Properties

Label 1824.2.f.b
Level $1824$
Weight $2$
Character orbit 1824.f
Analytic conductor $14.565$
Analytic rank $0$
Dimension $4$
CM discriminant -228
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(1025,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.1025"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} - 3 q^{9} + (\beta_{3} + \beta_1) q^{11} - \beta_{3} q^{19} + (\beta_{3} - 3 \beta_1) q^{23} + 5 q^{25} + 3 \beta_1 q^{27} + ( - \beta_{2} - 1) q^{29} + 2 \beta_{3} q^{31} + ( - \beta_{2} + 3) q^{33}+ \cdots + ( - 3 \beta_{3} - 3 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{9} + 20 q^{25} - 4 q^{29} + 12 q^{33} - 20 q^{41} - 28 q^{49} + 28 q^{53} - 36 q^{69} + 36 q^{81} + 44 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 4\nu^{2} - 4\nu - 15 ) / 10 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{3} + 2\nu^{2} + 18\nu + 5 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 7 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} + \beta_{2} - \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 9\beta _1 + 9 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{3} + 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1025.1
2.13746 + 0.656712i
−1.63746 1.52274i
−1.63746 + 1.52274i
2.13746 0.656712i
0 1.73205i 0 0 0 0 0 −3.00000 0
1025.2 0 1.73205i 0 0 0 0 0 −3.00000 0
1025.3 0 1.73205i 0 0 0 0 0 −3.00000 0
1025.4 0 1.73205i 0 0 0 0 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
228.b odd 2 1 CM by \(\Q(\sqrt{-57}) \)
4.b odd 2 1 inner
57.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1824.2.f.b 4
3.b odd 2 1 1824.2.f.c yes 4
4.b odd 2 1 inner 1824.2.f.b 4
12.b even 2 1 1824.2.f.c yes 4
19.b odd 2 1 1824.2.f.c yes 4
57.d even 2 1 inner 1824.2.f.b 4
76.d even 2 1 1824.2.f.c yes 4
228.b odd 2 1 CM 1824.2.f.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1824.2.f.b 4 1.a even 1 1 trivial
1824.2.f.b 4 4.b odd 2 1 inner
1824.2.f.b 4 57.d even 2 1 inner
1824.2.f.b 4 228.b odd 2 1 CM
1824.2.f.c yes 4 3.b odd 2 1
1824.2.f.c yes 4 12.b even 2 1
1824.2.f.c yes 4 19.b odd 2 1
1824.2.f.c yes 4 76.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1824, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{29}^{2} + 2T_{29} - 56 \) Copy content Toggle raw display
\( T_{59} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 44T^{2} + 256 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 92T^{2} + 64 \) Copy content Toggle raw display
$29$ \( (T^{2} + 2 T - 56)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 76)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 10 T - 32)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 188T^{2} + 3136 \) Copy content Toggle raw display
$53$ \( (T^{2} - 14 T - 8)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 228)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 76)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} - 228)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 332 T^{2} + 16384 \) Copy content Toggle raw display
$89$ \( (T^{2} - 22 T + 64)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less