Properties

Label 1824.2.d.e.191.3
Level $1824$
Weight $2$
Character 1824.191
Analytic conductor $14.565$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(191,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.3
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1824.191
Dual form 1824.2.d.e.191.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70711 - 0.292893i) q^{3} +1.00000i q^{5} -2.41421i q^{7} +(2.82843 - 1.00000i) q^{9} -5.24264 q^{11} +4.24264 q^{13} +(0.292893 + 1.70711i) q^{15} +1.82843i q^{17} -1.00000i q^{19} +(-0.707107 - 4.12132i) q^{21} +5.65685 q^{23} +4.00000 q^{25} +(4.53553 - 2.53553i) q^{27} -8.00000i q^{29} +8.24264i q^{31} +(-8.94975 + 1.53553i) q^{33} +2.41421 q^{35} +7.07107 q^{37} +(7.24264 - 1.24264i) q^{39} -9.41421i q^{41} -11.2426i q^{43} +(1.00000 + 2.82843i) q^{45} +0.414214 q^{47} +1.17157 q^{49} +(0.535534 + 3.12132i) q^{51} +5.07107i q^{53} -5.24264i q^{55} +(-0.292893 - 1.70711i) q^{57} -12.2426 q^{59} +8.65685 q^{61} +(-2.41421 - 6.82843i) q^{63} +4.24264i q^{65} -3.17157i q^{67} +(9.65685 - 1.65685i) q^{69} +9.41421 q^{71} -13.0000 q^{73} +(6.82843 - 1.17157i) q^{75} +12.6569i q^{77} -8.82843i q^{79} +(7.00000 - 5.65685i) q^{81} -11.6569 q^{83} -1.82843 q^{85} +(-2.34315 - 13.6569i) q^{87} +14.2426i q^{89} -10.2426i q^{91} +(2.41421 + 14.0711i) q^{93} +1.00000 q^{95} +3.75736 q^{97} +(-14.8284 + 5.24264i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{11} + 4 q^{15} + 16 q^{25} + 4 q^{27} - 16 q^{33} + 4 q^{35} + 12 q^{39} + 4 q^{45} - 4 q^{47} + 16 q^{49} - 12 q^{51} - 4 q^{57} - 32 q^{59} + 12 q^{61} - 4 q^{63} + 16 q^{69} + 32 q^{71}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.70711 0.292893i 0.985599 0.169102i
\(4\) 0 0
\(5\) 1.00000i 0.447214i 0.974679 + 0.223607i \(0.0717831\pi\)
−0.974679 + 0.223607i \(0.928217\pi\)
\(6\) 0 0
\(7\) 2.41421i 0.912487i −0.889855 0.456243i \(-0.849195\pi\)
0.889855 0.456243i \(-0.150805\pi\)
\(8\) 0 0
\(9\) 2.82843 1.00000i 0.942809 0.333333i
\(10\) 0 0
\(11\) −5.24264 −1.58072 −0.790358 0.612646i \(-0.790105\pi\)
−0.790358 + 0.612646i \(0.790105\pi\)
\(12\) 0 0
\(13\) 4.24264 1.17670 0.588348 0.808608i \(-0.299778\pi\)
0.588348 + 0.808608i \(0.299778\pi\)
\(14\) 0 0
\(15\) 0.292893 + 1.70711i 0.0756247 + 0.440773i
\(16\) 0 0
\(17\) 1.82843i 0.443459i 0.975108 + 0.221729i \(0.0711701\pi\)
−0.975108 + 0.221729i \(0.928830\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 0 0
\(21\) −0.707107 4.12132i −0.154303 0.899346i
\(22\) 0 0
\(23\) 5.65685 1.17954 0.589768 0.807573i \(-0.299219\pi\)
0.589768 + 0.807573i \(0.299219\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 4.53553 2.53553i 0.872864 0.487964i
\(28\) 0 0
\(29\) 8.00000i 1.48556i −0.669534 0.742781i \(-0.733506\pi\)
0.669534 0.742781i \(-0.266494\pi\)
\(30\) 0 0
\(31\) 8.24264i 1.48042i 0.672375 + 0.740211i \(0.265274\pi\)
−0.672375 + 0.740211i \(0.734726\pi\)
\(32\) 0 0
\(33\) −8.94975 + 1.53553i −1.55795 + 0.267302i
\(34\) 0 0
\(35\) 2.41421 0.408077
\(36\) 0 0
\(37\) 7.07107 1.16248 0.581238 0.813733i \(-0.302568\pi\)
0.581238 + 0.813733i \(0.302568\pi\)
\(38\) 0 0
\(39\) 7.24264 1.24264i 1.15975 0.198982i
\(40\) 0 0
\(41\) 9.41421i 1.47025i −0.677930 0.735127i \(-0.737123\pi\)
0.677930 0.735127i \(-0.262877\pi\)
\(42\) 0 0
\(43\) 11.2426i 1.71449i −0.514912 0.857243i \(-0.672175\pi\)
0.514912 0.857243i \(-0.327825\pi\)
\(44\) 0 0
\(45\) 1.00000 + 2.82843i 0.149071 + 0.421637i
\(46\) 0 0
\(47\) 0.414214 0.0604193 0.0302096 0.999544i \(-0.490383\pi\)
0.0302096 + 0.999544i \(0.490383\pi\)
\(48\) 0 0
\(49\) 1.17157 0.167368
\(50\) 0 0
\(51\) 0.535534 + 3.12132i 0.0749897 + 0.437072i
\(52\) 0 0
\(53\) 5.07107i 0.696565i 0.937390 + 0.348282i \(0.113235\pi\)
−0.937390 + 0.348282i \(0.886765\pi\)
\(54\) 0 0
\(55\) 5.24264i 0.706918i
\(56\) 0 0
\(57\) −0.292893 1.70711i −0.0387947 0.226112i
\(58\) 0 0
\(59\) −12.2426 −1.59386 −0.796928 0.604074i \(-0.793543\pi\)
−0.796928 + 0.604074i \(0.793543\pi\)
\(60\) 0 0
\(61\) 8.65685 1.10840 0.554198 0.832385i \(-0.313025\pi\)
0.554198 + 0.832385i \(0.313025\pi\)
\(62\) 0 0
\(63\) −2.41421 6.82843i −0.304162 0.860301i
\(64\) 0 0
\(65\) 4.24264i 0.526235i
\(66\) 0 0
\(67\) 3.17157i 0.387469i −0.981054 0.193735i \(-0.937940\pi\)
0.981054 0.193735i \(-0.0620601\pi\)
\(68\) 0 0
\(69\) 9.65685 1.65685i 1.16255 0.199462i
\(70\) 0 0
\(71\) 9.41421 1.11726 0.558631 0.829416i \(-0.311327\pi\)
0.558631 + 0.829416i \(0.311327\pi\)
\(72\) 0 0
\(73\) −13.0000 −1.52153 −0.760767 0.649025i \(-0.775177\pi\)
−0.760767 + 0.649025i \(0.775177\pi\)
\(74\) 0 0
\(75\) 6.82843 1.17157i 0.788479 0.135282i
\(76\) 0 0
