Properties

Label 1824.2.q.i.961.1
Level $1824$
Weight $2$
Character 1824.961
Analytic conductor $14.565$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(577,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,0,0,-4,0,-2,0,8,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.1
Root \(-0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1824.961
Dual form 1824.2.q.i.577.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(-1.41421 + 2.44949i) q^{5} +1.82843 q^{7} +(-0.500000 - 0.866025i) q^{9} +4.82843 q^{11} +(1.91421 + 3.31552i) q^{13} +(-1.41421 - 2.44949i) q^{15} +(2.41421 - 4.18154i) q^{17} +(-4.00000 + 1.73205i) q^{19} +(-0.914214 + 1.58346i) q^{21} +(3.00000 + 5.19615i) q^{23} +(-1.50000 - 2.59808i) q^{25} +1.00000 q^{27} +(-0.414214 - 0.717439i) q^{29} +5.82843 q^{31} +(-2.41421 + 4.18154i) q^{33} +(-2.58579 + 4.47871i) q^{35} +11.8284 q^{37} -3.82843 q^{39} +(5.65685 - 9.79796i) q^{41} +(0.500000 - 0.866025i) q^{43} +2.82843 q^{45} +(-3.82843 - 6.63103i) q^{47} -3.65685 q^{49} +(2.41421 + 4.18154i) q^{51} +(-5.82843 - 10.0951i) q^{53} +(-6.82843 + 11.8272i) q^{55} +(0.500000 - 4.33013i) q^{57} +(-6.82843 + 11.8272i) q^{59} +(2.08579 + 3.61269i) q^{61} +(-0.914214 - 1.58346i) q^{63} -10.8284 q^{65} +(6.50000 + 11.2583i) q^{67} -6.00000 q^{69} +(-7.07107 + 12.2474i) q^{71} +(-2.50000 + 4.33013i) q^{73} +3.00000 q^{75} +8.82843 q^{77} +(-2.91421 + 5.04757i) q^{79} +(-0.500000 + 0.866025i) q^{81} -0.828427 q^{83} +(6.82843 + 11.8272i) q^{85} +0.828427 q^{87} +(-4.00000 - 6.92820i) q^{89} +(3.50000 + 6.06218i) q^{91} +(-2.91421 + 5.04757i) q^{93} +(1.41421 - 12.2474i) q^{95} +(-8.65685 + 14.9941i) q^{97} +(-2.41421 - 4.18154i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 4 q^{7} - 2 q^{9} + 8 q^{11} + 2 q^{13} + 4 q^{17} - 16 q^{19} + 2 q^{21} + 12 q^{23} - 6 q^{25} + 4 q^{27} + 4 q^{29} + 12 q^{31} - 4 q^{33} - 16 q^{35} + 36 q^{37} - 4 q^{39} + 2 q^{43}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) −1.41421 + 2.44949i −0.632456 + 1.09545i 0.354593 + 0.935021i \(0.384620\pi\)
−0.987048 + 0.160424i \(0.948714\pi\)
\(6\) 0 0
\(7\) 1.82843 0.691080 0.345540 0.938404i \(-0.387696\pi\)
0.345540 + 0.938404i \(0.387696\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 4.82843 1.45583 0.727913 0.685670i \(-0.240491\pi\)
0.727913 + 0.685670i \(0.240491\pi\)
\(12\) 0 0
\(13\) 1.91421 + 3.31552i 0.530907 + 0.919558i 0.999349 + 0.0360643i \(0.0114821\pi\)
−0.468442 + 0.883494i \(0.655185\pi\)
\(14\) 0 0
\(15\) −1.41421 2.44949i −0.365148 0.632456i
\(16\) 0 0
\(17\) 2.41421 4.18154i 0.585533 1.01417i −0.409276 0.912411i \(-0.634219\pi\)
0.994809 0.101762i \(-0.0324480\pi\)
\(18\) 0 0
\(19\) −4.00000 + 1.73205i −0.917663 + 0.397360i
\(20\) 0 0
\(21\) −0.914214 + 1.58346i −0.199498 + 0.345540i
\(22\) 0 0
\(23\) 3.00000 + 5.19615i 0.625543 + 1.08347i 0.988436 + 0.151642i \(0.0484560\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) 0 0
\(25\) −1.50000 2.59808i −0.300000 0.519615i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −0.414214 0.717439i −0.0769175 0.133225i 0.825001 0.565131i \(-0.191174\pi\)
−0.901919 + 0.431906i \(0.857841\pi\)
\(30\) 0 0
\(31\) 5.82843 1.04682 0.523408 0.852082i \(-0.324660\pi\)
0.523408 + 0.852082i \(0.324660\pi\)
\(32\) 0 0
\(33\) −2.41421 + 4.18154i −0.420261 + 0.727913i
\(34\) 0 0
\(35\) −2.58579 + 4.47871i −0.437078 + 0.757041i
\(36\) 0 0
\(37\) 11.8284 1.94458 0.972291 0.233775i \(-0.0751079\pi\)
0.972291 + 0.233775i \(0.0751079\pi\)
\(38\) 0 0
\(39\) −3.82843 −0.613039
\(40\) 0 0
\(41\) 5.65685 9.79796i 0.883452 1.53018i 0.0359748 0.999353i \(-0.488546\pi\)
0.847477 0.530831i \(-0.178120\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) 0 0
\(45\) 2.82843 0.421637
\(46\) 0 0
\(47\) −3.82843 6.63103i −0.558433 0.967235i −0.997628 0.0688429i \(-0.978069\pi\)
0.439194 0.898392i \(-0.355264\pi\)
\(48\) 0 0
\(49\) −3.65685 −0.522408
\(50\) 0 0
\(51\) 2.41421 + 4.18154i 0.338058 + 0.585533i
\(52\) 0 0
\(53\) −5.82843 10.0951i −0.800596 1.38667i −0.919224 0.393734i \(-0.871183\pi\)
0.118628 0.992939i \(-0.462150\pi\)
\(54\) 0 0
\(55\) −6.82843 + 11.8272i −0.920745 + 1.59478i
\(56\) 0 0
\(57\) 0.500000 4.33013i 0.0662266 0.573539i
\(58\) 0 0
\(59\) −6.82843 + 11.8272i −0.888985 + 1.53977i −0.0479091 + 0.998852i \(0.515256\pi\)
−0.841076 + 0.540916i \(0.818078\pi\)
\(60\) 0 0
\(61\) 2.08579 + 3.61269i 0.267058 + 0.462557i 0.968101 0.250562i \(-0.0806153\pi\)
−0.701043 + 0.713119i \(0.747282\pi\)
\(62\) 0 0
\(63\) −0.914214 1.58346i −0.115180 0.199498i
\(64\) 0 0
\(65\) −10.8284 −1.34310
\(66\) 0 0
\(67\) 6.50000 + 11.2583i 0.794101 + 1.37542i 0.923408 + 0.383819i \(0.125391\pi\)
−0.129307 + 0.991605i \(0.541275\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) −7.07107 + 12.2474i −0.839181 + 1.45350i 0.0513987 + 0.998678i \(0.483632\pi\)
−0.890580 + 0.454827i \(0.849701\pi\)
\(72\) 0 0
\(73\) −2.50000 + 4.33013i −0.292603 + 0.506803i −0.974424 0.224716i \(-0.927855\pi\)
0.681822 + 0.731519i \(0.261188\pi\)
\(74\) 0 0
\(75\) 3.00000 0.346410
\(76\) 0 0
\(77\) 8.82843 1.00609
\(78\) 0 0
