1.90766 0.0605377
\(994\) 24.7807 6.22300i 0.785997 0.197381i
\(995\) 18.3956 0.583180
\(996\) −0.999053 1.86373i −0.0316562 0.0590546i
\(997\) 16.3904i 0.519089i 0.965731 + 0.259545i \(0.0835725\pi\)
−0.965731 + 0.259545i \(0.916428\pi\)
\(998\) −8.67852 34.5589i −0.274714 1.09394i
\(999\) −12.7233 −0.402547
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 184.2.h.c.91.6 yes 12
4.3 odd 2 736.2.h.c.367.7 12
8.3 odd 2 inner 184.2.h.c.91.7 yes 12
8.5 even 2 736.2.h.c.367.5 12
23.22 odd 2 inner 184.2.h.c.91.5 12
92.91 even 2 736.2.h.c.367.6 12
184.45 odd 2 736.2.h.c.367.8 12
184.91 even 2 inner 184.2.h.c.91.8 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.2.h.c.91.5 12 23.22 odd 2 inner
184.2.h.c.91.6 yes 12 1.1 even 1 trivial
184.2.h.c.91.7 yes 12 8.3 odd 2 inner
184.2.h.c.91.8 yes 12 184.91 even 2 inner
736.2.h.c.367.5 12 8.5 even 2
736.2.h.c.367.6 12 92.91 even 2
736.2.h.c.367.7 12 4.3 odd 2
736.2.h.c.367.8 12 184.45 odd 2