\(77\) 12.6569i 1.44238i
\(78\) 0 0
\(79\) 8.82843i 0.993276i −0.867958 0.496638i \(-0.834568\pi\)
0.867958 0.496638i \(-0.165432\pi\)
\(80\) 0 0
\(81\) 7.00000 5.65685i 0.777778 0.628539i
\(82\) 0 0
\(83\) −11.6569 −1.27951 −0.639753 0.768581i \(-0.720963\pi\)
−0.639753 + 0.768581i \(0.720963\pi\)
\(84\) 0 0
\(85\) −1.82843 −0.198321
\(86\) 0 0
\(87\) −2.34315 13.6569i −0.251212 1.46417i
\(88\) 0 0
\(89\) 14.2426i 1.50972i 0.655888 + 0.754858i \(0.272294\pi\)
−0.655888 + 0.754858i \(0.727706\pi\)
\(90\) 0 0
\(91\) 10.2426i 1.07372i
\(92\) 0 0
\(93\) 2.41421 + 14.0711i 0.250342 + 1.45910i
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 3.75736 0.381502 0.190751 0.981638i \(-0.438908\pi\)
0.190751 + 0.981638i \(0.438908\pi\)
\(98\) 0 0
\(99\) −14.8284 + 5.24264i −1.49031 + 0.526905i
\(100\) 0 0
\(101\) 2.34315i 0.233152i −0.993182 0.116576i \(-0.962808\pi\)
0.993182 0.116576i \(-0.0371918\pi\)
\(102\) 0 0
\(103\) 1.51472i 0.149250i 0.997212 + 0.0746248i \(0.0237759\pi\)
−0.997212 + 0.0746248i \(0.976224\pi\)
\(104\) 0 0
\(105\) 4.12132 0.707107i 0.402200 0.0690066i
\(106\) 0 0
\(107\) 2.48528 0.240261 0.120131 0.992758i \(-0.461669\pi\)
0.120131 + 0.992758i \(0.461669\pi\)
\(108\) 0 0
\(109\) −0.343146 −0.0328674 −0.0164337 0.999865i \(-0.505231\pi\)
−0.0164337 + 0.999865i \(0.505231\pi\)
\(110\) 0 0
\(111\) 12.0711 2.07107i 1.14574 0.196577i
\(112\) 0 0
\(113\) 11.3137i 1.06430i 0.846649 + 0.532152i \(0.178617\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) 5.65685i 0.527504i
\(116\) 0 0
\(117\) 12.0000 4.24264i 1.10940 0.392232i
\(118\) 0 0
\(119\) 4.41421 0.404650
\(120\) 0 0
\(121\) 16.4853 1.49866
\(122\) 0 0
\(123\) −2.75736 16.0711i −0.248623 1.44908i
\(124\) 0 0
\(125\) 9.00000i 0.804984i
\(126\) 0 0
\(127\) 21.6569i 1.92174i 0.277008 + 0.960868i \(0.410657\pi\)
−0.277008 + 0.960868i \(0.589343\pi\)
\(128\) 0 0
\(129\) −3.29289 19.1924i −0.289923 1.68980i
\(130\) 0 0
\(131\) 9.58579 0.837514 0.418757 0.908098i \(-0.362466\pi\)
0.418757 + 0.908098i \(0.362466\pi\)
\(132\) 0 0
\(133\) −2.41421 −0.209339
\(134\) 0 0
\(135\) 2.53553 + 4.53553i 0.218224 + 0.390357i
\(136\) 0 0
\(137\) 3.82843i 0.327085i 0.986536 + 0.163542i \(0.0522920\pi\)
−0.986536 + 0.163542i \(0.947708\pi\)
\(138\) 0 0
\(139\) 5.58579i 0.473780i 0.971536 + 0.236890i \(0.0761281\pi\)
−0.971536 + 0.236890i \(0.923872\pi\)
\(140\) 0 0
\(141\) 0.707107 0.121320i 0.0595491 0.0102170i
\(142\) 0 0
\(143\) −22.2426 −1.86002
\(144\) 0 0
\(145\) 8.00000 0.664364
\(146\) 0 0
\(147\) 2.00000 0.343146i 0.164957 0.0283022i
\(148\) 0 0
\(149\) 12.3137i 1.00878i 0.863476 + 0.504389i \(0.168282\pi\)
−0.863476 + 0.504389i \(0.831718\pi\)
\(150\) 0 0
\(151\) 22.3848i 1.82165i −0.412796 0.910824i \(-0.635448\pi\)
0.412796 0.910824i \(-0.364552\pi\)
\(152\) 0 0
\(153\) 1.82843 + 5.17157i 0.147820 + 0.418097i
\(154\) 0 0
\(155\) −8.24264 −0.662065
\(156\) 0 0
\(157\) −17.6569 −1.40917 −0.704585 0.709619i \(-0.748867\pi\)
−0.704585 + 0.709619i \(0.748867\pi\)
\(158\) 0 0
\(159\) 1.48528 + 8.65685i 0.117790 + 0.686533i
\(160\) 0 0
\(161\) 13.6569i 1.07631i
\(162\) 0 0
\(163\) 15.3137i 1.19946i 0.800202 + 0.599731i \(0.204726\pi\)
−0.800202 + 0.599731i \(0.795274\pi\)
\(164\) 0 0
\(165\) −1.53553 8.94975i −0.119541 0.696737i
\(166\) 0 0
\(167\) −12.9706 −1.00369 −0.501846 0.864957i \(-0.667346\pi\)
−0.501846 + 0.864957i \(0.667346\pi\)
\(168\) 0 0
\(169\) 5.00000 0.384615
\(170\) 0 0
\(171\) −1.00000 2.82843i −0.0764719 0.216295i
\(172\) 0 0
\(173\) 15.6569i 1.19037i −0.803589 0.595184i \(-0.797079\pi\)
0.803589 0.595184i \(-0.202921\pi\)
\(174\) 0 0
\(175\) 9.65685i 0.729990i
\(176\) 0 0
\(177\) −20.8995 + 3.58579i −1.57090 + 0.269524i
\(178\) 0 0
\(179\) −14.3431 −1.07206 −0.536029 0.844200i \(-0.680076\pi\)
−0.536029 + 0.844200i \(0.680076\pi\)
\(180\) 0 0
\(181\) −18.9706 −1.41007 −0.705035 0.709172i \(-0.749069\pi\)
−0.705035 + 0.709172i \(0.749069\pi\)
\(182\) 0 0
\(183\) 14.7782 2.53553i 1.09243 0.187432i
\(184\) 0 0
\(185\) 7.07107i 0.519875i
\(186\) 0 0
\(187\) 9.58579i 0.700982i
\(188\) 0 0
\(189\) −6.12132 10.9497i −0.445261 0.796477i
\(190\) 0 0
\(191\) 12.4142 0.898261 0.449130 0.893466i \(-0.351734\pi\)
0.449130 + 0.893466i \(0.351734\pi\)
\(192\) 0 0
\(193\) 10.9706 0.789678 0.394839 0.918750i \(-0.370800\pi\)
0.394839 + 0.918750i \(0.370800\pi\)
\(194\) 0 0
\(195\) 1.24264 + 7.24264i 0.0889873 + 0.518656i
\(196\) 0 0
\(197\) 5.17157i 0.368459i 0.982883 + 0.184230i \(0.0589790\pi\)
−0.982883 + 0.184230i \(0.941021\pi\)
\(198\) 0 0
\(199\) 10.0711i 0.713919i 0.934120 + 0.356960i \(0.116187\pi\)
−0.934120 + 0.356960i \(0.883813\pi\)
\(200\) 0 0