\(79\) −2.91421 + 5.04757i −0.327875 + 0.567896i −0.982090 0.188413i \(-0.939666\pi\)
0.654215 + 0.756308i \(0.272999\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −0.828427 −0.0909317 −0.0454658 0.998966i \(-0.514477\pi\)
−0.0454658 + 0.998966i \(0.514477\pi\)
\(84\) 0 0
\(85\) 6.82843 + 11.8272i 0.740647 + 1.28284i
\(86\) 0 0
\(87\) 0.828427 0.0888167
\(88\) 0 0
\(89\) −4.00000 6.92820i −0.423999 0.734388i 0.572327 0.820025i \(-0.306041\pi\)
−0.996326 + 0.0856373i \(0.972707\pi\)
\(90\) 0 0
\(91\) 3.50000 + 6.06218i 0.366900 + 0.635489i
\(92\) 0 0
\(93\) −2.91421 + 5.04757i −0.302190 + 0.523408i
\(94\) 0 0
\(95\) 1.41421 12.2474i 0.145095 1.25656i
\(96\) 0 0
\(97\) −8.65685 + 14.9941i −0.878970 + 1.52242i −0.0264981 + 0.999649i \(0.508436\pi\)
−0.852472 + 0.522772i \(0.824898\pi\)
\(98\) 0 0
\(99\) −2.41421 4.18154i −0.242638 0.420261i
\(100\) 0 0
\(101\) 7.41421 + 12.8418i 0.737742 + 1.27781i 0.953510 + 0.301362i \(0.0974412\pi\)
−0.215768 + 0.976445i \(0.569226\pi\)
\(102\) 0 0
\(103\) 3.48528 0.343415 0.171707 0.985148i \(-0.445072\pi\)
0.171707 + 0.985148i \(0.445072\pi\)
\(104\) 0 0
\(105\) −2.58579 4.47871i −0.252347 0.437078i
\(106\) 0 0
\(107\) −6.82843 −0.660129 −0.330064 0.943958i \(-0.607070\pi\)
−0.330064 + 0.943958i \(0.607070\pi\)
\(108\) 0 0
\(109\) −1.00000 + 1.73205i −0.0957826 + 0.165900i −0.909935 0.414751i \(-0.863869\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) 0 0
\(111\) −5.91421 + 10.2437i −0.561352 + 0.972291i
\(112\) 0 0
\(113\) −6.34315 −0.596713 −0.298356 0.954455i \(-0.596438\pi\)
−0.298356 + 0.954455i \(0.596438\pi\)
\(114\) 0 0
\(115\) −16.9706 −1.58251
\(116\) 0 0
\(117\) 1.91421 3.31552i 0.176969 0.306519i
\(118\) 0 0
\(119\) 4.41421 7.64564i 0.404650 0.700875i
\(120\) 0 0
\(121\) 12.3137 1.11943
\(122\) 0 0
\(123\) 5.65685 + 9.79796i 0.510061 + 0.883452i
\(124\) 0 0
\(125\) −5.65685 −0.505964
\(126\) 0 0
\(127\) 2.82843 + 4.89898i 0.250982 + 0.434714i 0.963797 0.266639i \(-0.0859131\pi\)
−0.712814 + 0.701353i \(0.752580\pi\)
\(128\) 0 0
\(129\) 0.500000 + 0.866025i 0.0440225 + 0.0762493i
\(130\) 0 0
\(131\) 0.242641 0.420266i 0.0211996 0.0367188i −0.855231 0.518247i \(-0.826585\pi\)
0.876431 + 0.481528i \(0.159918\pi\)
\(132\) 0 0
\(133\) −7.31371 + 3.16693i −0.634179 + 0.274608i
\(134\) 0 0
\(135\) −1.41421 + 2.44949i −0.121716 + 0.210819i
\(136\) 0 0
\(137\) −7.41421 12.8418i −0.633439 1.09715i −0.986844 0.161678i \(-0.948309\pi\)
0.353405 0.935471i \(-0.385024\pi\)
\(138\) 0 0
\(139\) −8.98528 15.5630i −0.762122 1.32003i −0.941755 0.336300i \(-0.890824\pi\)
0.179633 0.983734i \(-0.442509\pi\)
\(140\) 0 0
\(141\) 7.65685 0.644823
\(142\) 0 0
\(143\) 9.24264 + 16.0087i 0.772908 + 1.33872i
\(144\) 0 0
\(145\) 2.34315 0.194588
\(146\) 0 0
\(147\) 1.82843 3.16693i 0.150806 0.261204i
\(148\) 0 0
\(149\) 0.757359 1.31178i 0.0620453 0.107466i −0.833334 0.552769i \(-0.813571\pi\)
0.895380 + 0.445304i \(0.146904\pi\)
\(150\) 0 0
\(151\) 5.65685 0.460348 0.230174 0.973149i \(-0.426070\pi\)
0.230174 + 0.973149i \(0.426070\pi\)
\(152\) 0 0
\(153\) −4.82843 −0.390355
\(154\) 0 0
\(155\) −8.24264 + 14.2767i −0.662065 + 1.14673i
\(156\) 0 0
\(157\) 11.3995 19.7445i 0.909779 1.57578i 0.0954078 0.995438i \(-0.469584\pi\)
0.814371 0.580345i \(-0.197082\pi\)
\(158\) 0 0
\(159\) 11.6569 0.924449
\(160\) 0 0
\(161\) 5.48528 + 9.50079i 0.432301 + 0.748767i
\(162\) 0 0
\(163\) −3.34315 −0.261855 −0.130928 0.991392i \(-0.541796\pi\)
−0.130928 + 0.991392i \(0.541796\pi\)
\(164\) 0 0
\(165\) −6.82843 11.8272i −0.531592 0.920745i
\(166\) 0 0
\(167\) −2.82843 4.89898i −0.218870 0.379094i 0.735593 0.677424i \(-0.236904\pi\)
−0.954463 + 0.298330i \(0.903570\pi\)
\(168\) 0 0
\(169\) −0.828427 + 1.43488i −0.0637252 + 0.110375i
\(170\) 0 0
\(171\) 3.50000 + 2.59808i 0.267652 + 0.198680i
\(172\) 0 0
\(173\) −2.75736 + 4.77589i −0.209638 + 0.363104i −0.951601 0.307338i \(-0.900562\pi\)
0.741962 + 0.670441i \(0.233895\pi\)
\(174\) 0 0
\(175\) −2.74264 4.75039i −0.207324 0.359096i
\(176\) 0 0
\(177\) −6.82843 11.8272i −0.513256 0.888985i
\(178\) 0 0
\(179\) 13.3137 0.995113 0.497557 0.867431i \(-0.334231\pi\)
0.497557 + 0.867431i \(0.334231\pi\)
\(180\) 0 0
\(181\) −2.65685 4.60181i −0.197482 0.342050i 0.750229 0.661178i \(-0.229943\pi\)
−0.947711 + 0.319128i \(0.896610\pi\)
\(182\) 0 0
\(183\) −4.17157 −0.308372
\(184\) 0 0
\(185\) −16.7279 + 28.9736i −1.22986 + 2.13018i
\(186\) 0 0
\(187\) 11.6569 20.1903i 0.852434 1.47646i
\(188\) 0 0
\(189\) 1.82843 0.132999
\(190\) 0 0
\(191\) 16.4853 1.19283 0.596417 0.802675i \(-0.296591\pi\)
0.596417 + 0.802675i \(0.296591\pi\)
\(192\) 0 0
\(193\) 8.98528 15.5630i 0.646775 1.12025i −0.337114 0.941464i \(-0.609451\pi\)
0.983889 0.178783i \(-0.0572159\pi\)
\(194\) 0 0
\(195\) 5.41421 9.37769i 0.387720 0.671551i
\(196\) 0 0
\(197\) −16.0000 −1.13995 −0.569976 0.821661i \(-0.693048\pi\)
−0.569976 + 0.821661i \(0.693048\pi\)
\(198\) 0 0
\(199\) 3.08579 + 5.34474i 0.218746 + 0.378878i 0.954425 0.298452i \(-0.0964702\pi\)
−0.735679 + 0.677330i \(0.763137\pi\)
\(200\) 0 0
\(201\) −13.0000 −0.916949
