Properties

Label 1824.do
Modulus $1824$
Conductor $1824$
Order $72$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(72)) M = H._module chi = DirichletCharacter(H, M([0,27,36,68])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(29,1824)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1824\)
Conductor: \(1824\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(72\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{72})$
Fixed field: Number field defined by a degree 72 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{1824}(29,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{29}{72}\right)\)
\(\chi_{1824}(53,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{59}{72}\right)\)
\(\chi_{1824}(173,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{25}{72}\right)\)
\(\chi_{1824}(269,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{72}\right)\)
\(\chi_{1824}(317,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{53}{72}\right)\)
\(\chi_{1824}(413,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{72}\right)\)
\(\chi_{1824}(485,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{47}{72}\right)\)
\(\chi_{1824}(509,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{72}\right)\)
\(\chi_{1824}(629,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{43}{72}\right)\)
\(\chi_{1824}(725,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{72}\right)\)
\(\chi_{1824}(773,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{71}{72}\right)\)
\(\chi_{1824}(869,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{31}{72}\right)\)
\(\chi_{1824}(941,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{65}{72}\right)\)
\(\chi_{1824}(965,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{72}\right)\)
\(\chi_{1824}(1085,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{61}{72}\right)\)
\(\chi_{1824}(1181,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{37}{72}\right)\)
\(\chi_{1824}(1229,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{72}\right)\)
\(\chi_{1824}(1325,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{49}{72}\right)\)
\(\chi_{1824}(1397,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{72}\right)\)
\(\chi_{1824}(1421,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{41}{72}\right)\)
\(\chi_{1824}(1541,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{72}\right)\)
\(\chi_{1824}(1637,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{55}{72}\right)\)
\(\chi_{1824}(1685,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{35}{72}\right)\)
\(\chi_{1824}(1781,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{67}{72}\right)\)