Properties

Label 1824.2.f.b.1025.1
Level $1824$
Weight $2$
Character 1824.1025
Analytic conductor $14.565$
Analytic rank $0$
Dimension $4$
CM discriminant -228
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(1025,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.1025"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1025.1
Root \(2.13746 + 0.656712i\) of defining polynomial
Character \(\chi\) \(=\) 1824.1025
Dual form 1824.2.f.b.1025.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} -3.00000 q^{9} -2.62685i q^{11} +4.35890i q^{19} -9.55505i q^{23} +5.00000 q^{25} +5.19615i q^{27} -8.54983 q^{29} -8.71780i q^{31} -4.54983 q^{33} -12.5498 q^{41} +4.30136i q^{47} -7.00000 q^{49} -0.549834 q^{53} +7.54983 q^{57} -15.0997 q^{61} +8.71780i q^{67} -16.5498 q^{69} +15.0997 q^{73} -8.66025i q^{75} +3.46410i q^{79} +9.00000 q^{81} -16.4833i q^{83} +14.8087i q^{87} +3.45017 q^{89} -15.0997 q^{93} +7.88054i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{9} + 20 q^{25} - 4 q^{29} + 12 q^{33} - 20 q^{41} - 28 q^{49} + 28 q^{53} - 36 q^{69} + 36 q^{81} + 44 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.73205i − 1.00000i
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) − 2.62685i − 0.792025i −0.918245 0.396012i \(-0.870394\pi\)
0.918245 0.396012i \(-0.129606\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 4.35890i 1.00000i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 9.55505i − 1.99237i −0.0872897 0.996183i \(-0.527821\pi\)
0.0872897 0.996183i \(-0.472179\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) −8.54983 −1.58766 −0.793832 0.608137i \(-0.791917\pi\)
−0.793832 + 0.608137i \(0.791917\pi\)
\(30\) 0 0
\(31\) − 8.71780i − 1.56576i −0.622171 0.782881i \(-0.713749\pi\)
0.622171 0.782881i \(-0.286251\pi\)
\(32\) 0 0
\(33\) −4.54983 −0.792025
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −12.5498 −1.95995 −0.979977 0.199109i \(-0.936195\pi\)
−0.979977 + 0.199109i \(0.936195\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.30136i 0.627417i 0.949519 + 0.313709i \(0.101571\pi\)
−0.949519 + 0.313709i \(0.898429\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.549834 −0.0755256 −0.0377628 0.999287i \(-0.512023\pi\)
−0.0377628 + 0.999287i \(0.512023\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 7.54983 1.00000
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −15.0997 −1.93331 −0.966657 0.256074i \(-0.917571\pi\)
−0.966657 + 0.256074i \(0.917571\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.71780i 1.06505i 0.846415 + 0.532524i \(0.178756\pi\)
−0.846415 + 0.532524i \(0.821244\pi\)
\(68\) 0 0
\(69\) −16.5498 −1.99237
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 15.0997 1.76728 0.883641 0.468165i \(-0.155085\pi\)
0.883641 + 0.468165i \(0.155085\pi\)
\(74\) 0 0
\(75\) − 8.66025i − 1.00000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.46410i 0.389742i 0.980829 + 0.194871i \(0.0624288\pi\)
−0.980829 + 0.194871i \(0.937571\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) − 16.4833i − 1.80927i −0.426185 0.904636i \(-0.640143\pi\)
0.426185 0.904636i \(-0.359857\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 14.8087i 1.58766i
\(88\) 0 0
\(89\) 3.45017 0.365717 0.182858 0.983139i \(-0.441465\pi\)
0.182858 + 0.983139i \(0.441465\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −15.0997 −1.56576
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 7.88054i 0.792025i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) − 10.3923i − 1.02398i −0.858990 0.511992i \(-0.828908\pi\)
0.858990 0.511992i \(-0.171092\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −20.5498 −1.93317 −0.966583 0.256354i \(-0.917479\pi\)
−0.966583 + 0.256354i \(0.917479\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 4.09967 0.372697
\(122\) 0 0
\(123\) 21.7370i 1.95995i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 8.71780i − 0.773579i −0.922168 0.386790i \(-0.873584\pi\)