\(201\) −0.928932 5.41421i −0.0655218 0.381889i
\(202\) 0 0
\(203\) −19.3137 −1.35556
\(204\) 0 0
\(205\) 9.41421 0.657517
\(206\) 0 0
\(207\) 16.0000 5.65685i 1.11208 0.393179i
\(208\) 0 0
\(209\) 5.24264i 0.362641i
\(210\) 0 0
\(211\) 16.7279i 1.15160i −0.817591 0.575799i \(-0.804691\pi\)
0.817591 0.575799i \(-0.195309\pi\)
\(212\) 0 0
\(213\) 16.0711 2.75736i 1.10117 0.188931i
\(214\) 0 0
\(215\) 11.2426 0.766742
\(216\) 0 0
\(217\) 19.8995 1.35087
\(218\) 0 0
\(219\) −22.1924 + 3.80761i −1.49962 + 0.257295i
\(220\) 0 0
\(221\) 7.75736i 0.521816i
\(222\) 0 0
\(223\) 0.585786i 0.0392272i −0.999808 0.0196136i \(-0.993756\pi\)
0.999808 0.0196136i \(-0.00624360\pi\)
\(224\) 0 0
\(225\) 11.3137 4.00000i 0.754247 0.266667i
\(226\) 0 0
\(227\) −13.0711 −0.867557 −0.433779 0.901019i \(-0.642820\pi\)
−0.433779 + 0.901019i \(0.642820\pi\)
\(228\) 0 0
\(229\) −10.3137 −0.681549 −0.340775 0.940145i \(-0.610689\pi\)
−0.340775 + 0.940145i \(0.610689\pi\)
\(230\) 0 0
\(231\) 3.70711 + 21.6066i 0.243910 + 1.42161i
\(232\) 0 0
\(233\) 27.8284i 1.82310i 0.411188 + 0.911550i \(0.365114\pi\)
−0.411188 + 0.911550i \(0.634886\pi\)
\(234\) 0 0
\(235\) 0.414214i 0.0270203i
\(236\) 0 0
\(237\) −2.58579 15.0711i −0.167965 0.978971i
\(238\) 0 0
\(239\) 21.7279 1.40546 0.702731 0.711455i \(-0.251964\pi\)
0.702731 + 0.711455i \(0.251964\pi\)
\(240\) 0 0
\(241\) −4.24264 −0.273293 −0.136646 0.990620i \(-0.543632\pi\)
−0.136646 + 0.990620i \(0.543632\pi\)
\(242\) 0 0
\(243\) 10.2929 11.7071i 0.660289 0.751011i
\(244\) 0 0
\(245\) 1.17157i 0.0748490i
\(246\) 0 0
\(247\) 4.24264i 0.269953i
\(248\) 0 0
\(249\) −19.8995 + 3.41421i −1.26108 + 0.216367i
\(250\) 0 0
\(251\) −2.55635 −0.161355 −0.0806777 0.996740i \(-0.525708\pi\)
−0.0806777 + 0.996740i \(0.525708\pi\)
\(252\) 0 0
\(253\) −29.6569 −1.86451
\(254\) 0 0
\(255\) −3.12132 + 0.535534i −0.195465 + 0.0335364i
\(256\) 0 0
\(257\) 8.00000i 0.499026i −0.968371 0.249513i \(-0.919729\pi\)
0.968371 0.249513i \(-0.0802706\pi\)
\(258\) 0 0
\(259\) 17.0711i 1.06074i
\(260\) 0 0
\(261\) −8.00000 22.6274i −0.495188 1.40060i
\(262\) 0 0
\(263\) −1.24264 −0.0766245 −0.0383123 0.999266i \(-0.512198\pi\)
−0.0383123 + 0.999266i \(0.512198\pi\)
\(264\) 0 0
\(265\) −5.07107 −0.311513
\(266\) 0 0
\(267\) 4.17157 + 24.3137i 0.255296 + 1.48797i
\(268\) 0 0
\(269\) 4.38478i 0.267345i 0.991026 + 0.133672i \(0.0426769\pi\)
−0.991026 + 0.133672i \(0.957323\pi\)
\(270\) 0 0
\(271\) 1.17157i 0.0711680i −0.999367 0.0355840i \(-0.988671\pi\)
0.999367 0.0355840i \(-0.0113291\pi\)
\(272\) 0 0
\(273\) −3.00000 17.4853i −0.181568 1.05826i
\(274\) 0 0
\(275\) −20.9706 −1.26457
\(276\) 0 0
\(277\) 2.17157 0.130477 0.0652386 0.997870i \(-0.479219\pi\)
0.0652386 + 0.997870i \(0.479219\pi\)
\(278\) 0 0
\(279\) 8.24264 + 23.3137i 0.493474 + 1.39576i
\(280\) 0 0
\(281\) 9.31371i 0.555609i 0.960638 + 0.277805i \(0.0896068\pi\)
−0.960638 + 0.277805i \(0.910393\pi\)
\(282\) 0 0
\(283\) 12.8995i 0.766795i 0.923583 + 0.383398i \(0.125246\pi\)
−0.923583 + 0.383398i \(0.874754\pi\)
\(284\) 0 0
\(285\) 1.70711 0.292893i 0.101120 0.0173495i
\(286\) 0 0
\(287\) −22.7279 −1.34159
\(288\) 0 0
\(289\) 13.6569 0.803344
\(290\) 0 0
\(291\) 6.41421 1.10051i 0.376008 0.0645127i
\(292\) 0 0
\(293\) 2.34315i 0.136888i −0.997655 0.0684440i \(-0.978197\pi\)
0.997655 0.0684440i \(-0.0218035\pi\)
\(294\) 0 0
\(295\) 12.2426i 0.712794i
\(296\) 0 0
\(297\) −23.7782 + 13.2929i −1.37975 + 0.771332i
\(298\) 0 0
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) −27.1421 −1.56445
\(302\) 0 0
\(303\) −0.686292 4.00000i −0.0394264 0.229794i
\(304\) 0 0
\(305\) 8.65685i 0.495690i
\(306\) 0 0
\(307\) 10.4853i 0.598427i 0.954186 + 0.299213i \(0.0967242\pi\)
−0.954186 + 0.299213i \(0.903276\pi\)
\(308\) 0 0
\(309\) 0.443651 + 2.58579i 0.0252384 + 0.147100i
\(310\) 0 0
\(311\) 16.7574 0.950223 0.475111 0.879926i \(-0.342408\pi\)
0.475111 + 0.879926i \(0.342408\pi\)
\(312\) 0 0
\(313\) −1.65685 −0.0936509 −0.0468255 0.998903i \(-0.514910\pi\)
−0.0468255 + 0.998903i \(0.514910\pi\)
\(314\) 0 0
\(315\) 6.82843 2.41421i 0.384738 0.136026i
\(316\) 0 0
\(317\) 15.8995i 0.893005i 0.894782 + 0.446502i \(0.147331\pi\)
−0.894782 + 0.446502i \(0.852669\pi\)
\(318\) 0 0
\(319\) 41.9411i 2.34825i
\(320\) 0 0
\(321\) 4.24264 0.727922i 0.236801 0.0406286i
\(322\) 0 0
\(323\) 1.82843 0.101736
\(324\) 0 0
\(325\) 16.9706 0.941357
\(326\) 0 0
\(327\) −0.585786 + 0.100505i −0.0323941 + 0.00555794i
\(328\) 0 0
\(329\) 1.00000i 0.0551318i
\(330\) 0 0
\(331\) 12.1421i 0.667392i 0.942681 + 0.333696i \(0.108296\pi\)
−0.942681 + 0.333696i \(0.891704\pi\)
\(332\) 0 0
