Properties

Label 1824.2.d.e
Level $1824$
Weight $2$
Character orbit 1824.d
Analytic conductor $14.565$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(191,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.191"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{8}^{2} - \zeta_{8} + 1) q^{3} + \zeta_{8}^{2} q^{5} + (\zeta_{8}^{3} - \zeta_{8}^{2} + \zeta_{8}) q^{7} + (2 \zeta_{8}^{3} - \zeta_{8}^{2} - 2 \zeta_{8}) q^{9} + ( - 3 \zeta_{8}^{3} + 3 \zeta_{8} - 1) q^{11}+ \cdots + ( - 5 \zeta_{8}^{3} + \zeta_{8}^{2} + \cdots - 12) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{11} + 4 q^{15} + 16 q^{25} + 4 q^{27} - 16 q^{33} + 4 q^{35} + 12 q^{39} + 4 q^{45} - 4 q^{47} + 16 q^{49} - 12 q^{51} - 4 q^{57} - 32 q^{59} + 12 q^{61} - 4 q^{63} + 16 q^{69} + 32 q^{71}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
191.1
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0 0.292893 1.70711i 0 1.00000i 0 0.414214i 0 −2.82843 1.00000i 0
191.2 0 0.292893 + 1.70711i 0 1.00000i 0 0.414214i 0 −2.82843 + 1.00000i 0
191.3 0 1.70711 0.292893i 0 1.00000i 0 2.41421i 0 2.82843 1.00000i 0
191.4 0 1.70711 + 0.292893i 0 1.00000i 0 2.41421i 0 2.82843 + 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1824.2.d.e yes 4
3.b odd 2 1 1824.2.d.b 4
4.b odd 2 1 1824.2.d.b 4
12.b even 2 1 inner 1824.2.d.e yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1824.2.d.b 4 3.b odd 2 1
1824.2.d.b 4 4.b odd 2 1
1824.2.d.e yes 4 1.a even 1 1 trivial
1824.2.d.e yes 4 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1824, [\chi])\):

\( T_{5}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 2T_{11} - 17 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 4 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 6T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T^{2} + 2 T - 17)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 18)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 18T^{2} + 49 \) Copy content Toggle raw display
$19$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 68T^{2} + 4 \) Copy content Toggle raw display
$37$ \( (T^{2} - 50)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 132T^{2} + 3844 \) Copy content Toggle raw display
$43$ \( T^{4} + 134T^{2} + 961 \) Copy content Toggle raw display
$47$ \( (T^{2} + 2 T - 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 108T^{2} + 2116 \) Copy content Toggle raw display
$59$ \( (T^{2} + 16 T + 46)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 6 T - 23)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 88T^{2} + 784 \) Copy content Toggle raw display
$71$ \( (T^{2} - 16 T + 62)^{2} \) Copy content Toggle raw display
$73$ \( (T + 13)^{4} \) Copy content Toggle raw display
$79$ \( T^{4} + 88T^{2} + 784 \) Copy content Toggle raw display
$83$ \( (T^{2} + 12 T + 4)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 236T^{2} + 6724 \) Copy content Toggle raw display
$97$ \( (T^{2} - 16 T + 46)^{2} \) Copy content Toggle raw display
show more
show less