0.922168 0.386790i \(-0.126416\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.2296i 0.981131i 0.871404 + 0.490566i \(0.163210\pi\)
−0.871404 + 0.490566i \(0.836790\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 7.45017 0.627417
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 12.1244i 1.00000i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 17.3205i 1.40952i 0.709444 + 0.704761i \(0.248946\pi\)
−0.709444 + 0.704761i \(0.751054\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −15.0997 −1.20508 −0.602542 0.798087i \(-0.705846\pi\)
−0.602542 + 0.798087i \(0.705846\pi\)
\(158\) 0 0
\(159\) 0.952341i 0.0755256i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) − 13.0767i − 1.00000i
\(172\) 0 0
\(173\) −24.5498 −1.86649 −0.933245 0.359241i \(-0.883035\pi\)
−0.933245 + 0.359241i \(0.883035\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 26.1534i 1.93331i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 23.4115i − 1.69399i −0.531598 0.846997i \(-0.678408\pi\)
0.531598 0.846997i \(-0.321592\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 15.0997 1.06505
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 28.6652i 1.99237i
\(208\) 0 0
\(209\) 11.4502 0.792025
\(210\) 0 0
\(211\) 8.71780i 0.600158i 0.953914 + 0.300079i \(0.0970130\pi\)
−0.953914 + 0.300079i \(0.902987\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) − 26.1534i − 1.76728i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 24.2487i − 1.62381i −0.583787 0.811907i \(-0.698430\pi\)
0.583787 0.811907i \(-0.301570\pi\)
\(224\) 0 0
\(225\) −15.0000 −1.00000
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 6.00000 0.389742
\(238\) 0 0
\(239\) − 20.0624i − 1.29773i −0.760903 0.648866i \(-0.775244\pi\)
0.760903 0.648866i \(-0.224756\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) − 15.5885i − 1.00000i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −28.5498 −1.80927
\(250\) 0 0
\(251\) − 26.9906i − 1.70363i −0.523839 0.851817i \(-0.675501\pi\)
0.523839 0.851817i \(-0.324499\pi\)
\(252\) 0 0
\(253\) −25.0997 −1.57800
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 21.6495 1.35046 0.675229 0.737608i \(-0.264045\pi\)
0.675229 + 0.737608i \(0.264045\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 25.6495 1.58766
\(262\) 0 0
\(263\) 18.1578i 1.11966i 0.828609 + 0.559828i \(0.189133\pi\)
−0.828609 + 0.559828i \(0.810867\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 5.97586i − 0.365717i
\(268\) 0 0
\(269\) 17.6495 1.07611 0.538055 0.842910i \(-0.319159\pi\)
0.538055 + 0.842910i \(0.319159\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 13.1342i − 0.792025i
\(276\) 0 0
\(277\) 14.0000 0.841178 0.420589 0.907251i \(-0.361823\pi\)
0.420589 + 0.907251i \(0.361823\pi\)
\(278\) 0 0
\(279\) 26.1534i 1.56576i
\(280\) 0 0
\(281\) 29.6495 1.76874 0.884371 0.466786i \(-0.154588\pi\)
0.884371 + 0.466786i \(0.154588\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 15.4502 0.902608 0.451304 0.892370i \(-0.350959\pi\)
0.451304 + 0.892370i \(0.350959\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 13.6495 0.792025
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 3.46410i − 0.197707i −0.995102 0.0988534i \(-0.968483\pi\)
0.995102 0.0988534i \(-0.0315175\pi\)
\(308\) 0 0
\(309\) −18.0000 −1.02398
\(310\) 0 0
\(311\) − 33.9189i − 1.92336i −0.274172 0.961681i \(-0.588404\pi\)
0.274172 0.961681i \(-0.411596\pi\)
\(312\) 0 0
\(313\) 15.0997 0.853484 0.426742 0.904373i \(-0.359661\pi\)
0.426742 + 0.904373i \(0.359661\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 33.6495 1.88994 0.944972 0.327151i \(-0.106088\pi\)
0.944972 + 0.327151i \(0.106088\pi\)
\(318\) 0 0
\(319\) 22.4591i 1.25747i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10.3923i 0.571213i 0.958347 + 0.285606i \(0.0921950\pi\)