\(333\) 20.0000 7.07107i 1.09599 0.387492i
\(334\) 0 0
\(335\) 3.17157 0.173282
\(336\) 0 0
\(337\) −7.55635 −0.411621 −0.205810 0.978592i \(-0.565983\pi\)
−0.205810 + 0.978592i \(0.565983\pi\)
\(338\) 0 0
\(339\) 3.31371 + 19.3137i 0.179976 + 1.04898i
\(340\) 0 0
\(341\) 43.2132i 2.34013i
\(342\) 0 0
\(343\) 19.7279i 1.06521i
\(344\) 0 0
\(345\) 1.65685 + 9.65685i 0.0892020 + 0.519908i
\(346\) 0 0
\(347\) 12.7574 0.684851 0.342425 0.939545i \(-0.388752\pi\)
0.342425 + 0.939545i \(0.388752\pi\)
\(348\) 0 0
\(349\) 14.3137 0.766195 0.383098 0.923708i \(-0.374857\pi\)
0.383098 + 0.923708i \(0.374857\pi\)
\(350\) 0 0
\(351\) 19.2426 10.7574i 1.02710 0.574185i
\(352\) 0 0
\(353\) 29.4558i 1.56778i −0.620902 0.783888i \(-0.713234\pi\)
0.620902 0.783888i \(-0.286766\pi\)
\(354\) 0 0
\(355\) 9.41421i 0.499655i
\(356\) 0 0
\(357\) 7.53553 1.29289i 0.398823 0.0684272i
\(358\) 0 0
\(359\) −14.5563 −0.768255 −0.384127 0.923280i \(-0.625498\pi\)
−0.384127 + 0.923280i \(0.625498\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) 28.1421 4.82843i 1.47708 0.253427i
\(364\) 0 0
\(365\) 13.0000i 0.680451i
\(366\) 0 0
\(367\) 15.5147i 0.809862i 0.914347 + 0.404931i \(0.132704\pi\)
−0.914347 + 0.404931i \(0.867296\pi\)
\(368\) 0 0
\(369\) −9.41421 26.6274i −0.490084 1.38617i
\(370\) 0 0
\(371\) 12.2426 0.635606
\(372\) 0 0
\(373\) −19.3137 −1.00003 −0.500013 0.866018i \(-0.666671\pi\)
−0.500013 + 0.866018i \(0.666671\pi\)
\(374\) 0 0
\(375\) 2.63604 + 15.3640i 0.136124 + 0.793392i
\(376\) 0 0
\(377\) 33.9411i 1.74806i
\(378\) 0 0
\(379\) 14.4853i 0.744059i 0.928221 + 0.372029i \(0.121338\pi\)
−0.928221 + 0.372029i \(0.878662\pi\)
\(380\) 0 0
\(381\) 6.34315 + 36.9706i 0.324969 + 1.89406i
\(382\) 0 0
\(383\) −0.242641 −0.0123984 −0.00619918 0.999981i \(-0.501973\pi\)
−0.00619918 + 0.999981i \(0.501973\pi\)
\(384\) 0 0
\(385\) −12.6569 −0.645053
\(386\) 0 0
\(387\) −11.2426 31.7990i −0.571496 1.61643i
\(388\) 0 0
\(389\) 7.82843i 0.396917i −0.980109 0.198459i \(-0.936406\pi\)
0.980109 0.198459i \(-0.0635935\pi\)
\(390\) 0 0
\(391\) 10.3431i 0.523075i
\(392\) 0 0
\(393\) 16.3640 2.80761i 0.825453 0.141625i
\(394\) 0 0
\(395\) 8.82843 0.444206
\(396\) 0 0
\(397\) 3.00000 0.150566 0.0752828 0.997162i \(-0.476014\pi\)
0.0752828 + 0.997162i \(0.476014\pi\)
\(398\) 0 0
\(399\) −4.12132 + 0.707107i −0.206324 + 0.0353996i
\(400\) 0 0
\(401\) 1.31371i 0.0656035i 0.999462 + 0.0328017i \(0.0104430\pi\)
−0.999462 + 0.0328017i \(0.989557\pi\)
\(402\) 0 0
\(403\) 34.9706i 1.74201i
\(404\) 0 0
\(405\) 5.65685 + 7.00000i 0.281091 + 0.347833i
\(406\) 0 0
\(407\) −37.0711 −1.83754
\(408\) 0 0
\(409\) −27.4142 −1.35555 −0.677773 0.735271i \(-0.737055\pi\)
−0.677773 + 0.735271i \(0.737055\pi\)
\(410\) 0 0
\(411\) 1.12132 + 6.53553i 0.0553107 + 0.322374i
\(412\) 0 0
\(413\) 29.5563i 1.45437i
\(414\) 0 0
\(415\) 11.6569i 0.572212i
\(416\) 0 0
\(417\) 1.63604 + 9.53553i 0.0801172 + 0.466957i
\(418\) 0 0
\(419\) −24.2843 −1.18636 −0.593182 0.805068i \(-0.702129\pi\)
−0.593182 + 0.805068i \(0.702129\pi\)
\(420\) 0 0
\(421\) −26.2426 −1.27899 −0.639494 0.768796i \(-0.720856\pi\)
−0.639494 + 0.768796i \(0.720856\pi\)
\(422\) 0 0
\(423\) 1.17157 0.414214i 0.0569638 0.0201398i
\(424\) 0 0
\(425\) 7.31371i 0.354767i
\(426\) 0 0
\(427\) 20.8995i 1.01140i
\(428\) 0 0
\(429\) −37.9706 + 6.51472i −1.83324 + 0.314534i
\(430\) 0 0
\(431\) 3.61522 0.174139 0.0870696 0.996202i \(-0.472250\pi\)
0.0870696 + 0.996202i \(0.472250\pi\)
\(432\) 0 0
\(433\) 25.6569 1.23299 0.616495 0.787359i \(-0.288552\pi\)
0.616495 + 0.787359i \(0.288552\pi\)
\(434\) 0 0
\(435\) 13.6569 2.34315i 0.654796 0.112345i
\(436\) 0 0
\(437\) 5.65685i 0.270604i
\(438\) 0 0
\(439\) 32.2843i 1.54084i 0.637534 + 0.770422i \(0.279954\pi\)
−0.637534 + 0.770422i \(0.720046\pi\)
\(440\) 0 0
\(441\) 3.31371 1.17157i 0.157796 0.0557892i
\(442\) 0 0
\(443\) −20.4142 −0.969909 −0.484954 0.874540i \(-0.661164\pi\)
−0.484954 + 0.874540i \(0.661164\pi\)
\(444\) 0 0
\(445\) −14.2426 −0.675166
\(446\) 0 0
\(447\) 3.60660 + 21.0208i 0.170586 + 0.994250i
\(448\) 0 0
\(449\) 4.68629i 0.221160i 0.993867 + 0.110580i \(0.0352708\pi\)
−0.993867 + 0.110580i \(0.964729\pi\)
\(450\) 0 0
\(451\) 49.3553i 2.32405i
\(452\) 0 0
\(453\) −6.55635 38.2132i −0.308044 1.79541i
\(454\) 0 0
\(455\) 10.2426 0.480182
\(456\) 0 0
\(457\) −23.4853 −1.09860 −0.549298 0.835627i \(-0.685105\pi\)
−0.549298 + 0.835627i \(0.685105\pi\)
\(458\) 0 0
\(459\) 4.63604 + 8.29289i 0.216392 + 0.387079i
\(460\) 0 0
\(461\) 8.85786i 0.412552i 0.978494 + 0.206276i \(0.0661345\pi\)
−0.978494 + 0.206276i \(0.933866\pi\)
\(462\) 0 0