\(202\) 0 0
\(203\) −0.757359 1.31178i −0.0531562 0.0920692i
\(204\) 0 0
\(205\) 16.0000 + 27.7128i 1.11749 + 1.93555i
\(206\) 0 0
\(207\) 3.00000 5.19615i 0.208514 0.361158i
\(208\) 0 0
\(209\) −19.3137 + 8.36308i −1.33596 + 0.578486i
\(210\) 0 0
\(211\) −0.156854 + 0.271680i −0.0107983 + 0.0187032i −0.871374 0.490619i \(-0.836771\pi\)
0.860576 + 0.509322i \(0.170104\pi\)
\(212\) 0 0
\(213\) −7.07107 12.2474i −0.484502 0.839181i
\(214\) 0 0
\(215\) 1.41421 + 2.44949i 0.0964486 + 0.167054i
\(216\) 0 0
\(217\) 10.6569 0.723434
\(218\) 0 0
\(219\) −2.50000 4.33013i −0.168934 0.292603i
\(220\) 0 0
\(221\) 18.4853 1.24345
\(222\) 0 0
\(223\) −8.91421 + 15.4399i −0.596940 + 1.03393i 0.396330 + 0.918108i \(0.370284\pi\)
−0.993270 + 0.115822i \(0.963050\pi\)
\(224\) 0 0
\(225\) −1.50000 + 2.59808i −0.100000 + 0.173205i
\(226\) 0 0
\(227\) 0.485281 0.0322093 0.0161046 0.999870i \(-0.494874\pi\)
0.0161046 + 0.999870i \(0.494874\pi\)
\(228\) 0 0
\(229\) 19.4853 1.28762 0.643812 0.765184i \(-0.277352\pi\)
0.643812 + 0.765184i \(0.277352\pi\)
\(230\) 0 0
\(231\) −4.41421 + 7.64564i −0.290434 + 0.503046i
\(232\) 0 0
\(233\) 8.24264 14.2767i 0.539993 0.935296i −0.458910 0.888483i \(-0.651760\pi\)
0.998904 0.0468133i \(-0.0149066\pi\)
\(234\) 0 0
\(235\) 21.6569 1.41274
\(236\) 0 0
\(237\) −2.91421 5.04757i −0.189299 0.327875i
\(238\) 0 0
\(239\) 12.4853 0.807606 0.403803 0.914846i \(-0.367688\pi\)
0.403803 + 0.914846i \(0.367688\pi\)
\(240\) 0 0
\(241\) −4.15685 7.19988i −0.267767 0.463785i 0.700518 0.713635i \(-0.252952\pi\)
−0.968285 + 0.249849i \(0.919619\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 5.17157 8.95743i 0.330400 0.572269i
\(246\) 0 0
\(247\) −13.3995 9.94655i −0.852589 0.632884i
\(248\) 0 0
\(249\) 0.414214 0.717439i 0.0262497 0.0454658i
\(250\) 0 0
\(251\) −7.00000 12.1244i −0.441836 0.765283i 0.555990 0.831189i \(-0.312339\pi\)
−0.997826 + 0.0659066i \(0.979006\pi\)
\(252\) 0 0
\(253\) 14.4853 + 25.0892i 0.910682 + 1.57735i
\(254\) 0 0
\(255\) −13.6569 −0.855225
\(256\) 0 0
\(257\) 6.65685 + 11.5300i 0.415243 + 0.719222i 0.995454 0.0952441i \(-0.0303632\pi\)
−0.580211 + 0.814466i \(0.697030\pi\)
\(258\) 0 0
\(259\) 21.6274 1.34386
\(260\) 0 0
\(261\) −0.414214 + 0.717439i −0.0256392 + 0.0444084i
\(262\) 0 0
\(263\) 7.07107 12.2474i 0.436021 0.755210i −0.561358 0.827573i \(-0.689721\pi\)
0.997378 + 0.0723633i \(0.0230541\pi\)
\(264\) 0 0
\(265\) 32.9706 2.02537
\(266\) 0 0
\(267\) 8.00000 0.489592
\(268\) 0 0
\(269\) −4.82843 + 8.36308i −0.294394 + 0.509906i −0.974844 0.222889i \(-0.928451\pi\)
0.680449 + 0.732795i \(0.261785\pi\)
\(270\) 0 0
\(271\) −1.65685 + 2.86976i −0.100647 + 0.174325i −0.911951 0.410298i \(-0.865425\pi\)
0.811305 + 0.584624i \(0.198758\pi\)
\(272\) 0 0
\(273\) −7.00000 −0.423659
\(274\) 0 0
\(275\) −7.24264 12.5446i −0.436748 0.756469i
\(276\) 0 0
\(277\) −16.6274 −0.999045 −0.499522 0.866301i \(-0.666491\pi\)
−0.499522 + 0.866301i \(0.666491\pi\)
\(278\) 0 0
\(279\) −2.91421 5.04757i −0.174469 0.302190i
\(280\) 0 0
\(281\) −13.8995 24.0746i −0.829174 1.43617i −0.898687 0.438591i \(-0.855478\pi\)
0.0695124 0.997581i \(-0.477856\pi\)
\(282\) 0 0
\(283\) 4.82843 8.36308i 0.287020 0.497134i −0.686077 0.727529i \(-0.740669\pi\)
0.973097 + 0.230395i \(0.0740020\pi\)
\(284\) 0 0
\(285\) 9.89949 + 7.34847i 0.586395 + 0.435286i
\(286\) 0 0
\(287\) 10.3431 17.9149i 0.610537 1.05748i
\(288\) 0 0
\(289\) −3.15685 5.46783i −0.185697 0.321637i
\(290\) 0 0
\(291\) −8.65685 14.9941i −0.507474 0.878970i
\(292\) 0 0
\(293\) 1.31371 0.0767477 0.0383738 0.999263i \(-0.487782\pi\)
0.0383738 + 0.999263i \(0.487782\pi\)
\(294\) 0 0
\(295\) −19.3137 33.4523i −1.12449 1.94767i
\(296\) 0 0
\(297\) 4.82843 0.280174
\(298\) 0 0
\(299\) −11.4853 + 19.8931i −0.664211 + 1.15045i
\(300\) 0 0
\(301\) 0.914214 1.58346i 0.0526944 0.0912694i
\(302\) 0 0
\(303\) −14.8284 −0.851871
\(304\) 0 0
\(305\) −11.7990 −0.675608
\(306\) 0 0
\(307\) −12.1421 + 21.0308i −0.692988 + 1.20029i 0.277866 + 0.960620i \(0.410373\pi\)
−0.970854 + 0.239671i \(0.922960\pi\)
\(308\) 0 0
\(309\) −1.74264 + 3.01834i −0.0991354 + 0.171707i
\(310\) 0 0
\(311\) −3.31371 −0.187903 −0.0939516 0.995577i \(-0.529950\pi\)
−0.0939516 + 0.995577i \(0.529950\pi\)
\(312\) 0 0
\(313\) −5.34315 9.25460i −0.302012 0.523101i 0.674579 0.738202i \(-0.264325\pi\)
−0.976592 + 0.215102i \(0.930992\pi\)
\(314\) 0 0
\(315\) 5.17157 0.291385
\(316\) 0 0
\(317\) 0.242641 + 0.420266i 0.0136281 + 0.0236045i 0.872759 0.488151i \(-0.162329\pi\)
−0.859131 + 0.511756i \(0.828995\pi\)
\(318\) 0 0
\(319\) −2.00000 3.46410i −0.111979 0.193952i
\(320\) 0 0
\(321\) 3.41421 5.91359i 0.190563 0.330064i
\(322\) 0 0
\(323\) −2.41421 + 20.9077i −0.134330 + 1.16334i
\(324\) 0 0
\(325\) 5.74264 9.94655i 0.318544 0.551735i
\(326\) 0 0
\(327\) −1.00000 1.73205i −0.0553001 0.0957826i
\(328\) 0 0
\(329\) −7.00000 12.1244i −0.385922 0.668437i
\(330\) 0 0
\(331\) −12.3137 −0.676823 −0.338411 0.940998i \(-0.609890\pi\)
−0.338411 + 0.940998i \(0.609890\pi\)
\(332\) 0 0
\(333\) −5.91421 10.2437i −0.324097 0.561352i
\(334\) 0 0