−0.958347 + 0.285606i \(0.907805\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 35.5934i 1.93317i
\(340\) 0 0
\(341\) −22.9003 −1.24012
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 30.3397i − 1.62872i −0.580361 0.814359i \(-0.697089\pi\)
0.580361 0.814359i \(-0.302911\pi\)
\(348\) 0 0
\(349\) 22.0000 1.17763 0.588817 0.808267i \(-0.299594\pi\)
0.588817 + 0.808267i \(0.299594\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 6.20604i − 0.327542i −0.986498 0.163771i \(-0.947634\pi\)
0.986498 0.163771i \(-0.0523658\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) − 7.10083i − 0.372697i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 37.6495 1.95995
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 17.3205i − 0.889695i −0.895606 0.444847i \(-0.853258\pi\)
0.895606 0.444847i \(-0.146742\pi\)
\(380\) 0 0
\(381\) −15.0997 −0.773579
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 19.4502 0.981131
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −26.0000 −1.30490 −0.652451 0.757831i \(-0.726259\pi\)
−0.652451 + 0.757831i \(0.726259\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.64950 0.282123 0.141061 0.990001i \(-0.454949\pi\)
0.141061 + 0.990001i \(0.454949\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 40.8471i − 1.99551i −0.0669762 0.997755i \(-0.521335\pi\)
0.0669762 0.997755i \(-0.478665\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) − 12.9041i − 0.627417i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 41.6495 1.99237
\(438\) 0 0
\(439\) − 38.1051i − 1.81866i −0.416078 0.909329i \(-0.636596\pi\)
0.416078 0.909329i \(-0.363404\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) 25.0860i 1.19187i 0.803033 + 0.595935i \(0.203218\pi\)
−0.803033 + 0.595935i \(0.796782\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −36.5498 −1.72489 −0.862447 0.506148i \(-0.831069\pi\)
−0.862447 + 0.506148i \(0.831069\pi\)
\(450\) 0 0
\(451\) 32.9665i 1.55233i
\(452\) 0 0
\(453\) 30.0000 1.40952
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 15.0997 0.706333 0.353166 0.935561i \(-0.385105\pi\)
0.353166 + 0.935561i \(0.385105\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 32.2443i 1.49209i 0.665895 + 0.746045i \(0.268050\pi\)
−0.665895 + 0.746045i \(0.731950\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 26.1534i 1.20508i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 21.7945i 1.00000i
\(476\) 0 0
\(477\) 1.64950 0.0755256
\(478\) 0 0
\(479\) 25.3161i 1.15672i 0.815780 + 0.578362i \(0.196308\pi\)
−0.815780 + 0.578362i \(0.803692\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 43.5890i − 1.97521i −0.156973 0.987603i \(-0.550174\pi\)
0.156973 0.987603i \(-0.449826\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.722166i 0.0325909i 0.999867 + 0.0162954i \(0.00518723\pi\)
−0.999867 + 0.0162954i \(0.994813\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 39.1725i 1.74662i 0.487167 + 0.873309i \(0.338030\pi\)
−0.487167 + 0.873309i \(0.661970\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 22.5167i − 1.00000i
\(508\) 0 0
\(509\) 23.4502 1.03941 0.519705 0.854346i \(-0.326042\pi\)
0.519705 + 0.854346i \(0.326042\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −22.6495 −1.00000
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 11.2990 0.496930
\(518\) 0 0
\(519\) 42.5216i 1.86649i
\(520\) 0 0
\(521\) 45.6495 1.99994 0.999971 0.00767777i \(-0.00244393\pi\)
0.999971 + 0.00767777i \(0.00244393\pi\)
\(522\) 0 0
\(523\) 43.5890i 1.90601i 0.302949 + 0.953007i \(0.402029\pi\)
−0.302949 + 0.953007i \(0.597971\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −68.2990 −2.96952
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18.3879i 0.792025i
\(540\) 0 0
\(541\) −15.0997 −0.649185 −0.324593 0.945854i \(-0.605227\pi\)
−0.324593 + 0.945854i \(0.605227\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 31.1769i − 1.33303i −0.745492 0.666514i \(-0.767786\pi\)