\(463\) 7.92893i 0.368489i 0.982880 + 0.184244i \(0.0589838\pi\)
−0.982880 + 0.184244i \(0.941016\pi\)
\(464\) 0 0
\(465\) −14.0711 + 2.41421i −0.652530 + 0.111956i
\(466\) 0 0
\(467\) 23.7279 1.09800 0.548999 0.835823i \(-0.315009\pi\)
0.548999 + 0.835823i \(0.315009\pi\)
\(468\) 0 0
\(469\) −7.65685 −0.353561
\(470\) 0 0
\(471\) −30.1421 + 5.17157i −1.38888 + 0.238293i
\(472\) 0 0
\(473\) 58.9411i 2.71012i
\(474\) 0 0
\(475\) 4.00000i 0.183533i
\(476\) 0 0
\(477\) 5.07107 + 14.3431i 0.232188 + 0.656728i
\(478\) 0 0
\(479\) −20.4853 −0.935996 −0.467998 0.883729i \(-0.655025\pi\)
−0.467998 + 0.883729i \(0.655025\pi\)
\(480\) 0 0
\(481\) 30.0000 1.36788
\(482\) 0 0
\(483\) −4.00000 23.3137i −0.182006 1.06081i
\(484\) 0 0
\(485\) 3.75736i 0.170613i
\(486\) 0 0
\(487\) 8.92893i 0.404609i −0.979323 0.202304i \(-0.935157\pi\)
0.979323 0.202304i \(-0.0648430\pi\)
\(488\) 0 0
\(489\) 4.48528 + 26.1421i 0.202831 + 1.18219i
\(490\) 0 0
\(491\) −14.3431 −0.647297 −0.323649 0.946177i \(-0.604910\pi\)
−0.323649 + 0.946177i \(0.604910\pi\)
\(492\) 0 0
\(493\) 14.6274 0.658786
\(494\) 0 0
\(495\) −5.24264 14.8284i −0.235639 0.666488i
\(496\) 0 0
\(497\) 22.7279i 1.01949i
\(498\) 0 0
\(499\) 39.5269i 1.76947i −0.466097 0.884734i \(-0.654340\pi\)
0.466097 0.884734i \(-0.345660\pi\)
\(500\) 0 0
\(501\) −22.1421 + 3.79899i −0.989238 + 0.169726i
\(502\) 0 0
\(503\) −17.1716 −0.765643 −0.382821 0.923822i \(-0.625048\pi\)
−0.382821 + 0.923822i \(0.625048\pi\)
\(504\) 0 0
\(505\) 2.34315 0.104269
\(506\) 0 0
\(507\) 8.53553 1.46447i 0.379076 0.0650392i
\(508\) 0 0
\(509\) 42.3848i 1.87867i 0.342998 + 0.939336i \(0.388558\pi\)
−0.342998 + 0.939336i \(0.611442\pi\)
\(510\) 0 0
\(511\) 31.3848i 1.38838i
\(512\) 0 0
\(513\) −2.53553 4.53553i −0.111947 0.200249i
\(514\) 0 0
\(515\) −1.51472 −0.0667465
\(516\) 0 0
\(517\) −2.17157 −0.0955057
\(518\) 0 0
\(519\) −4.58579 26.7279i −0.201294 1.17323i
\(520\) 0 0
\(521\) 43.6569i 1.91264i −0.292319 0.956321i \(-0.594427\pi\)
0.292319 0.956321i \(-0.405573\pi\)
\(522\) 0 0
\(523\) 13.7990i 0.603388i −0.953405 0.301694i \(-0.902448\pi\)
0.953405 0.301694i \(-0.0975520\pi\)
\(524\) 0 0
\(525\) −2.82843 16.4853i −0.123443 0.719477i
\(526\) 0 0
\(527\) −15.0711 −0.656506
\(528\) 0 0
\(529\) 9.00000 0.391304
\(530\) 0 0
\(531\) −34.6274 + 12.2426i −1.50270 + 0.531285i
\(532\) 0 0
\(533\) 39.9411i 1.73004i
\(534\) 0 0
\(535\) 2.48528i 0.107448i
\(536\) 0 0
\(537\) −24.4853 + 4.20101i −1.05662 + 0.181287i
\(538\) 0 0
\(539\) −6.14214 −0.264561
\(540\) 0 0
\(541\) −19.3431 −0.831627 −0.415813 0.909450i \(-0.636503\pi\)
−0.415813 + 0.909450i \(0.636503\pi\)
\(542\) 0 0
\(543\) −32.3848 + 5.55635i −1.38976 + 0.238446i
\(544\) 0 0
\(545\) 0.343146i 0.0146987i
\(546\) 0 0
\(547\) 30.9289i 1.32243i 0.750198 + 0.661213i \(0.229958\pi\)
−0.750198 + 0.661213i \(0.770042\pi\)
\(548\) 0 0
\(549\) 24.4853 8.65685i 1.04501 0.369466i
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) −21.3137 −0.906351
\(554\) 0 0
\(555\) 2.07107 + 12.0711i 0.0879119 + 0.512388i
\(556\) 0 0
\(557\) 22.1716i 0.939440i 0.882816 + 0.469720i \(0.155645\pi\)
−0.882816 + 0.469720i \(0.844355\pi\)
\(558\) 0 0
\(559\) 47.6985i 2.01743i
\(560\) 0 0
\(561\) −2.80761 16.3640i −0.118537 0.690887i
\(562\) 0 0
\(563\) −11.2132 −0.472580 −0.236290 0.971683i \(-0.575932\pi\)
−0.236290 + 0.971683i \(0.575932\pi\)
\(564\) 0 0
\(565\) −11.3137 −0.475971
\(566\) 0 0
\(567\) −13.6569 16.8995i −0.573534 0.709712i
\(568\) 0 0
\(569\) 3.07107i 0.128746i −0.997926 0.0643729i \(-0.979495\pi\)
0.997926 0.0643729i \(-0.0205047\pi\)
\(570\) 0 0
\(571\) 29.4558i 1.23269i 0.787477 + 0.616344i \(0.211387\pi\)
−0.787477 + 0.616344i \(0.788613\pi\)
\(572\) 0 0
\(573\) 21.1924 3.63604i 0.885325 0.151898i
\(574\) 0 0
\(575\) 22.6274 0.943629
\(576\) 0 0
\(577\) −29.7696 −1.23932 −0.619661 0.784869i \(-0.712730\pi\)
−0.619661 + 0.784869i \(0.712730\pi\)
\(578\) 0 0
\(579\) 18.7279 3.21320i 0.778306 0.133536i
\(580\) 0 0
\(581\) 28.1421i 1.16753i
\(582\) 0 0
\(583\) 26.5858i 1.10107i
\(584\) 0 0
\(585\) 4.24264 + 12.0000i 0.175412 + 0.496139i
\(586\) 0 0
\(587\) 6.07107 0.250580 0.125290 0.992120i \(-0.460014\pi\)
0.125290 + 0.992120i \(0.460014\pi\)
\(588\) 0 0
\(589\) 8.24264 0.339632
\(590\) 0 0
\(591\) 1.51472 + 8.82843i 0.0623072 + 0.363153i
\(592\) 0 0
\(593\) 18.6863i 0.767354i −0.923467 0.383677i \(-0.874658\pi\)
0.923467 0.383677i \(-0.125342\pi\)
\(594\) 0 0
\(595\) 4.41421i 0.180965i
\(596\) 0 0
\(597\) 2.94975 + 17.1924i 0.120725 + 0.703638i
\(598\) 0 0
\(599\) −1.51472 −0.0618897 −0.0309449 0.999521i \(-0.509852\pi\)
−0.0309449 + 0.999521i \(0.509852\pi\)
\(600\) 0 0