\(335\) −36.7696 −2.00894
\(336\) 0 0
\(337\) −11.6716 + 20.2158i −0.635791 + 1.10122i 0.350556 + 0.936542i \(0.385993\pi\)
−0.986347 + 0.164681i \(0.947341\pi\)
\(338\) 0 0
\(339\) 3.17157 5.49333i 0.172256 0.298356i
\(340\) 0 0
\(341\) 28.1421 1.52398
\(342\) 0 0
\(343\) −19.4853 −1.05211
\(344\) 0 0
\(345\) 8.48528 14.6969i 0.456832 0.791257i
\(346\) 0 0
\(347\) 7.07107 12.2474i 0.379595 0.657477i −0.611408 0.791315i \(-0.709397\pi\)
0.991003 + 0.133838i \(0.0427301\pi\)
\(348\) 0 0
\(349\) −16.4558 −0.880861 −0.440431 0.897787i \(-0.645174\pi\)
−0.440431 + 0.897787i \(0.645174\pi\)
\(350\) 0 0
\(351\) 1.91421 + 3.31552i 0.102173 + 0.176969i
\(352\) 0 0
\(353\) 16.4853 0.877423 0.438711 0.898628i \(-0.355435\pi\)
0.438711 + 0.898628i \(0.355435\pi\)
\(354\) 0 0
\(355\) −20.0000 34.6410i −1.06149 1.83855i
\(356\) 0 0
\(357\) 4.41421 + 7.64564i 0.233625 + 0.404650i
\(358\) 0 0
\(359\) −4.48528 + 7.76874i −0.236724 + 0.410018i −0.959772 0.280779i \(-0.909407\pi\)
0.723048 + 0.690798i \(0.242740\pi\)
\(360\) 0 0
\(361\) 13.0000 13.8564i 0.684211 0.729285i
\(362\) 0 0
\(363\) −6.15685 + 10.6640i −0.323151 + 0.559714i
\(364\) 0 0
\(365\) −7.07107 12.2474i −0.370117 0.641061i
\(366\) 0 0
\(367\) 8.22792 + 14.2512i 0.429494 + 0.743905i 0.996828 0.0795821i \(-0.0253586\pi\)
−0.567334 + 0.823488i \(0.692025\pi\)
\(368\) 0 0
\(369\) −11.3137 −0.588968
\(370\) 0 0
\(371\) −10.6569 18.4582i −0.553276 0.958303i
\(372\) 0 0
\(373\) 25.3137 1.31069 0.655347 0.755328i \(-0.272522\pi\)
0.655347 + 0.755328i \(0.272522\pi\)
\(374\) 0 0
\(375\) 2.82843 4.89898i 0.146059 0.252982i
\(376\) 0 0
\(377\) 1.58579 2.74666i 0.0816722 0.141460i
\(378\) 0 0
\(379\) 12.6569 0.650139 0.325069 0.945690i \(-0.394612\pi\)
0.325069 + 0.945690i \(0.394612\pi\)
\(380\) 0 0
\(381\) −5.65685 −0.289809
\(382\) 0 0
\(383\) 15.7279 27.2416i 0.803659 1.39198i −0.113533 0.993534i \(-0.536217\pi\)
0.917192 0.398444i \(-0.130450\pi\)
\(384\) 0 0
\(385\) −12.4853 + 21.6251i −0.636309 + 1.10212i
\(386\) 0 0
\(387\) −1.00000 −0.0508329
\(388\) 0 0
\(389\) 6.65685 + 11.5300i 0.337516 + 0.584595i 0.983965 0.178363i \(-0.0570800\pi\)
−0.646449 + 0.762957i \(0.723747\pi\)
\(390\) 0 0
\(391\) 28.9706 1.46510
\(392\) 0 0
\(393\) 0.242641 + 0.420266i 0.0122396 + 0.0211996i
\(394\) 0 0
\(395\) −8.24264 14.2767i −0.414732 0.718337i
\(396\) 0 0
\(397\) −15.2279 + 26.3755i −0.764268 + 1.32375i 0.176365 + 0.984325i \(0.443566\pi\)
−0.940633 + 0.339425i \(0.889767\pi\)
\(398\) 0 0
\(399\) 0.914214 7.91732i 0.0457679 0.396362i
\(400\) 0 0
\(401\) 6.82843 11.8272i 0.340995 0.590621i −0.643622 0.765343i \(-0.722569\pi\)
0.984618 + 0.174722i \(0.0559026\pi\)
\(402\) 0 0
\(403\) 11.1569 + 19.3242i 0.555762 + 0.962609i
\(404\) 0 0
\(405\) −1.41421 2.44949i −0.0702728 0.121716i
\(406\) 0 0
\(407\) 57.1127 2.83097
\(408\) 0 0
\(409\) −4.31371 7.47156i −0.213299 0.369445i 0.739446 0.673216i \(-0.235088\pi\)
−0.952745 + 0.303771i \(0.901754\pi\)
\(410\) 0 0
\(411\) 14.8284 0.731432
\(412\) 0 0
\(413\) −12.4853 + 21.6251i −0.614361 + 1.06410i
\(414\) 0 0
\(415\) 1.17157 2.02922i 0.0575103 0.0996107i
\(416\) 0 0
\(417\) 17.9706 0.880022
\(418\) 0 0
\(419\) −0.142136 −0.00694378 −0.00347189 0.999994i \(-0.501105\pi\)
−0.00347189 + 0.999994i \(0.501105\pi\)
\(420\) 0 0
\(421\) −0.656854 + 1.13770i −0.0320131 + 0.0554483i −0.881588 0.472020i \(-0.843525\pi\)
0.849575 + 0.527468i \(0.176858\pi\)
\(422\) 0 0
\(423\) −3.82843 + 6.63103i −0.186144 + 0.322412i
\(424\) 0 0
\(425\) −14.4853 −0.702639
\(426\) 0 0
\(427\) 3.81371 + 6.60554i 0.184558 + 0.319664i
\(428\) 0 0
\(429\) −18.4853 −0.892478
\(430\) 0 0
\(431\) 2.31371 + 4.00746i 0.111447 + 0.193033i 0.916354 0.400369i \(-0.131118\pi\)
−0.804907 + 0.593401i \(0.797785\pi\)
\(432\) 0 0
\(433\) −1.15685 2.00373i −0.0555949 0.0962931i 0.836889 0.547373i \(-0.184372\pi\)
−0.892483 + 0.451080i \(0.851039\pi\)
\(434\) 0 0
\(435\) −1.17157 + 2.02922i −0.0561726 + 0.0972938i
\(436\) 0 0
\(437\) −21.0000 15.5885i −1.00457 0.745697i
\(438\) 0 0
\(439\) 6.57107 11.3814i 0.313620 0.543206i −0.665523 0.746377i \(-0.731792\pi\)
0.979143 + 0.203171i \(0.0651249\pi\)
\(440\) 0 0
\(441\) 1.82843 + 3.16693i 0.0870680 + 0.150806i
\(442\) 0 0
\(443\) −15.2426 26.4010i −0.724200 1.25435i −0.959303 0.282380i \(-0.908876\pi\)
0.235103 0.971970i \(-0.424457\pi\)
\(444\) 0 0
\(445\) 22.6274 1.07264
\(446\) 0 0
\(447\) 0.757359 + 1.31178i 0.0358219 + 0.0620453i
\(448\) 0 0
\(449\) 31.4558 1.48449 0.742247 0.670127i \(-0.233760\pi\)
0.742247 + 0.670127i \(0.233760\pi\)
\(450\) 0 0
\(451\) 27.3137 47.3087i 1.28615 2.22768i
\(452\) 0 0
\(453\) −2.82843 + 4.89898i −0.132891 + 0.230174i
\(454\) 0 0
\(455\) −19.7990 −0.928191
\(456\) 0 0
\(457\) 32.3137 1.51157 0.755786 0.654819i \(-0.227255\pi\)
0.755786 + 0.654819i \(0.227255\pi\)
\(458\) 0 0
\(459\) 2.41421 4.18154i 0.112686 0.195178i
\(460\) 0 0
\(461\) −14.0000 + 24.2487i −0.652045 + 1.12938i 0.330581 + 0.943778i \(0.392755\pi\)
−0.982626 + 0.185597i \(0.940578\pi\)
\(462\) 0 0
\(463\) −5.82843 −0.270870 −0.135435 0.990786i \(-0.543243\pi\)