0.745492 0.666514i \(-0.232214\pi\)
\(548\) 0 0
\(549\) 45.2990 1.93331
\(550\) 0 0
\(551\) − 37.2679i − 1.58766i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.35050 −0.0985379 −0.0492690 0.998786i \(-0.515689\pi\)
−0.0492690 + 0.998786i \(0.515689\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) −40.5498 −1.69399
\(574\) 0 0
\(575\) − 47.7753i − 1.99237i
\(576\) 0 0
\(577\) −45.2990 −1.88582 −0.942911 0.333044i \(-0.891924\pi\)
−0.942911 + 0.333044i \(0.891924\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.44433i 0.0598181i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 46.1007i 1.90278i 0.307986 + 0.951391i \(0.400345\pi\)
−0.307986 + 0.951391i \(0.599655\pi\)
\(588\) 0 0
\(589\) 38.0000 1.56576
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) − 26.1534i − 1.06505i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 8.71780i − 0.353845i −0.984225 0.176922i \(-0.943386\pi\)
0.984225 0.176922i \(-0.0566141\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 45.2990 1.82961 0.914805 0.403896i \(-0.132344\pi\)
0.914805 + 0.403896i \(0.132344\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 49.6495 1.99237
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) − 19.8323i − 0.792025i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 15.0997 0.600158
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 27.4502 1.08422 0.542108 0.840309i \(-0.317626\pi\)
0.542108 + 0.840309i \(0.317626\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.4597i 0.450529i 0.974298 + 0.225264i \(0.0723246\pi\)
−0.974298 + 0.225264i \(0.927675\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −45.2990 −1.76728
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 81.6941i 3.16321i
\(668\) 0 0
\(669\) −42.0000 −1.62381
\(670\) 0 0
\(671\) 39.6645i 1.53123i
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 25.9808i 1.00000i
\(676\) 0 0
\(677\) −6.35050 −0.244069 −0.122035 0.992526i \(-0.538942\pi\)
−0.122035 + 0.992526i \(0.538942\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 3.46410i 0.132164i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 45.2990 1.70124 0.850620 0.525781i \(-0.176227\pi\)
0.850620 + 0.525781i \(0.176227\pi\)
\(710\) 0 0
\(711\) − 10.3923i − 0.389742i
\(712\) 0 0
\(713\) −83.2990 −3.11957
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −34.7492 −1.29773
\(718\) 0 0
\(719\) 53.0290i 1.97765i 0.149093 + 0.988823i \(0.452364\pi\)
−0.149093 + 0.988823i \(0.547636\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −42.7492 −1.58766
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −15.0997 −0.557719 −0.278859 0.960332i \(-0.589956\pi\)
−0.278859 + 0.960332i \(0.589956\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 22.9003 0.843545
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 49.4498i 1.80927i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 51.9615i − 1.89610i −0.318117 0.948051i \(-0.603050\pi\)
0.318117 0.948051i \(-0.396950\pi\)
\(752\) 0 0
\(753\) −46.7492 −1.70363
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 46.0000 1.67190 0.835949 0.548807i \(-0.184918\pi\)
0.835949 + 0.548807i \(0.184918\pi\)
\(758\) 0 0
\(759\) 43.4739i 1.57800i
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −45.2990 −1.63352 −0.816762 0.576975i \(-0.804233\pi\)
−0.816762 + 0.576975i \(0.804233\pi\)
\(770\) 0 0
\(771\) − 37.4980i − 1.35046i
\(772\) 0 0
\(773\) −26.7492 −0.962101 −0.481050 0.876693i \(-0.659745\pi\)
−0.481050 + 0.876693i \(0.659745\pi\)
\(774\) 0 0
\(775\) − 43.5890i − 1.56576i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 54.7035i − 1.95995i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) − 44.4262i − 1.58766i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 8.71780i 0.310756i 0.987855 + 0.155378i \(0.0496595\pi\)
−0.987855 + 0.155378i \(0.950340\pi\)
\(788\) 0 0
\(789\) 31.4502 1.11966