\(601\) −27.8995 −1.13804 −0.569022 0.822322i \(-0.692678\pi\)
−0.569022 + 0.822322i \(0.692678\pi\)
\(602\) 0 0
\(603\) −3.17157 8.97056i −0.129156 0.365310i
\(604\) 0 0
\(605\) 16.4853i 0.670222i
\(606\) 0 0
\(607\) 4.10051i 0.166434i −0.996531 0.0832172i \(-0.973480\pi\)
0.996531 0.0832172i \(-0.0265195\pi\)
\(608\) 0 0
\(609\) −32.9706 + 5.65685i −1.33603 + 0.229227i
\(610\) 0 0
\(611\) 1.75736 0.0710951
\(612\) 0 0
\(613\) −33.2843 −1.34434 −0.672170 0.740397i \(-0.734637\pi\)
−0.672170 + 0.740397i \(0.734637\pi\)
\(614\) 0 0
\(615\) 16.0711 2.75736i 0.648048 0.111187i
\(616\) 0 0
\(617\) 19.8284i 0.798262i 0.916894 + 0.399131i \(0.130688\pi\)
−0.916894 + 0.399131i \(0.869312\pi\)
\(618\) 0 0
\(619\) 39.9411i 1.60537i −0.596404 0.802685i \(-0.703404\pi\)
0.596404 0.802685i \(-0.296596\pi\)
\(620\) 0 0
\(621\) 25.6569 14.3431i 1.02957 0.575571i
\(622\) 0 0
\(623\) 34.3848 1.37760
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 1.53553 + 8.94975i 0.0613233 + 0.357418i
\(628\) 0 0
\(629\) 12.9289i 0.515510i
\(630\) 0 0
\(631\) 17.0416i 0.678417i 0.940711 + 0.339208i \(0.110159\pi\)
−0.940711 + 0.339208i \(0.889841\pi\)
\(632\) 0 0
\(633\) −4.89949 28.5563i −0.194737 1.13501i
\(634\) 0 0
\(635\) −21.6569 −0.859426
\(636\) 0 0
\(637\) 4.97056 0.196941
\(638\) 0 0
\(639\) 26.6274 9.41421i 1.05336 0.372421i
\(640\) 0 0
\(641\) 20.5269i 0.810764i −0.914147 0.405382i \(-0.867138\pi\)
0.914147 0.405382i \(-0.132862\pi\)
\(642\) 0 0
\(643\) 24.0711i 0.949270i −0.880183 0.474635i \(-0.842580\pi\)
0.880183 0.474635i \(-0.157420\pi\)
\(644\) 0 0
\(645\) 19.1924 3.29289i 0.755700 0.129658i
\(646\) 0 0
\(647\) 33.2426 1.30690 0.653452 0.756968i \(-0.273320\pi\)
0.653452 + 0.756968i \(0.273320\pi\)
\(648\) 0 0
\(649\) 64.1838 2.51943
\(650\) 0 0
\(651\) 33.9706 5.82843i 1.33141 0.228434i
\(652\) 0 0
\(653\) 12.6569i 0.495301i 0.968849 + 0.247650i \(0.0796585\pi\)
−0.968849 + 0.247650i \(0.920342\pi\)
\(654\) 0 0
\(655\) 9.58579i 0.374548i
\(656\) 0 0
\(657\) −36.7696 + 13.0000i −1.43452 + 0.507178i
\(658\) 0 0
\(659\) −0.142136 −0.00553682 −0.00276841 0.999996i \(-0.500881\pi\)
−0.00276841 + 0.999996i \(0.500881\pi\)
\(660\) 0 0
\(661\) 36.2843 1.41129 0.705647 0.708563i \(-0.250656\pi\)
0.705647 + 0.708563i \(0.250656\pi\)
\(662\) 0 0
\(663\) 2.27208 + 13.2426i 0.0882402 + 0.514302i
\(664\) 0 0
\(665\) 2.41421i 0.0936192i
\(666\) 0 0
\(667\) 45.2548i 1.75227i
\(668\) 0 0
\(669\) −0.171573 1.00000i −0.00663339 0.0386622i
\(670\) 0 0
\(671\) −45.3848 −1.75206
\(672\) 0 0
\(673\) 5.27208 0.203224 0.101612 0.994824i \(-0.467600\pi\)
0.101612 + 0.994824i \(0.467600\pi\)
\(674\) 0 0
\(675\) 18.1421 10.1421i 0.698291 0.390371i
\(676\) 0 0
\(677\) 9.65685i 0.371143i −0.982631 0.185572i \(-0.940586\pi\)
0.982631 0.185572i \(-0.0594136\pi\)
\(678\) 0 0
\(679\) 9.07107i 0.348116i
\(680\) 0 0
\(681\) −22.3137 + 3.82843i −0.855063 + 0.146706i
\(682\) 0 0
\(683\) 25.3553 0.970195 0.485098 0.874460i \(-0.338784\pi\)
0.485098 + 0.874460i \(0.338784\pi\)
\(684\) 0 0
\(685\) −3.82843 −0.146277
\(686\) 0 0
\(687\) −17.6066 + 3.02082i −0.671734 + 0.115251i
\(688\) 0 0
\(689\) 21.5147i 0.819646i
\(690\) 0 0
\(691\) 12.7574i 0.485313i 0.970112 + 0.242656i \(0.0780188\pi\)
−0.970112 + 0.242656i \(0.921981\pi\)
\(692\) 0 0
\(693\) 12.6569 + 35.7990i 0.480794 + 1.35989i
\(694\) 0 0
\(695\) −5.58579 −0.211881
\(696\) 0 0
\(697\) 17.2132 0.651997
\(698\) 0 0
\(699\) 8.15076 + 47.5061i 0.308290 + 1.79685i
\(700\) 0 0
\(701\) 10.8284i 0.408984i −0.978868 0.204492i \(-0.934446\pi\)
0.978868 0.204492i \(-0.0655542\pi\)
\(702\) 0 0
\(703\) 7.07107i 0.266690i
\(704\) 0 0
\(705\) 0.121320 + 0.707107i 0.00456919 + 0.0266312i
\(706\) 0 0
\(707\) −5.65685 −0.212748
\(708\) 0 0
\(709\) 43.7990 1.64491 0.822453 0.568833i \(-0.192605\pi\)
0.822453 + 0.568833i \(0.192605\pi\)
\(710\) 0 0
\(711\) −8.82843 24.9706i −0.331092 0.936469i
\(712\) 0 0
\(713\) 46.6274i 1.74621i
\(714\) 0 0
\(715\) 22.2426i 0.831828i
\(716\) 0 0
\(717\) 37.0919 6.36396i 1.38522 0.237666i
\(718\) 0 0
\(719\) −4.27208 −0.159322 −0.0796608 0.996822i \(-0.525384\pi\)
−0.0796608 + 0.996822i \(0.525384\pi\)
\(720\) 0 0
\(721\) 3.65685 0.136188
\(722\) 0 0
\(723\) −7.24264 + 1.24264i −0.269357 + 0.0462143i
\(724\) 0 0
\(725\) 32.0000i 1.18845i
\(726\) 0 0
\(727\) 13.9289i 0.516595i −0.966065 0.258298i \(-0.916838\pi\)
0.966065 0.258298i \(-0.0831616\pi\)
\(728\) 0 0
\(729\) 14.1421 23.0000i 0.523783 0.851852i
\(730\) 0 0
\(731\) 20.5563 0.760304
\(732\) 0 0
\(733\) 20.7696 0.767141 0.383570 0.923512i \(-0.374694\pi\)
0.383570 + 0.923512i \(0.374694\pi\)
\(734\) 0 0
\(735\) 0.343146 + 2.00000i 0.0126571 + 0.0737711i