−0.135435 + 0.990786i \(0.543243\pi\)
\(464\) 0 0
\(465\) −8.24264 14.2767i −0.382243 0.662065i
\(466\) 0 0
\(467\) −26.6274 −1.23217 −0.616085 0.787680i \(-0.711282\pi\)
−0.616085 + 0.787680i \(0.711282\pi\)
\(468\) 0 0
\(469\) 11.8848 + 20.5850i 0.548788 + 0.950529i
\(470\) 0 0
\(471\) 11.3995 + 19.7445i 0.525261 + 0.909779i
\(472\) 0 0
\(473\) 2.41421 4.18154i 0.111006 0.192267i
\(474\) 0 0
\(475\) 10.5000 + 7.79423i 0.481773 + 0.357624i
\(476\) 0 0
\(477\) −5.82843 + 10.0951i −0.266865 + 0.462224i
\(478\) 0 0
\(479\) −2.92893 5.07306i −0.133826 0.231794i 0.791322 0.611399i \(-0.209393\pi\)
−0.925148 + 0.379605i \(0.876060\pi\)
\(480\) 0 0
\(481\) 22.6421 + 39.2173i 1.03239 + 1.78816i
\(482\) 0 0
\(483\) −10.9706 −0.499178
\(484\) 0 0
\(485\) −24.4853 42.4098i −1.11182 1.92573i
\(486\) 0 0
\(487\) −18.3431 −0.831207 −0.415604 0.909546i \(-0.636430\pi\)
−0.415604 + 0.909546i \(0.636430\pi\)
\(488\) 0 0
\(489\) 1.67157 2.89525i 0.0755911 0.130928i
\(490\) 0 0
\(491\) 12.7279 22.0454i 0.574403 0.994895i −0.421703 0.906734i \(-0.638568\pi\)
0.996106 0.0881614i \(-0.0280991\pi\)
\(492\) 0 0
\(493\) −4.00000 −0.180151
\(494\) 0 0
\(495\) 13.6569 0.613830
\(496\) 0 0
\(497\) −12.9289 + 22.3936i −0.579942 + 1.00449i
\(498\) 0 0
\(499\) 2.32843 4.03295i 0.104235 0.180540i −0.809191 0.587546i \(-0.800094\pi\)
0.913425 + 0.407006i \(0.133427\pi\)
\(500\) 0 0
\(501\) 5.65685 0.252730
\(502\) 0 0
\(503\) 3.58579 + 6.21076i 0.159882 + 0.276924i 0.934826 0.355106i \(-0.115555\pi\)
−0.774944 + 0.632030i \(0.782222\pi\)
\(504\) 0 0
\(505\) −41.9411 −1.86636
\(506\) 0 0
\(507\) −0.828427 1.43488i −0.0367917 0.0637252i
\(508\) 0 0
\(509\) −4.31371 7.47156i −0.191202 0.331171i 0.754447 0.656361i \(-0.227905\pi\)
−0.945649 + 0.325190i \(0.894572\pi\)
\(510\) 0 0
\(511\) −4.57107 + 7.91732i −0.202212 + 0.350242i
\(512\) 0 0
\(513\) −4.00000 + 1.73205i −0.176604 + 0.0764719i
\(514\) 0 0
\(515\) −4.92893 + 8.53716i −0.217195 + 0.376192i
\(516\) 0 0
\(517\) −18.4853 32.0174i −0.812982 1.40813i
\(518\) 0 0
\(519\) −2.75736 4.77589i −0.121035 0.209638i
\(520\) 0 0
\(521\) −10.4853 −0.459369 −0.229684 0.973265i \(-0.573769\pi\)
−0.229684 + 0.973265i \(0.573769\pi\)
\(522\) 0 0
\(523\) −4.15685 7.19988i −0.181767 0.314829i 0.760716 0.649085i \(-0.224848\pi\)
−0.942482 + 0.334256i \(0.891515\pi\)
\(524\) 0 0
\(525\) 5.48528 0.239397
\(526\) 0 0
\(527\) 14.0711 24.3718i 0.612945 1.06165i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) 13.6569 0.592657
\(532\) 0 0
\(533\) 43.3137 1.87612
\(534\) 0 0
\(535\) 9.65685 16.7262i 0.417502 0.723135i
\(536\) 0 0
\(537\) −6.65685 + 11.5300i −0.287264 + 0.497557i
\(538\) 0 0
\(539\) −17.6569 −0.760535
\(540\) 0 0
\(541\) −15.3995 26.6727i −0.662076 1.14675i −0.980069 0.198656i \(-0.936342\pi\)
0.317993 0.948093i \(-0.396991\pi\)
\(542\) 0 0
\(543\) 5.31371 0.228033
\(544\) 0 0
\(545\) −2.82843 4.89898i −0.121157 0.209849i
\(546\) 0 0
\(547\) 17.8137 + 30.8542i 0.761659 + 1.31923i 0.941995 + 0.335627i \(0.108948\pi\)
−0.180336 + 0.983605i \(0.557718\pi\)
\(548\) 0 0
\(549\) 2.08579 3.61269i 0.0890192 0.154186i
\(550\) 0 0
\(551\) 2.89949 + 2.15232i 0.123523 + 0.0916918i
\(552\) 0 0
\(553\) −5.32843 + 9.22911i −0.226588 + 0.392462i
\(554\) 0 0
\(555\) −16.7279 28.9736i −0.710061 1.22986i
\(556\) 0 0
\(557\) −7.07107 12.2474i −0.299611 0.518941i 0.676436 0.736501i \(-0.263523\pi\)
−0.976047 + 0.217560i \(0.930190\pi\)
\(558\) 0 0
\(559\) 3.82843 0.161925
\(560\) 0 0
\(561\) 11.6569 + 20.1903i 0.492153 + 0.852434i
\(562\) 0 0
\(563\) −38.1421 −1.60750 −0.803750 0.594968i \(-0.797165\pi\)
−0.803750 + 0.594968i \(0.797165\pi\)
\(564\) 0 0
\(565\) 8.97056 15.5375i 0.377394 0.653666i
\(566\) 0 0
\(567\) −0.914214 + 1.58346i −0.0383934 + 0.0664993i
\(568\) 0 0
\(569\) 29.6569 1.24328 0.621640 0.783303i \(-0.286467\pi\)
0.621640 + 0.783303i \(0.286467\pi\)
\(570\) 0 0
\(571\) 29.2843 1.22551 0.612754 0.790273i \(-0.290062\pi\)
0.612754 + 0.790273i \(0.290062\pi\)
\(572\) 0 0
\(573\) −8.24264 + 14.2767i −0.344341 + 0.596417i
\(574\) 0 0
\(575\) 9.00000 15.5885i 0.375326 0.650084i
\(576\) 0 0
\(577\) 10.2843 0.428140 0.214070 0.976818i \(-0.431328\pi\)
0.214070 + 0.976818i \(0.431328\pi\)
\(578\) 0 0
\(579\) 8.98528 + 15.5630i 0.373416 + 0.646775i
\(580\) 0 0
\(581\) −1.51472 −0.0628411
\(582\) 0 0
\(583\) −28.1421 48.7436i −1.16553 2.01875i
\(584\) 0 0
\(585\) 5.41421 + 9.37769i 0.223850 + 0.387720i
\(586\) 0 0
\(587\) −12.0000 + 20.7846i −0.495293 + 0.857873i −0.999985 0.00542667i \(-0.998273\pi\)
0.504692 + 0.863299i \(0.331606\pi\)
\(588\) 0 0
\(589\) −23.3137 + 10.0951i −0.960625 + 0.415963i
\(590\) 0 0
\(591\) 8.00000 13.8564i 0.329076 0.569976i
\(592\) 0 0
\(593\) −9.31371 16.1318i −0.382468 0.662454i 0.608946 0.793211i \(-0.291593\pi\)
−0.991414 + 0.130757i \(0.958259\pi\)
\(594\) 0 0
\(595\) 12.4853 + 21.6251i 0.511847 + 0.886544i
\(596\) 0 0
\(597\) −6.17157 −0.252586
\(598\) 0 0
\(599\) 10.8995 + 18.8785i 0.445341 + 0.771354i 0.998076 0.0620036i \(-0.0197490\pi\)
−0.552735 + 0.833357i \(0.686416\pi\)
\(600\) 0 0
\(601\) −0.313708 −0.0127964 −0.00639822 0.999980i \(-0.502037\pi\)
