Properties

Label 184.2.h.c
Level $184$
Weight $2$
Character orbit 184.h
Analytic conductor $1.469$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [184,2,Mod(91,184)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(184, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("184.91");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 184 = 2^{3} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 184.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.46924739719\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.64974433091584.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{11} + 8x^{10} - 10x^{9} + 24x^{7} - 46x^{6} + 48x^{5} - 80x^{3} + 128x^{2} - 128x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 23 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + ( - \beta_{7} - \beta_{2} + 1) q^{3} + (\beta_{7} - \beta_{4} + \beta_{2} - 1) q^{4} - \beta_{10} q^{5} + (\beta_{7} - \beta_{4} + 1) q^{6} - \beta_{6} q^{7} + ( - \beta_{9} + \beta_{4} + \beta_{2} + \cdots - 1) q^{8}+ \cdots + (2 \beta_{11} + \beta_{10} + \cdots - \beta_{5}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 4 q^{3} - 8 q^{4} + 12 q^{6} - 4 q^{8} - 8 q^{9} - 20 q^{12} + 12 q^{18} - 20 q^{24} + 4 q^{25} - 12 q^{26} + 4 q^{27} + 16 q^{32} - 24 q^{35} + 8 q^{36} + 12 q^{41} + 20 q^{46} + 8 q^{48}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 4x^{11} + 8x^{10} - 10x^{9} + 24x^{7} - 46x^{6} + 48x^{5} - 80x^{3} + 128x^{2} - 128x + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{11} - \nu^{10} - 4\nu^{9} + 4\nu^{8} - 14\nu^{7} + 28\nu^{5} - 18\nu^{4} + 32\nu^{3} + 16\nu^{2} - 64\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 2 \nu^{11} + 3 \nu^{10} - 4 \nu^{9} + 4 \nu^{8} + 10 \nu^{7} - 16 \nu^{6} + 20 \nu^{5} - 26 \nu^{4} + \cdots + 96 ) / 16 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2 \nu^{11} - 3 \nu^{10} + 8 \nu^{9} - 16 \nu^{8} - 2 \nu^{7} + 24 \nu^{6} - 60 \nu^{5} + 90 \nu^{4} + \cdots - 224 ) / 16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 2 \nu^{11} + 5 \nu^{10} - 12 \nu^{9} + 12 \nu^{8} + 6 \nu^{7} - 32 \nu^{6} + 68 \nu^{5} - 54 \nu^{4} + \cdots + 144 ) / 16 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 3 \nu^{10} + 8 \nu^{9} - 6 \nu^{8} - 2 \nu^{7} + 24 \nu^{6} - 44 \nu^{5} + 18 \nu^{4} + 24 \nu^{3} + \cdots - 32 ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 2 \nu^{11} + 7 \nu^{10} - 12 \nu^{9} + 12 \nu^{8} + 10 \nu^{7} - 48 \nu^{6} + 68 \nu^{5} + \cdots + 128 ) / 16 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 5 \nu^{11} - 14 \nu^{10} + 24 \nu^{9} - 22 \nu^{8} - 28 \nu^{7} + 88 \nu^{6} - 126 \nu^{5} + 92 \nu^{4} + \cdots - 256 ) / 16 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 4 \nu^{11} + 7 \nu^{10} - 14 \nu^{9} + 16 \nu^{8} + 18 \nu^{7} - 44 \nu^{6} + 80 \nu^{5} - 74 \nu^{4} + \cdots + 208 ) / 8 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 8 \nu^{11} + 23 \nu^{10} - 36 \nu^{9} + 24 \nu^{8} + 50 \nu^{7} - 144 \nu^{6} + 184 \nu^{5} + \cdots + 256 ) / 16 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 6 \nu^{11} - 21 \nu^{10} + 40 \nu^{9} - 40 \nu^{8} - 30 \nu^{7} + 136 \nu^{6} - 228 \nu^{5} + \cdots - 416 ) / 16 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 18 \nu^{11} + 49 \nu^{10} - 76 \nu^{9} + 64 \nu^{8} + 102 \nu^{7} - 304 \nu^{6} + 396 \nu^{5} + \cdots + 704 ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2\beta_{11} + \beta_{10} + 9\beta_{8} + \beta_{6} + 9\beta_{5} - 23\beta_{4} + 6\beta_{3} + 23\beta _1 + 23 ) / 46 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -4\beta_{11} - 2\beta_{10} + 5\beta_{8} + 21\beta_{6} + 5\beta_{5} + 11\beta_{3} ) / 46 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 19 \beta_{11} + 2 \beta_{10} + 23 \beta_{9} - 5 \beta_{8} - 46 \beta_{7} + 2 \beta_{6} + 18 \beta_{5} + \cdots + 23 ) / 46 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 2\beta_{2} - \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 8 \beta_{11} - 50 \beta_{10} + 46 \beta_{9} + 33 \beta_{8} + 92 \beta_{7} - 27 \beta_{6} + 33 \beta_{5} + \cdots + 92 ) / 46 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -15\beta_{11} - 42\beta_{10} + 13\beta_{8} + 4\beta_{6} + 36\beta_{5} + 47\beta_{3} ) / 23 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 54 \beta_{11} - 27 \beta_{10} + 46 \beta_{9} + 10 \beta_{8} - 92 \beta_{7} - 4 \beta_{6} + 10 \beta_{5} + \cdots + 23 ) / 23 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -2\beta_{9} - 4\beta_{7} + 4\beta_{4} - 12\beta_{2} - 6\beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 7 \beta_{11} - 130 \beta_{10} + 69 \beta_{9} + 3 \beta_{8} + 230 \beta_{7} - 38 \beta_{6} + \cdots + 69 ) / 23 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( -32\beta_{11} - 246\beta_{10} - 52\beta_{8} - 108\beta_{6} + 224\beta_{5} + 134\beta_{3} ) / 23 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 152 \beta_{11} - 214 \beta_{10} + 46 \beta_{9} - 17 \beta_{8} - 276 \beta_{7} - 53 \beta_{6} + \cdots + 276 ) / 23 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/184\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(93\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
91.1
0.303172 + 1.38134i
−1.38134 + 0.303172i
0.303172 1.38134i
−1.38134 0.303172i
1.35381 0.408906i
0.408906 + 1.35381i
1.35381 + 0.408906i
0.408906 1.35381i
−0.0955343 1.41098i
1.41098 0.0955343i
−0.0955343 + 1.41098i
1.41098 + 0.0955343i
−1.24060 0.678910i −1.48119 1.07816 + 1.68451i −1.35782 1.83757 + 1.00560i 3.63235 −0.193937 2.82177i −0.806063 1.68451 + 0.921837i
91.2 −1.24060 0.678910i −1.48119 1.07816 + 1.68451i 1.35782 1.83757 + 1.00560i −3.63235 −0.193937 2.82177i −0.806063 −1.68451 0.921837i
91.3 −1.24060 + 0.678910i −1.48119 1.07816 1.68451i −1.35782 1.83757 1.00560i 3.63235 −0.193937 + 2.82177i −0.806063 1.68451 0.921837i
91.4 −1.24060 + 0.678910i −1.48119 1.07816 1.68451i 1.35782 1.83757 1.00560i −3.63235 −0.193937 + 2.82177i −0.806063 −1.68451 + 0.921837i
91.5 −0.344446 1.37163i 0.311108 −1.76271 + 0.944902i −2.74325 −0.107160 0.426723i −3.33118 1.90321 + 2.09232i −2.90321 0.944902 + 3.76271i
91.6 −0.344446 1.37163i 0.311108 −1.76271 + 0.944902i 2.74325 −0.107160 0.426723i 3.33118 1.90321 + 2.09232i −2.90321 −0.944902 3.76271i
91.7 −0.344446 + 1.37163i 0.311108 −1.76271 0.944902i −2.74325 −0.107160 + 0.426723i −3.33118 1.90321 2.09232i −2.90321 0.944902 3.76271i
91.8 −0.344446 + 1.37163i 0.311108 −1.76271 0.944902i 2.74325 −0.107160 + 0.426723i 3.33118 1.90321 2.09232i −2.90321 −0.944902 + 3.76271i
91.9 0.585043 1.28753i 2.17009 −1.31545 1.50652i −2.57505 1.26959 2.79404i 3.96349 −2.70928 + 0.812297i 1.70928 −1.50652 + 3.31545i