\(736\) 0 0
\(737\) 16.6274i 0.612479i
\(738\) 0 0
\(739\) 32.3553i 1.19021i 0.803648 + 0.595105i \(0.202890\pi\)
−0.803648 + 0.595105i \(0.797110\pi\)
\(740\) 0 0
\(741\) −1.24264 7.24264i −0.0456495 0.266065i
\(742\) 0 0
\(743\) 7.45584 0.273528 0.136764 0.990604i \(-0.456330\pi\)
0.136764 + 0.990604i \(0.456330\pi\)
\(744\) 0 0
\(745\) −12.3137 −0.451139
\(746\) 0 0
\(747\) −32.9706 + 11.6569i −1.20633 + 0.426502i
\(748\) 0 0
\(749\) 6.00000i 0.219235i
\(750\) 0 0
\(751\) 16.9706i 0.619265i 0.950856 + 0.309632i \(0.100206\pi\)
−0.950856 + 0.309632i \(0.899794\pi\)
\(752\) 0 0
\(753\) −4.36396 + 0.748737i −0.159032 + 0.0272855i
\(754\) 0 0
\(755\) 22.3848 0.814665
\(756\) 0 0
\(757\) 38.3137 1.39254 0.696268 0.717782i \(-0.254843\pi\)
0.696268 + 0.717782i \(0.254843\pi\)
\(758\) 0 0
\(759\) −50.6274 + 8.68629i −1.83766 + 0.315292i
\(760\) 0 0
\(761\) 9.48528i 0.343841i 0.985111 + 0.171921i \(0.0549973\pi\)
−0.985111 + 0.171921i \(0.945003\pi\)
\(762\) 0 0
\(763\) 0.828427i 0.0299911i
\(764\) 0 0
\(765\) −5.17157 + 1.82843i −0.186979 + 0.0661069i
\(766\) 0 0
\(767\) −51.9411 −1.87549
\(768\) 0 0
\(769\) 8.17157 0.294674 0.147337 0.989086i \(-0.452930\pi\)
0.147337 + 0.989086i \(0.452930\pi\)
\(770\) 0 0
\(771\) −2.34315 13.6569i −0.0843863 0.491840i
\(772\) 0 0
\(773\) 41.0711i 1.47722i −0.674131 0.738612i \(-0.735482\pi\)
0.674131 0.738612i \(-0.264518\pi\)
\(774\) 0 0
\(775\) 32.9706i 1.18434i
\(776\) 0 0
\(777\) −5.00000 29.1421i −0.179374 1.04547i
\(778\) 0 0
\(779\) −9.41421 −0.337299
\(780\) 0 0
\(781\) −49.3553 −1.76607
\(782\) 0 0
\(783\) −20.2843 36.2843i −0.724901 1.29669i
\(784\) 0 0
\(785\) 17.6569i 0.630200i
\(786\) 0 0
\(787\) 39.3137i 1.40138i 0.713465 + 0.700691i \(0.247125\pi\)
−0.713465 + 0.700691i \(0.752875\pi\)
\(788\) 0 0
\(789\) −2.12132 + 0.363961i −0.0755210 + 0.0129574i
\(790\) 0 0
\(791\) 27.3137 0.971164
\(792\) 0 0
\(793\) 36.7279 1.30425
\(794\) 0 0
\(795\) −8.65685 + 1.48528i −0.307027 + 0.0526775i
\(796\) 0 0
\(797\) 13.3137i 0.471596i 0.971802 + 0.235798i \(0.0757703\pi\)
−0.971802 + 0.235798i \(0.924230\pi\)
\(798\) 0 0
\(799\) 0.757359i 0.0267934i
\(800\) 0 0
\(801\) 14.2426 + 40.2843i 0.503239 + 1.42337i
\(802\) 0 0
\(803\) 68.1543 2.40511
\(804\) 0 0
\(805\) 13.6569 0.481341
\(806\) 0 0
\(807\) 1.28427 + 7.48528i 0.0452085 + 0.263494i
\(808\) 0 0
\(809\) 6.65685i 0.234043i −0.993129 0.117021i \(-0.962665\pi\)
0.993129 0.117021i \(-0.0373346\pi\)
\(810\) 0 0
\(811\) 10.0416i 0.352609i 0.984336 + 0.176305i \(0.0564144\pi\)
−0.984336 + 0.176305i \(0.943586\pi\)
\(812\) 0 0
\(813\) −0.343146 2.00000i −0.0120346 0.0701431i
\(814\) 0 0
\(815\) −15.3137 −0.536416
\(816\) 0 0
\(817\) −11.2426 −0.393330
\(818\) 0 0
\(819\) −10.2426 28.9706i −0.357907 1.01231i
\(820\) 0 0
\(821\) 28.1716i 0.983195i −0.870823 0.491597i \(-0.836413\pi\)
0.870823 0.491597i \(-0.163587\pi\)
\(822\) 0 0
\(823\) 23.1005i 0.805233i −0.915369 0.402616i \(-0.868101\pi\)
0.915369 0.402616i \(-0.131899\pi\)
\(824\) 0 0
\(825\) −35.7990 + 6.14214i −1.24636 + 0.213842i
\(826\) 0 0
\(827\) 46.7696 1.62634 0.813168 0.582029i \(-0.197741\pi\)
0.813168 + 0.582029i \(0.197741\pi\)
\(828\) 0 0
\(829\) −21.6569 −0.752174 −0.376087 0.926584i \(-0.622731\pi\)
−0.376087 + 0.926584i \(0.622731\pi\)
\(830\) 0 0
\(831\) 3.70711 0.636039i 0.128598 0.0220639i
\(832\) 0 0
\(833\) 2.14214i 0.0742206i
\(834\) 0 0
\(835\) 12.9706i 0.448865i
\(836\) 0 0
\(837\) 20.8995 + 37.3848i 0.722392 + 1.29221i
\(838\) 0 0
\(839\) −33.7990 −1.16687 −0.583435 0.812160i \(-0.698292\pi\)
−0.583435 + 0.812160i \(0.698292\pi\)
\(840\) 0 0
\(841\) −35.0000 −1.20690
\(842\) 0 0
\(843\) 2.72792 + 15.8995i 0.0939546 + 0.547608i
\(844\) 0 0
\(845\) 5.00000i 0.172005i
\(846\) 0 0
\(847\) 39.7990i 1.36751i
\(848\) 0 0
\(849\) 3.77817 + 22.0208i 0.129667 + 0.755752i
\(850\) 0 0
\(851\) 40.0000 1.37118
\(852\) 0 0
\(853\) −19.3137 −0.661289 −0.330644 0.943755i \(-0.607266\pi\)
−0.330644 + 0.943755i \(0.607266\pi\)
\(854\) 0 0
\(855\) 2.82843 1.00000i 0.0967302 0.0341993i
\(856\) 0 0
\(857\) 5.07107i 0.173224i 0.996242 + 0.0866122i \(0.0276041\pi\)
−0.996242 + 0.0866122i \(0.972396\pi\)
\(858\) 0 0
\(859\) 27.3848i 0.934357i −0.884163 0.467178i \(-0.845271\pi\)
0.884163 0.467178i \(-0.154729\pi\)
\(860\) 0 0
\(861\) −38.7990 + 6.65685i −1.32227 + 0.226865i
\(862\) 0 0
\(863\) 33.3553 1.13543 0.567714 0.823226i \(-0.307828\pi\)
0.567714 + 0.823226i \(0.307828\pi\)
\(864\) 0 0
\(865\) 15.6569 0.532349
\(866\) 0 0
\(867\) 23.3137 4.00000i 0.791775 0.135847i
\(868\) 0 0
\(869\) 46.2843i 1.57009i
\(870\) 0 0
\(871\) 13.4558i 0.455934i