−0.00639822 + 0.999980i \(0.502037\pi\)
\(602\) 0 0
\(603\) 6.50000 11.2583i 0.264700 0.458475i
\(604\) 0 0
\(605\) −17.4142 + 30.1623i −0.707988 + 1.22627i
\(606\) 0 0
\(607\) 10.5147 0.426779 0.213390 0.976967i \(-0.431550\pi\)
0.213390 + 0.976967i \(0.431550\pi\)
\(608\) 0 0
\(609\) 1.51472 0.0613795
\(610\) 0 0
\(611\) 14.6569 25.3864i 0.592953 1.02702i
\(612\) 0 0
\(613\) −2.51472 + 4.35562i −0.101569 + 0.175922i −0.912331 0.409453i \(-0.865719\pi\)
0.810763 + 0.585375i \(0.199053\pi\)
\(614\) 0 0
\(615\) −32.0000 −1.29036
\(616\) 0 0
\(617\) −10.8995 18.8785i −0.438797 0.760019i 0.558800 0.829303i \(-0.311262\pi\)
−0.997597 + 0.0692836i \(0.977929\pi\)
\(618\) 0 0
\(619\) 15.3431 0.616693 0.308347 0.951274i \(-0.400224\pi\)
0.308347 + 0.951274i \(0.400224\pi\)
\(620\) 0 0
\(621\) 3.00000 + 5.19615i 0.120386 + 0.208514i
\(622\) 0 0
\(623\) −7.31371 12.6677i −0.293018 0.507521i
\(624\) 0 0
\(625\) 15.5000 26.8468i 0.620000 1.07387i
\(626\) 0 0
\(627\) 2.41421 20.9077i 0.0964144 0.834973i
\(628\) 0 0
\(629\) 28.5563 49.4610i 1.13862 1.97214i
\(630\) 0 0
\(631\) −14.2279 24.6435i −0.566405 0.981042i −0.996917 0.0784572i \(-0.975001\pi\)
0.430513 0.902584i \(-0.358333\pi\)
\(632\) 0 0
\(633\) −0.156854 0.271680i −0.00623440 0.0107983i
\(634\) 0 0
\(635\) −16.0000 −0.634941
\(636\) 0 0
\(637\) −7.00000 12.1244i −0.277350 0.480384i
\(638\) 0 0
\(639\) 14.1421 0.559454
\(640\) 0 0
\(641\) −15.0000 + 25.9808i −0.592464 + 1.02618i 0.401435 + 0.915888i \(0.368512\pi\)
−0.993899 + 0.110291i \(0.964822\pi\)
\(642\) 0 0
\(643\) −18.9853 + 32.8835i −0.748706 + 1.29680i 0.199737 + 0.979850i \(0.435991\pi\)
−0.948443 + 0.316948i \(0.897342\pi\)
\(644\) 0 0
\(645\) −2.82843 −0.111369
\(646\) 0 0
\(647\) 39.4558 1.55117 0.775585 0.631244i \(-0.217455\pi\)
0.775585 + 0.631244i \(0.217455\pi\)
\(648\) 0 0
\(649\) −32.9706 + 57.1067i −1.29421 + 2.24163i
\(650\) 0 0
\(651\) −5.32843 + 9.22911i −0.208838 + 0.361717i
\(652\) 0 0
\(653\) −34.1421 −1.33609 −0.668043 0.744123i \(-0.732868\pi\)
−0.668043 + 0.744123i \(0.732868\pi\)
\(654\) 0 0
\(655\) 0.686292 + 1.18869i 0.0268156 + 0.0464460i
\(656\) 0 0
\(657\) 5.00000 0.195069
\(658\) 0 0
\(659\) 24.8995 + 43.1272i 0.969947 + 1.68000i 0.695693 + 0.718339i \(0.255098\pi\)
0.274254 + 0.961657i \(0.411569\pi\)
\(660\) 0 0
\(661\) 0.656854 + 1.13770i 0.0255487 + 0.0442516i 0.878517 0.477711i \(-0.158533\pi\)
−0.852968 + 0.521963i \(0.825200\pi\)
\(662\) 0 0
\(663\) −9.24264 + 16.0087i −0.358954 + 0.621727i
\(664\) 0 0
\(665\) 2.58579 22.3936i 0.100272 0.868385i
\(666\) 0 0
\(667\) 2.48528 4.30463i 0.0962305 0.166676i
\(668\) 0 0
\(669\) −8.91421 15.4399i −0.344643 0.596940i
\(670\) 0 0
\(671\) 10.0711 + 17.4436i 0.388789 + 0.673403i
\(672\) 0 0
\(673\) 33.6274 1.29624 0.648121 0.761538i \(-0.275555\pi\)
0.648121 + 0.761538i \(0.275555\pi\)
\(674\) 0 0
\(675\) −1.50000 2.59808i −0.0577350 0.100000i
\(676\) 0 0
\(677\) −31.6569 −1.21667 −0.608336 0.793680i \(-0.708163\pi\)
−0.608336 + 0.793680i \(0.708163\pi\)
\(678\) 0 0
\(679\) −15.8284 + 27.4156i −0.607439 + 1.05212i
\(680\) 0 0
\(681\) −0.242641 + 0.420266i −0.00929801 + 0.0161046i
\(682\) 0 0
\(683\) 19.7990 0.757587 0.378794 0.925481i \(-0.376339\pi\)
0.378794 + 0.925481i \(0.376339\pi\)
\(684\) 0 0
\(685\) 41.9411 1.60249
\(686\) 0 0
\(687\) −9.74264 + 16.8747i −0.371705 + 0.643812i
\(688\) 0 0
\(689\) 22.3137 38.6485i 0.850085 1.47239i
\(690\) 0 0
\(691\) 12.6863 0.482609 0.241305 0.970449i \(-0.422425\pi\)
0.241305 + 0.970449i \(0.422425\pi\)
\(692\) 0 0
\(693\) −4.41421 7.64564i −0.167682 0.290434i
\(694\) 0 0
\(695\) 50.8284 1.92803
\(696\) 0 0
\(697\) −27.3137 47.3087i −1.03458 1.79195i
\(698\) 0 0
\(699\) 8.24264 + 14.2767i 0.311765 + 0.539993i
\(700\) 0 0
\(701\) 19.4142 33.6264i 0.733265 1.27005i −0.222216 0.974998i \(-0.571329\pi\)
0.955481 0.295054i \(-0.0953377\pi\)
\(702\) 0 0
\(703\) −47.3137 + 20.4874i −1.78447 + 0.772698i
\(704\) 0 0
\(705\) −10.8284 + 18.7554i −0.407822 + 0.706369i
\(706\) 0 0
\(707\) 13.5563 + 23.4803i 0.509839 + 0.883067i
\(708\) 0 0
\(709\) −14.5711 25.2378i −0.547228 0.947827i −0.998463 0.0554215i \(-0.982350\pi\)
0.451235 0.892405i \(-0.350984\pi\)
\(710\) 0 0
\(711\) 5.82843 0.218583
\(712\) 0 0
\(713\) 17.4853 + 30.2854i 0.654829 + 1.13420i
\(714\) 0 0
\(715\) −52.2843 −1.95532
\(716\) 0 0
\(717\) −6.24264 + 10.8126i −0.233136 + 0.403803i
\(718\) 0 0
\(719\) −3.00000 + 5.19615i −0.111881 + 0.193784i −0.916529 0.399969i \(-0.869021\pi\)
0.804648 + 0.593753i \(0.202354\pi\)
\(720\) 0 0
\(721\) 6.37258 0.237327
\(722\) 0 0
\(723\) 8.31371 0.309190
\(724\) 0 0
\(725\) −1.24264 + 2.15232i −0.0461505 + 0.0799350i
\(726\) 0 0
\(727\) −0.571068 + 0.989118i −0.0211797 + 0.0366844i −0.876421 0.481546i \(-0.840076\pi\)
0.855241 + 0.518230i \(0.173409\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −2.41421 4.18154i −0.0892929 0.154660i
\(732\) 0 0
\(733\) −3.65685 −0.135069 −0.0675345 0.997717i \(-0.521513\pi\)
−0.0675345 + 0.997717i \(0.521513\pi\)
\(734\) 0 0
\(735\) 5.17157 + 8.95743i 0.190756 + 0.330400i