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −50.7492 −1.79763 −0.898814 0.438330i \(-0.855570\pi\)
−0.898814 + 0.438330i \(0.855570\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −10.3505 −0.365717
\(802\) 0 0
\(803\) − 39.6645i − 1.39973i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 30.5698i − 1.07611i
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) − 45.0333i − 1.58133i −0.612247 0.790667i \(-0.709734\pi\)
0.612247 0.790667i \(-0.290266\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) −22.7492 −0.792025
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) − 24.2487i − 0.841178i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 45.2990 1.56576
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 44.0997 1.52068
\(842\) 0 0
\(843\) − 51.3544i − 1.76874i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −50.0000 −1.71197 −0.855984 0.517003i \(-0.827048\pi\)
−0.855984 + 0.517003i \(0.827048\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −54.7492 −1.87020 −0.935098 0.354389i \(-0.884689\pi\)
−0.935098 + 0.354389i \(0.884689\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 29.4449i − 1.00000i
\(868\) 0 0
\(869\) 9.09967 0.308685
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) − 26.7605i − 0.902608i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 23.6416i − 0.792025i
\(892\) 0 0
\(893\) −18.7492 −0.627417
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 74.5357i 2.48591i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 43.5890i 1.44735i 0.690142 + 0.723674i \(0.257548\pi\)
−0.690142 + 0.723674i \(0.742452\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −43.2990 −1.43299
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) −6.00000 −0.197707
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 31.1769i 1.02398i
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) − 30.5123i − 1.00000i
\(932\) 0 0
\(933\) −58.7492 −1.92336
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 10.0000 0.326686 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(938\) 0 0
\(939\) − 26.1534i − 0.853484i
\(940\) 0 0
\(941\) −14.3505 −0.467813 −0.233906 0.972259i \(-0.575151\pi\)
−0.233906 + 0.972259i \(0.575151\pi\)
\(942\) 0 0
\(943\) 119.914i 3.90495i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.9424i 1.26546i 0.774374 + 0.632729i \(0.218065\pi\)
−0.774374 + 0.632729i \(0.781935\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) − 58.2826i − 1.88994i
\(952\) 0 0
\(953\) 35.4502 1.14834 0.574172 0.818735i \(-0.305324\pi\)
0.574172 + 0.818735i \(0.305324\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 38.9003 1.25747
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −45.0000 −1.45161
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −14.7492 −0.471868 −0.235934 0.971769i \(-0.575815\pi\)
−0.235934 + 0.971769i \(0.575815\pi\)
\(978\) 0 0
\(979\) − 9.06306i − 0.289657i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) − 8.71780i − 0.276930i −0.990367 0.138465i \(-0.955783\pi\)
0.990367 0.138465i \(-0.0442168\pi\)
\(992\) 0 0
\(993\) 18.0000 0.571213
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 45.2990 1.43463 0.717317 0.696747i \(-0.245370\pi\)
0.717317 + 0.696747i \(0.245370\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.f.b.1025.1 4
3.2 odd 2 1824.2.f.c.1025.2 yes 4
4.3 odd 2 inner 1824.2.f.b.1025.4 yes 4
12.11 even 2 1824.2.f.c.1025.3 yes 4
19.18 odd 2 1824.2.f.c.1025.3 yes 4
57.56 even 2 inner 1824.2.f.b.1025.4 yes 4
76.75 even 2 1824.2.f.c.1025.2 yes 4
228.227 odd 2 CM 1824.2.f.b.1025.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.f.b.1025.1 4 1.1 even 1 trivial
1824.2.f.b.1025.1 4 228.227 odd 2 CM
1824.2.f.b.1025.4 yes 4 4.3 odd 2 inner
1824.2.f.b.1025.4 yes 4 57.56 even 2 inner
1824.2.f.c.1025.2 yes 4 3.2 odd 2
1824.2.f.c.1025.2 yes 4 76.75 even 2
1824.2.f.c.1025.3 yes 4 12.11 even 2
1824.2.f.c.1025.3 yes 4 19.18 odd 2