\(872\) 0 0
\(873\) 10.6274 3.75736i 0.359684 0.127167i
\(874\) 0 0
\(875\) 21.7279 0.734538
\(876\) 0 0
\(877\) 43.6569 1.47419 0.737094 0.675791i \(-0.236198\pi\)
0.737094 + 0.675791i \(0.236198\pi\)
\(878\) 0 0
\(879\) −0.686292 4.00000i −0.0231480 0.134917i
\(880\) 0 0
\(881\) 33.6274i 1.13294i −0.824084 0.566468i \(-0.808309\pi\)
0.824084 0.566468i \(-0.191691\pi\)
\(882\) 0 0
\(883\) 30.8406i 1.03787i −0.854814 0.518935i \(-0.826329\pi\)
0.854814 0.518935i \(-0.173671\pi\)
\(884\) 0 0
\(885\) −3.58579 20.8995i −0.120535 0.702529i
\(886\) 0 0
\(887\) −24.0416 −0.807239 −0.403619 0.914927i \(-0.632248\pi\)
−0.403619 + 0.914927i \(0.632248\pi\)
\(888\) 0 0
\(889\) 52.2843 1.75356
\(890\) 0 0
\(891\) −36.6985 + 29.6569i −1.22945 + 0.993542i
\(892\) 0 0
\(893\) 0.414214i 0.0138611i
\(894\) 0 0
\(895\) 14.3431i 0.479438i
\(896\) 0 0
\(897\) 40.9706 7.02944i 1.36797 0.234706i
\(898\) 0 0
\(899\) 65.9411 2.19926
\(900\) 0 0
\(901\) −9.27208 −0.308898
\(902\) 0 0
\(903\) −46.3345 + 7.94975i −1.54192 + 0.264551i
\(904\) 0 0
\(905\) 18.9706i 0.630603i
\(906\) 0 0
\(907\) 28.0416i 0.931107i 0.885020 + 0.465554i \(0.154145\pi\)
−0.885020 + 0.465554i \(0.845855\pi\)
\(908\) 0 0
\(909\) −2.34315 6.62742i −0.0777172 0.219818i
\(910\) 0 0
\(911\) 5.51472 0.182711 0.0913554 0.995818i \(-0.470880\pi\)
0.0913554 + 0.995818i \(0.470880\pi\)
\(912\) 0 0
\(913\) 61.1127 2.02254
\(914\) 0 0
\(915\) 2.53553 + 14.7782i 0.0838222 + 0.488551i
\(916\) 0 0
\(917\) 23.1421i 0.764221i
\(918\) 0 0
\(919\) 23.5980i 0.778426i 0.921148 + 0.389213i \(0.127253\pi\)
−0.921148 + 0.389213i \(0.872747\pi\)
\(920\) 0 0
\(921\) 3.07107 + 17.8995i 0.101195 + 0.589808i
\(922\) 0 0
\(923\) 39.9411 1.31468
\(924\) 0 0
\(925\) 28.2843 0.929981
\(926\) 0 0
\(927\) 1.51472 + 4.28427i 0.0497499 + 0.140714i
\(928\) 0 0
\(929\) 19.5147i 0.640257i −0.947374 0.320129i \(-0.896274\pi\)
0.947374 0.320129i \(-0.103726\pi\)
\(930\) 0 0
\(931\) 1.17157i 0.0383968i
\(932\) 0 0
\(933\) 28.6066 4.90812i 0.936538 0.160685i
\(934\) 0 0
\(935\) 9.58579 0.313489
\(936\) 0 0
\(937\) −11.1421 −0.363998 −0.181999 0.983299i \(-0.558257\pi\)
−0.181999 + 0.983299i \(0.558257\pi\)
\(938\) 0 0
\(939\) −2.82843 + 0.485281i −0.0923022 + 0.0158366i
\(940\) 0 0
\(941\) 47.6569i 1.55357i −0.629766 0.776785i \(-0.716849\pi\)
0.629766 0.776785i \(-0.283151\pi\)
\(942\) 0 0
\(943\) 53.2548i 1.73422i
\(944\) 0 0
\(945\) 10.9497 6.12132i 0.356195 0.199127i
\(946\) 0 0
\(947\) −32.6863 −1.06216 −0.531081 0.847321i \(-0.678214\pi\)
−0.531081 + 0.847321i \(0.678214\pi\)
\(948\) 0 0
\(949\) −55.1543 −1.79039
\(950\) 0 0
\(951\) 4.65685 + 27.1421i 0.151009 + 0.880144i
\(952\) 0 0
\(953\) 17.3137i 0.560846i 0.959877 + 0.280423i \(0.0904747\pi\)
−0.959877 + 0.280423i \(0.909525\pi\)
\(954\) 0 0
\(955\) 12.4142i 0.401715i
\(956\) 0 0
\(957\) 12.2843 + 71.5980i 0.397094 + 2.31443i
\(958\) 0 0
\(959\) 9.24264 0.298460
\(960\) 0 0
\(961\) −36.9411 −1.19165
\(962\) 0 0
\(963\) 7.02944 2.48528i 0.226520 0.0800871i
\(964\) 0 0
\(965\) 10.9706i 0.353155i
\(966\) 0 0
\(967\) 27.3137i 0.878350i −0.898402 0.439175i \(-0.855271\pi\)
0.898402 0.439175i \(-0.144729\pi\)
\(968\) 0 0
\(969\) 3.12132 0.535534i 0.100271 0.0172038i
\(970\) 0 0
\(971\) 3.02944 0.0972193 0.0486096 0.998818i \(-0.484521\pi\)
0.0486096 + 0.998818i \(0.484521\pi\)
\(972\) 0 0
\(973\) 13.4853 0.432318
\(974\) 0 0
\(975\) 28.9706 4.97056i 0.927801 0.159185i
\(976\) 0 0
\(977\) 45.3553i 1.45105i −0.688198 0.725523i \(-0.741598\pi\)
0.688198 0.725523i \(-0.258402\pi\)
\(978\) 0 0
\(979\) 74.6690i 2.38643i
\(980\) 0 0
\(981\) −0.970563 + 0.343146i −0.0309877 + 0.0109558i
\(982\) 0 0
\(983\) 20.9706 0.668857 0.334429 0.942421i \(-0.391457\pi\)
0.334429 + 0.942421i \(0.391457\pi\)
\(984\) 0 0
\(985\) −5.17157 −0.164780
\(986\) 0 0
\(987\) −0.292893 1.70711i −0.00932289 0.0543378i
\(988\) 0 0
\(989\) 63.5980i 2.02230i
\(990\) 0 0
\(991\) 53.7574i 1.70766i 0.520553 + 0.853829i \(0.325726\pi\)
−0.520553 + 0.853829i \(0.674274\pi\)
\(992\) 0 0
\(993\) 3.55635 + 20.7279i 0.112857 + 0.657781i
\(994\) 0 0
\(995\) −10.0711 −0.319274
\(996\) 0 0
\(997\) −39.6274 −1.25501 −0.627506 0.778611i \(-0.715924\pi\)
−0.627506 + 0.778611i \(0.715924\pi\)
\(998\) 0 0
\(999\) 32.0711 17.9289i 1.01468 0.567246i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.d.e.191.3 yes 4
3.2 odd 2 1824.2.d.b.191.1 4
4.3 odd 2 1824.2.d.b.191.2 yes 4
12.11 even 2 inner 1824.2.d.e.191.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.d.b.191.1 4 3.2 odd 2
1824.2.d.b.191.2 yes 4 4.3 odd 2
1824.2.d.e.191.3 yes 4 1.1 even 1 trivial
1824.2.d.e.191.4 yes 4 12.11 even 2 inner