Properties

Label 1824.2
Level 1824
Weight 2
Dimension 38324
Nonzero newspaces 36
Sturm bound 368640
Trace bound 49

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 36 \)
Sturm bound: \(368640\)
Trace bound: \(49\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1824))\).

Total New Old
Modular forms 94464 39004 55460
Cusp forms 89857 38324 51533
Eisenstein series 4607 680 3927

Trace form

\( 38324 q - 50 q^{3} - 128 q^{4} - 8 q^{5} - 64 q^{6} - 100 q^{7} - 104 q^{9} - 96 q^{10} - 32 q^{12} - 104 q^{13} + 64 q^{14} - 30 q^{15} - 48 q^{16} + 32 q^{17} - 48 q^{18} - 96 q^{19} + 64 q^{20} - 32 q^{21}+ \cdots - 206 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1824))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1824.2.a \(\chi_{1824}(1, \cdot)\) 1824.2.a.a 1 1
1824.2.a.b 1
1824.2.a.c 1
1824.2.a.d 1
1824.2.a.e 1
1824.2.a.f 1
1824.2.a.g 1
1824.2.a.h 1
1824.2.a.i 1
1824.2.a.j 1
1824.2.a.k 1
1824.2.a.l 1
1824.2.a.m 2
1824.2.a.n 2
1824.2.a.o 2
1824.2.a.p 2
1824.2.a.q 2
1824.2.a.r 2
1824.2.a.s 3
1824.2.a.t 3
1824.2.a.u 3
1824.2.a.v 3
1824.2.d \(\chi_{1824}(191, \cdot)\) 1824.2.d.a 4 1
1824.2.d.b 4
1824.2.d.c 4
1824.2.d.d 4
1824.2.d.e 4
1824.2.d.f 20
1824.2.d.g 32
1824.2.e \(\chi_{1824}(1519, \cdot)\) 1824.2.e.a 40 1
1824.2.f \(\chi_{1824}(1025, \cdot)\) 1824.2.f.a 4 1
1824.2.f.b 4
1824.2.f.c 4
1824.2.f.d 4
1824.2.f.e 16
1824.2.f.f 16
1824.2.f.g 16
1824.2.f.h 16
1824.2.g \(\chi_{1824}(913, \cdot)\) 1824.2.g.a 18 1
1824.2.g.b 18
1824.2.j \(\chi_{1824}(1103, \cdot)\) 1824.2.j.a 4 1
1824.2.j.b 8
1824.2.j.c 12
1824.2.j.d 24
1824.2.j.e 24
1824.2.k \(\chi_{1824}(607, \cdot)\) 1824.2.k.a 20 1
1824.2.k.b 20
1824.2.p \(\chi_{1824}(113, \cdot)\) 1824.2.p.a 12 1
1824.2.p.b 64
1824.2.q \(\chi_{1824}(577, \cdot)\) 1824.2.q.a 2 2
1824.2.q.b 2
1824.2.q.c 2
1824.2.q.d 2
1824.2.q.e 2
1824.2.q.f 2
1824.2.q.g 2
1824.2.q.h 2
1824.2.q.i 4
1824.2.q.j 4
1824.2.q.k 6
1824.2.q.l 6
1824.2.q.m 6
1824.2.q.n 6
1824.2.q.o 6
1824.2.q.p 6
1824.2.q.q 10
1824.2.q.r 10
1824.2.r \(\chi_{1824}(569, \cdot)\) None 0 2
1824.2.u \(\chi_{1824}(457, \cdot)\) None 0 2
1824.2.v \(\chi_{1824}(647, \cdot)\) None 0 2
1824.2.y \(\chi_{1824}(151, \cdot)\) None 0 2
1824.2.bb \(\chi_{1824}(31, \cdot)\) 1824.2.bb.a 40 2
1824.2.bb.b 40
1824.2.bc \(\chi_{1824}(239, \cdot)\) n/a 152 2
1824.2.bd \(\chi_{1824}(977, \cdot)\) n/a 152 2
1824.2.bg \(\chi_{1824}(559, \cdot)\) 1824.2.bg.a 80 2
1824.2.bh \(\chi_{1824}(767, \cdot)\) n/a 160 2
1824.2.bm \(\chi_{1824}(49, \cdot)\) 1824.2.bm.a 80 2
1824.2.bn \(\chi_{1824}(65, \cdot)\) n/a 160 2
1824.2.bq \(\chi_{1824}(229, \cdot)\) n/a 576 4
1824.2.br \(\chi_{1824}(379, \cdot)\) n/a 640 4
1824.2.bs \(\chi_{1824}(419, \cdot)\) n/a 1152 4
1824.2.bt \(\chi_{1824}(341, \cdot)\) n/a 1264 4
1824.2.bw \(\chi_{1824}(289, \cdot)\) n/a 240 6
1824.2.by \(\chi_{1824}(121, \cdot)\) None 0 4
1824.2.bz \(\chi_{1824}(521, \cdot)\) None 0 4
1824.2.cc \(\chi_{1824}(103, \cdot)\) None 0 4
1824.2.cd \(\chi_{1824}(311, \cdot)\) None 0 4
1824.2.ch \(\chi_{1824}(401, \cdot)\) n/a 456 6
1824.2.ci \(\chi_{1824}(529, \cdot)\) n/a 240 6
1824.2.ck \(\chi_{1824}(257, \cdot)\) n/a 480 6
1824.2.cn \(\chi_{1824}(79, \cdot)\) n/a 240 6
1824.2.cp \(\chi_{1824}(479, \cdot)\) n/a 480 6
1824.2.cq \(\chi_{1824}(127, \cdot)\) n/a 240 6
1824.2.cs \(\chi_{1824}(47, \cdot)\) n/a 456 6
1824.2.cu \(\chi_{1824}(221, \cdot)\) n/a 2528 8
1824.2.cv \(\chi_{1824}(11, \cdot)\) n/a 2528 8
1824.2.da \(\chi_{1824}(259, \cdot)\) n/a 1280 8
1824.2.db \(\chi_{1824}(277, \cdot)\) n/a 1280 8
1824.2.dd \(\chi_{1824}(295, \cdot)\) None 0 12
1824.2.df \(\chi_{1824}(23, \cdot)\) None 0 12
1824.2.dg \(\chi_{1824}(25, \cdot)\) None 0 12
1824.2.di \(\chi_{1824}(41, \cdot)\) None 0 12
1824.2.dl \(\chi_{1824}(61, \cdot)\) n/a 3840 24
1824.2.dm \(\chi_{1824}(67, \cdot)\) n/a 3840 24
1824.2.do \(\chi_{1824}(29, \cdot)\) n/a 7584 24
1824.2.dr \(\chi_{1824}(35, \cdot)\) n/a 7584 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1824))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1824)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(114))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(152))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(228))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(304))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(456))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(608))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(912))\)\(^{\oplus 2}\)