\(736\) 0 0
\(737\) 31.3848 + 54.3600i 1.15607 + 2.00238i
\(738\) 0 0
\(739\) 14.6421 25.3609i 0.538620 0.932917i −0.460359 0.887733i \(-0.652279\pi\)
0.998979 0.0451838i \(-0.0143873\pi\)
\(740\) 0 0
\(741\) 15.3137 6.63103i 0.562563 0.243597i
\(742\) 0 0
\(743\) 9.58579 16.6031i 0.351668 0.609108i −0.634874 0.772616i \(-0.718948\pi\)
0.986542 + 0.163509i \(0.0522811\pi\)
\(744\) 0 0
\(745\) 2.14214 + 3.71029i 0.0784818 + 0.135934i
\(746\) 0 0
\(747\) 0.414214 + 0.717439i 0.0151553 + 0.0262497i
\(748\) 0 0
\(749\) −12.4853 −0.456202
\(750\) 0 0
\(751\) 7.57107 + 13.1135i 0.276272 + 0.478517i 0.970455 0.241281i \(-0.0775675\pi\)
−0.694183 + 0.719798i \(0.744234\pi\)
\(752\) 0 0
\(753\) 14.0000 0.510188
\(754\) 0 0
\(755\) −8.00000 + 13.8564i −0.291150 + 0.504286i
\(756\) 0 0
\(757\) 4.25736 7.37396i 0.154736 0.268011i −0.778227 0.627984i \(-0.783881\pi\)
0.932963 + 0.359972i \(0.117214\pi\)
\(758\) 0 0
\(759\) −28.9706 −1.05156
\(760\) 0 0
\(761\) 14.3431 0.519939 0.259969 0.965617i \(-0.416288\pi\)
0.259969 + 0.965617i \(0.416288\pi\)
\(762\) 0 0
\(763\) −1.82843 + 3.16693i −0.0661935 + 0.114651i
\(764\) 0 0
\(765\) 6.82843 11.8272i 0.246882 0.427613i
\(766\) 0 0
\(767\) −52.2843 −1.88788
\(768\) 0 0
\(769\) 21.4706 + 37.1881i 0.774248 + 1.34104i 0.935216 + 0.354078i \(0.115205\pi\)
−0.160968 + 0.986960i \(0.551461\pi\)
\(770\) 0 0
\(771\) −13.3137 −0.479481
\(772\) 0 0
\(773\) −17.8284 30.8797i −0.641244 1.11067i −0.985155 0.171665i \(-0.945085\pi\)
0.343911 0.939002i \(-0.388248\pi\)
\(774\) 0 0
\(775\) −8.74264 15.1427i −0.314045 0.543942i
\(776\) 0 0
\(777\) −10.8137 + 18.7299i −0.387940 + 0.671931i
\(778\) 0 0
\(779\) −5.65685 + 48.9898i −0.202678 + 1.75524i
\(780\) 0 0
\(781\) −34.1421 + 59.1359i −1.22170 + 2.11605i
\(782\) 0 0
\(783\) −0.414214 0.717439i −0.0148028 0.0256392i
\(784\) 0 0
\(785\) 32.2426 + 55.8459i 1.15079 + 1.99323i
\(786\) 0 0
\(787\) −52.2548 −1.86268 −0.931342 0.364146i \(-0.881361\pi\)
−0.931342 + 0.364146i \(0.881361\pi\)
\(788\) 0 0
\(789\) 7.07107 + 12.2474i 0.251737 + 0.436021i
\(790\) 0 0
\(791\) −11.5980 −0.412377
\(792\) 0 0
\(793\) −7.98528 + 13.8309i −0.283566 + 0.491150i
\(794\) 0 0
\(795\) −16.4853 + 28.5533i −0.584673 + 1.01268i
\(796\) 0 0
\(797\) 1.85786 0.0658089 0.0329045 0.999459i \(-0.489524\pi\)
0.0329045 + 0.999459i \(0.489524\pi\)
\(798\) 0 0
\(799\) −36.9706 −1.30792
\(800\) 0 0
\(801\) −4.00000 + 6.92820i −0.141333 + 0.244796i
\(802\) 0 0
\(803\) −12.0711 + 20.9077i −0.425979 + 0.737817i
\(804\) 0 0
\(805\) −31.0294 −1.09364
\(806\) 0 0
\(807\) −4.82843 8.36308i −0.169969 0.294394i
\(808\) 0 0
\(809\) 5.45584 0.191817 0.0959086 0.995390i \(-0.469424\pi\)
0.0959086 + 0.995390i \(0.469424\pi\)
\(810\) 0 0
\(811\) 4.34315 + 7.52255i 0.152508 + 0.264152i 0.932149 0.362075i \(-0.117932\pi\)
−0.779641 + 0.626227i \(0.784598\pi\)
\(812\) 0 0
\(813\) −1.65685 2.86976i −0.0581084 0.100647i
\(814\) 0 0
\(815\) 4.72792 8.18900i 0.165612 0.286848i
\(816\) 0 0
\(817\) −0.500000 + 4.33013i −0.0174928 + 0.151492i
\(818\) 0 0
\(819\) 3.50000 6.06218i 0.122300 0.211830i
\(820\) 0 0
\(821\) 2.75736 + 4.77589i 0.0962325 + 0.166680i 0.910122 0.414340i \(-0.135987\pi\)
−0.813890 + 0.581019i \(0.802654\pi\)
\(822\) 0 0
\(823\) 20.0000 + 34.6410i 0.697156 + 1.20751i 0.969448 + 0.245295i \(0.0788849\pi\)
−0.272292 + 0.962215i \(0.587782\pi\)
\(824\) 0 0
\(825\) 14.4853 0.504313
\(826\) 0 0
\(827\) 7.58579 + 13.1390i 0.263784 + 0.456887i 0.967244 0.253848i \(-0.0816962\pi\)
−0.703461 + 0.710734i \(0.748363\pi\)
\(828\) 0 0
\(829\) −24.7990 −0.861305 −0.430652 0.902518i \(-0.641716\pi\)
−0.430652 + 0.902518i \(0.641716\pi\)
\(830\) 0 0
\(831\) 8.31371 14.3998i 0.288399 0.499522i
\(832\) 0 0
\(833\) −8.82843 + 15.2913i −0.305887 + 0.529812i
\(834\) 0 0
\(835\) 16.0000 0.553703
\(836\) 0 0
\(837\) 5.82843 0.201460
\(838\) 0 0
\(839\) −6.92893 + 12.0013i −0.239213 + 0.414330i −0.960489 0.278319i \(-0.910223\pi\)
0.721275 + 0.692648i \(0.243556\pi\)
\(840\) 0 0
\(841\) 14.1569 24.5204i 0.488167 0.845531i
\(842\) 0 0
\(843\) 27.7990 0.957448
\(844\) 0 0
\(845\) −2.34315 4.05845i −0.0806067 0.139615i
\(846\) 0 0
\(847\) 22.5147 0.773615
\(848\) 0 0
\(849\) 4.82843 + 8.36308i 0.165711 + 0.287020i
\(850\) 0 0
\(851\) 35.4853 + 61.4623i 1.21642 + 2.10690i
\(852\) 0 0
\(853\) 26.0858 45.1819i 0.893160 1.54700i 0.0570953 0.998369i \(-0.481816\pi\)
0.836065 0.548630i \(-0.184851\pi\)
\(854\) 0 0
\(855\) −11.3137 + 4.89898i −0.386921 + 0.167542i
\(856\) 0 0
\(857\) −10.6569 + 18.4582i −0.364031 + 0.630521i −0.988620 0.150433i \(-0.951933\pi\)
0.624589 + 0.780954i \(0.285267\pi\)
\(858\) 0 0
\(859\) −10.8137 18.7299i −0.368959 0.639056i 0.620444 0.784251i \(-0.286952\pi\)
−0.989403 + 0.145195i \(0.953619\pi\)
\(860\) 0 0
\(861\) 10.3431 + 17.9149i 0.352493 + 0.610537i
\(862\) 0 0
\(863\) −50.0000 −1.70202 −0.851010 0.525150i \(-0.824009\pi\)
−0.851010 + 0.525150i \(0.824009\pi\)
\(864\) 0 0
\(865\) −7.79899 13.5082i −0.265174 0.459294i
\(866\) 0 0
\(867\) 6.31371 0.214425
\(868\) 0 0
\(869\) −14.0711 + 24.3718i −0.477328 + 0.826757i