91.10 0.585043 1.28753i 2.17009 −1.31545 1.50652i 2.57505 1.26959 2.79404i −3.96349 −2.70928 + 0.812297i 1.70928 1.50652 3.31545i
91.11 0.585043 + 1.28753i 2.17009 −1.31545 + 1.50652i −2.57505 1.26959 + 2.79404i 3.96349 −2.70928 0.812297i 1.70928 −1.50652 3.31545i
91.12 0.585043 + 1.28753i 2.17009 −1.31545 + 1.50652i 2.57505 1.26959 + 2.79404i −3.96349 −2.70928 0.812297i 1.70928 1.50652 + 3.31545i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 91.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
23.b odd 2 1 inner
184.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 184.2.h.c 12
4.b odd 2 1 736.2.h.c 12
8.b even 2 1 736.2.h.c 12
8.d odd 2 1 inner 184.2.h.c 12
23.b odd 2 1 inner 184.2.h.c 12
92.b even 2 1 736.2.h.c 12
184.e odd 2 1 736.2.h.c 12
184.h even 2 1 inner 184.2.h.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
184.2.h.c 12 1.a even 1 1 trivial
184.2.h.c 12 8.d odd 2 1 inner
184.2.h.c 12 23.b odd 2 1 inner
184.2.h.c 12 184.h even 2 1 inner
736.2.h.c 12 4.b odd 2 1
736.2.h.c 12 8.b even 2 1
736.2.h.c 12 92.b even 2 1
736.2.h.c 12 184.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - T_{3}^{2} - 3T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(184, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{6} + 2 T^{5} + 4 T^{4} + \cdots + 8)^{2} \) Copy content Toggle raw display
$3$ \( (T^{3} - T^{2} - 3 T + 1)^{4} \) Copy content Toggle raw display
$5$ \( (T^{6} - 16 T^{4} + \cdots - 92)^{2} \) Copy content Toggle raw display
$7$ \( (T^{6} - 40 T^{4} + \cdots - 2300)^{2} \) Copy content Toggle raw display
$11$ \( (T^{6} + 56 T^{4} + \cdots + 2116)^{2} \) Copy content Toggle raw display
$13$ \( (T^{6} + 21 T^{4} + \cdots + 23)^{2} \) Copy content Toggle raw display
$17$ \( (T^{6} + 52 T^{4} + \cdots + 2116)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} + 108 T^{4} + \cdots + 33856)^{2} \) Copy content Toggle raw display
$23$ \( T^{12} + \cdots + 148035889 \) Copy content Toggle raw display
$29$ \( (T^{6} + 77 T^{4} + \cdots + 14375)^{2} \) Copy content Toggle raw display
$31$ \( (T^{6} + 109 T^{4} + \cdots + 23)^{2} \) Copy content Toggle raw display
$37$ \( (T^{6} - 84 T^{4} + \cdots - 15548)^{2} \) Copy content Toggle raw display
$41$ \( (T^{3} - 3 T^{2} - 45 T + 27)^{4} \) Copy content Toggle raw display
$43$ \( (T^{6} + 208 T^{4} + \cdots + 135424)^{2} \) Copy content Toggle raw display
$47$ \( (T^{6} + 157 T^{4} + \cdots + 103247)^{2} \) Copy content Toggle raw display
$53$ \( (T^{6} - 84 T^{4} + \cdots - 1472)^{2} \) Copy content Toggle raw display
$59$ \( (T^{3} + 20 T^{2} + \cdots + 208)^{4} \) Copy content Toggle raw display
$61$ \( (T^{6} - 64 T^{4} + \cdots - 5888)^{2} \) Copy content Toggle raw display
$67$ \( (T^{6} + 164 T^{4} + \cdots + 2116)^{2} \) Copy content Toggle raw display
$71$ \( (T^{6} + 81 T^{4} + \cdots + 12167)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} + 9 T^{2} - 37 T - 37)^{4} \) Copy content Toggle raw display
$79$ \( (T^{6} - 212 T^{4} + \cdots - 1472)^{2} \) Copy content Toggle raw display
$83$ \( (T^{6} + 164 T^{4} + \cdots + 2116)^{2} \) Copy content Toggle raw display
$89$ \( (T^{6} + 300 T^{4} + \cdots + 33856)^{2} \) Copy content Toggle raw display
$97$ \( (T^{6} + 368 T^{4} + \cdots + 357604)^{2} \) Copy content Toggle raw display
show more
show less