Properties

Label 1824.2.q
Level $1824$
Weight $2$
Character orbit 1824.q
Rep. character $\chi_{1824}(577,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $80$
Newform subspaces $18$
Sturm bound $640$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 18 \)
Sturm bound: \(640\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(7\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1824, [\chi])\).

Total New Old
Modular forms 672 80 592
Cusp forms 608 80 528
Eisenstein series 64 0 64

Trace form

\( 80 q - 40 q^{9} - 8 q^{13} - 8 q^{21} - 40 q^{25} + 16 q^{37} + 16 q^{41} + 64 q^{49} + 16 q^{53} + 8 q^{57} + 8 q^{61} + 64 q^{65} - 8 q^{73} - 128 q^{77} - 40 q^{81} + 64 q^{85} + 32 q^{89} - 40 q^{93}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1824, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1824.2.q.a 1824.q 19.c $2$ $14.565$ \(\Q(\sqrt{-3}) \) None 1824.2.q.a \(0\) \(-1\) \(-4\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+(-4+4\zeta_{6})q^{5}-q^{7}+\cdots\)
1824.2.q.b 1824.q 19.c $2$ $14.565$ \(\Q(\sqrt{-3}) \) None 1824.2.q.b \(0\) \(-1\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+(-2+2\zeta_{6})q^{5}+q^{7}+\cdots\)
1824.2.q.c 1824.q 19.c $2$ $14.565$ \(\Q(\sqrt{-3}) \) None 1824.2.q.c \(0\) \(-1\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+(-2+2\zeta_{6})q^{5}+q^{7}+\cdots\)
1824.2.q.d 1824.q 19.c $2$ $14.565$ \(\Q(\sqrt{-3}) \) None 1824.2.q.d \(0\) \(-1\) \(0\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+3q^{7}-\zeta_{6}q^{9}-6q^{11}+\cdots\)
1824.2.q.e 1824.q 19.c $2$ $14.565$ \(\Q(\sqrt{-3}) \) None 1824.2.q.a \(0\) \(1\) \(-4\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}+(-4+4\zeta_{6})q^{5}+q^{7}+\cdots\)
1824.2.q.f 1824.q 19.c $2$ $14.565$ \(\Q(\sqrt{-3}) \) None 1824.2.q.b \(0\) \(1\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}+(-2+2\zeta_{6})q^{5}-q^{7}+\cdots\)
1824.2.q.g 1824.q 19.c $2$ $14.565$ \(\Q(\sqrt{-3}) \) None 1824.2.q.c \(0\) \(1\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}+(-2+2\zeta_{6})q^{5}-q^{7}+\cdots\)
1824.2.q.h 1824.q 19.c $2$ $14.565$ \(\Q(\sqrt{-3}) \) None 1824.2.q.d \(0\) \(1\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}-3q^{7}-\zeta_{6}q^{9}+6q^{11}+\cdots\)
1824.2.q.i 1824.q 19.c $4$ $14.565$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 1824.2.q.i \(0\) \(-2\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{2})q^{3}+\beta _{1}q^{5}+(-1+\beta _{3})q^{7}+\cdots\)
1824.2.q.j 1824.q 19.c $4$ $14.565$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 1824.2.q.i \(0\) \(2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{2})q^{3}+\beta _{1}q^{5}+(1-\beta _{3})q^{7}+\cdots\)
1824.2.q.k 1824.q 19.c $6$ $14.565$ 6.0.1714608.1 None 1824.2.q.k \(0\) \(-3\) \(0\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{4})q^{3}+(-\beta _{3}+\beta _{5})q^{5}+(1+\cdots)q^{7}+\cdots\)
1824.2.q.l 1824.q 19.c $6$ $14.565$ 6.0.6967728.1 None 1824.2.q.l \(0\) \(-3\) \(4\) \(-10\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{4})q^{3}+(1+\beta _{1}+\beta _{4})q^{5}+\cdots\)
1824.2.q.m 1824.q 19.c $6$ $14.565$ 6.0.591408.1 None 1824.2.q.m \(0\) \(-3\) \(6\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{4})q^{3}+(2-2\beta _{4}+\beta _{5})q^{5}+\cdots\)
1824.2.q.n 1824.q 19.c $6$ $14.565$ 6.0.1714608.1 None 1824.2.q.k \(0\) \(3\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{4})q^{3}+(-\beta _{3}+\beta _{5})q^{5}+(-1+\cdots)q^{7}+\cdots\)
1824.2.q.o 1824.q 19.c $6$ $14.565$ 6.0.6967728.1 None 1824.2.q.l \(0\) \(3\) \(4\) \(10\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{4})q^{3}+(1+\beta _{1}+\beta _{4})q^{5}+(2+\cdots)q^{7}+\cdots\)
1824.2.q.p 1824.q 19.c $6$ $14.565$ 6.0.591408.1 None 1824.2.q.m \(0\) \(3\) \(6\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{4})q^{3}+(2-2\beta _{4}+\beta _{5})q^{5}+(-1+\cdots)q^{7}+\cdots\)
1824.2.q.q 1824.q 19.c $10$ $14.565$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 1824.2.q.q \(0\) \(-5\) \(-2\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{5})q^{3}+(-\beta _{3}+\beta _{9})q^{5}+(1+\cdots)q^{7}+\cdots\)
1824.2.q.r 1824.q 19.c $10$ $14.565$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 1824.2.q.q \(0\) \(5\) \(-2\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{5})q^{3}+(-\beta _{3}+\beta _{9})q^{5}+(-1+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1824, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1824, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(304, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(456, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(608, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(912, [\chi])\)\(^{\oplus 2}\)