Properties

Label 184.2.h
Level $184$
Weight $2$
Character orbit 184.h
Rep. character $\chi_{184}(91,\cdot)$
Character field $\Q$
Dimension $22$
Newform subspaces $3$
Sturm bound $48$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 184.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 184 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(48\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(184, [\chi])\).

Total New Old
Modular forms 26 26 0
Cusp forms 22 22 0
Eisenstein series 4 4 0

Trace form

\( 22q - 4q^{3} - 8q^{4} + q^{6} - 3q^{8} + 14q^{9} + O(q^{10}) \) \( 22q - 4q^{3} - 8q^{4} + q^{6} - 3q^{8} + 14q^{9} - 5q^{12} - 16q^{16} - 5q^{18} - 4q^{24} + 10q^{25} - q^{26} - 4q^{27} - 24q^{35} - 25q^{36} - 4q^{41} + 32q^{46} + q^{48} + 6q^{49} + 52q^{50} - 3q^{52} - 25q^{54} + q^{58} - 16q^{59} + 45q^{62} - 29q^{64} - 12q^{70} - 21q^{72} - 4q^{73} - 36q^{75} + q^{78} - 26q^{81} + 41q^{82} + 52q^{92} - q^{94} + 97q^{96} - 44q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(184, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
184.2.h.a \(4\) \(1.469\) \(\Q(i, \sqrt{14})\) None \(4\) \(-8\) \(0\) \(0\) \(q+(1-\beta _{1})q^{2}-2q^{3}-2\beta _{1}q^{4}+\beta _{3}q^{5}+\cdots\)
184.2.h.b \(6\) \(1.469\) 6.0.8869743.1 \(\Q(\sqrt{-23}) \) \(0\) \(0\) \(0\) \(0\) \(q+\beta _{1}q^{2}+(\beta _{2}-\beta _{5})q^{3}+\beta _{2}q^{4}+(-1+\cdots)q^{6}+\cdots\)
184.2.h.c \(12\) \(1.469\) 12.0.\(\cdots\).2 None \(-4\) \(4\) \(0\) \(0\) \(q-\beta _{2}q^{2}+(1-\beta _{2}-\beta _{7})q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\)