\(870\) 0 0
\(871\) −24.8848 + 43.1017i −0.843188 + 1.46045i
\(872\) 0 0
\(873\) 17.3137 0.585980
\(874\) 0 0
\(875\) −10.3431 −0.349662
\(876\) 0 0
\(877\) 8.57107 14.8455i 0.289424 0.501298i −0.684248 0.729249i \(-0.739869\pi\)
0.973672 + 0.227952i \(0.0732028\pi\)
\(878\) 0 0
\(879\) −0.656854 + 1.13770i −0.0221551 + 0.0383738i
\(880\) 0 0
\(881\) −12.4853 −0.420640 −0.210320 0.977633i \(-0.567451\pi\)
−0.210320 + 0.977633i \(0.567451\pi\)
\(882\) 0 0
\(883\) −6.67157 11.5555i −0.224516 0.388874i 0.731658 0.681672i \(-0.238747\pi\)
−0.956174 + 0.292798i \(0.905414\pi\)
\(884\) 0 0
\(885\) 38.6274 1.29845
\(886\) 0 0
\(887\) −3.31371 5.73951i −0.111263 0.192714i 0.805016 0.593252i \(-0.202156\pi\)
−0.916280 + 0.400539i \(0.868823\pi\)
\(888\) 0 0
\(889\) 5.17157 + 8.95743i 0.173449 + 0.300422i
\(890\) 0 0
\(891\) −2.41421 + 4.18154i −0.0808792 + 0.140087i
\(892\) 0 0
\(893\) 26.7990 + 19.8931i 0.896794 + 0.665697i
\(894\) 0 0
\(895\) −18.8284 + 32.6118i −0.629365 + 1.09009i
\(896\) 0 0
\(897\) −11.4853 19.8931i −0.383482 0.664211i
\(898\) 0 0
\(899\) −2.41421 4.18154i −0.0805185 0.139462i
\(900\) 0 0
\(901\) −56.2843 −1.87510
\(902\) 0 0
\(903\) 0.914214 + 1.58346i 0.0304231 + 0.0526944i
\(904\) 0 0
\(905\) 15.0294 0.499595
\(906\) 0 0
\(907\) 2.48528 4.30463i 0.0825224 0.142933i −0.821810 0.569761i \(-0.807036\pi\)
0.904333 + 0.426828i \(0.140369\pi\)
\(908\) 0 0
\(909\) 7.41421 12.8418i 0.245914 0.425935i
\(910\) 0 0
\(911\) −11.3137 −0.374840 −0.187420 0.982280i \(-0.560013\pi\)
−0.187420 + 0.982280i \(0.560013\pi\)
\(912\) 0 0
\(913\) −4.00000 −0.132381
\(914\) 0 0
\(915\) 5.89949 10.2182i 0.195031 0.337804i
\(916\) 0 0
\(917\) 0.443651 0.768426i 0.0146506 0.0253757i
\(918\) 0 0
\(919\) 38.4558 1.26854 0.634271 0.773111i \(-0.281301\pi\)
0.634271 + 0.773111i \(0.281301\pi\)
\(920\) 0 0
\(921\) −12.1421 21.0308i −0.400097 0.692988i
\(922\) 0 0
\(923\) −54.1421 −1.78211
\(924\) 0 0
\(925\) −17.7426 30.7312i −0.583374 1.01043i
\(926\) 0 0
\(927\) −1.74264 3.01834i −0.0572358 0.0991354i
\(928\) 0 0
\(929\) 11.0711 19.1757i 0.363230 0.629133i −0.625260 0.780416i \(-0.715007\pi\)
0.988490 + 0.151283i \(0.0483406\pi\)
\(930\) 0 0
\(931\) 14.6274 6.33386i 0.479394 0.207584i
\(932\) 0 0
\(933\) 1.65685 2.86976i 0.0542430 0.0939516i
\(934\) 0 0
\(935\) 32.9706 + 57.1067i 1.07825 + 1.86759i
\(936\) 0 0
\(937\) −27.9853 48.4719i −0.914239 1.58351i −0.808011 0.589167i \(-0.799456\pi\)
−0.106228 0.994342i \(-0.533877\pi\)
\(938\) 0 0
\(939\) 10.6863 0.348734
\(940\) 0 0
\(941\) 19.3137 + 33.4523i 0.629609 + 1.09051i 0.987630 + 0.156801i \(0.0501182\pi\)
−0.358021 + 0.933713i \(0.616548\pi\)
\(942\) 0 0
\(943\) 67.8823 2.21055
\(944\) 0 0
\(945\) −2.58579 + 4.47871i −0.0841156 + 0.145693i
\(946\) 0 0
\(947\) 22.7279 39.3659i 0.738558 1.27922i −0.214586 0.976705i \(-0.568840\pi\)
0.953145 0.302515i \(-0.0978264\pi\)
\(948\) 0 0
\(949\) −19.1421 −0.621380
\(950\) 0 0
\(951\) −0.485281 −0.0157363
\(952\) 0 0
\(953\) 24.8995 43.1272i 0.806574 1.39703i −0.108650 0.994080i \(-0.534653\pi\)
0.915223 0.402947i \(-0.132014\pi\)
\(954\) 0 0
\(955\) −23.3137 + 40.3805i −0.754414 + 1.30668i
\(956\) 0 0
\(957\) 4.00000 0.129302
\(958\) 0 0
\(959\) −13.5563 23.4803i −0.437757 0.758218i
\(960\) 0 0
\(961\) 2.97056 0.0958246
\(962\) 0 0
\(963\) 3.41421 + 5.91359i 0.110021 + 0.190563i
\(964\) 0 0
\(965\) 25.4142 + 44.0187i 0.818112 + 1.41701i
\(966\) 0 0
\(967\) −8.88478 + 15.3889i −0.285715 + 0.494873i −0.972782 0.231721i \(-0.925564\pi\)
0.687067 + 0.726594i \(0.258898\pi\)
\(968\) 0 0
\(969\) −16.8995 12.5446i −0.542890 0.402991i
\(970\) 0 0
\(971\) 24.7990 42.9531i 0.795837 1.37843i −0.126469 0.991971i \(-0.540364\pi\)
0.922306 0.386460i \(-0.126302\pi\)
\(972\) 0 0
\(973\) −16.4289 28.4557i −0.526687 0.912249i
\(974\) 0 0
\(975\) 5.74264 + 9.94655i 0.183912 + 0.318544i
\(976\) 0 0
\(977\) 16.3431 0.522864 0.261432 0.965222i \(-0.415805\pi\)
0.261432 + 0.965222i \(0.415805\pi\)
\(978\) 0 0
\(979\) −19.3137 33.4523i −0.617269 1.06914i
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 0 0
\(983\) −21.7279 + 37.6339i −0.693013 + 1.20033i 0.277833 + 0.960629i \(0.410384\pi\)
−0.970846 + 0.239704i \(0.922949\pi\)
\(984\) 0 0
\(985\) 22.6274 39.1918i 0.720969 1.24876i
\(986\) 0 0
\(987\) 14.0000 0.445625
\(988\) 0 0
\(989\) 6.00000 0.190789
\(990\) 0 0
\(991\) 25.8848 44.8337i 0.822257 1.42419i −0.0817407 0.996654i \(-0.526048\pi\)
0.903998 0.427537i \(-0.140619\pi\)
\(992\) 0 0
\(993\) 6.15685 10.6640i 0.195382 0.338411i
\(994\) 0 0
\(995\) −17.4558 −0.553387
\(996\) 0 0
\(997\) −25.9142 44.8847i −0.820711 1.42151i −0.905153 0.425085i \(-0.860244\pi\)
0.0844419 0.996428i \(-0.473089\pi\)
\(998\) 0 0
\(999\) 11.8284 0.374235
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.q.i.961.1 yes 4
4.3 odd 2 1824.2.q.j.961.1 yes 4
19.7 even 3 inner 1824.2.q.i.577.1 4
76.7 odd 6 1824.2.q.j.577.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.q.i.577.1 4 19.7 even 3 inner
1824.2.q.i.961.1 yes 4 1.1 even 1 trivial
1824.2.q.j.577.1 yes 4 76.7 odd 6
1824.2.q.j.961.1 yes 4 4.3 odd 2