Properties

Label 1824.2.bb.b.31.8
Level $1824$
Weight $2$
Character 1824.31
Analytic conductor $14.565$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(31,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.8
Character \(\chi\) \(=\) 1824.31
Dual form 1824.2.bb.b.1471.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +(-0.382920 - 0.663237i) q^{5} +3.54100i q^{7} +(-0.500000 + 0.866025i) q^{9} -4.98498i q^{11} +(-2.08447 - 1.20347i) q^{13} +(0.382920 - 0.663237i) q^{15} +(-2.29338 - 3.97225i) q^{17} +(-3.53104 + 2.55573i) q^{19} +(-3.06659 + 1.77050i) q^{21} +(-5.25150 - 3.03196i) q^{23} +(2.20674 - 3.82219i) q^{25} -1.00000 q^{27} +(-8.74320 - 5.04789i) q^{29} +7.61199 q^{31} +(4.31712 - 2.49249i) q^{33} +(2.34852 - 1.35592i) q^{35} -0.475666i q^{37} -2.40693i q^{39} +(-6.27830 + 3.62478i) q^{41} +(-0.234413 + 0.135339i) q^{43} +0.765841 q^{45} +(10.2613 + 5.92434i) q^{47} -5.53865 q^{49} +(2.29338 - 3.97225i) q^{51} +(6.18663 + 3.57185i) q^{53} +(-3.30622 + 1.90885i) q^{55} +(-3.97885 - 1.78010i) q^{57} +(-5.27481 - 9.13624i) q^{59} +(-1.45406 + 2.51851i) q^{61} +(-3.06659 - 1.77050i) q^{63} +1.84333i q^{65} +(6.84499 - 11.8559i) q^{67} -6.06391i q^{69} +(-1.51989 - 2.63253i) q^{71} +(-4.04820 - 7.01168i) q^{73} +4.41349 q^{75} +17.6518 q^{77} +(4.67819 + 8.10286i) q^{79} +(-0.500000 - 0.866025i) q^{81} -14.4299i q^{83} +(-1.75636 + 3.04211i) q^{85} -10.0958i q^{87} +(-3.70055 - 2.13651i) q^{89} +(4.26147 - 7.38109i) q^{91} +(3.80599 + 6.59217i) q^{93} +(3.04716 + 1.36328i) q^{95} +(-13.1814 + 7.61030i) q^{97} +(4.31712 + 2.49249i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 20 q^{3} - 20 q^{9} - 12 q^{13} - 8 q^{19} - 12 q^{21} - 20 q^{25} - 40 q^{27} + 40 q^{31} + 24 q^{41} + 12 q^{43} - 24 q^{47} - 16 q^{49} - 24 q^{53} - 4 q^{57} - 4 q^{61} - 12 q^{63} - 4 q^{67}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) −0.382920 0.663237i −0.171247 0.296609i 0.767609 0.640918i \(-0.221446\pi\)
−0.938856 + 0.344310i \(0.888113\pi\)
\(6\) 0 0
\(7\) 3.54100i 1.33837i 0.743096 + 0.669185i \(0.233357\pi\)
−0.743096 + 0.669185i \(0.766643\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 4.98498i 1.50303i −0.659718 0.751514i \(-0.729324\pi\)
0.659718 0.751514i \(-0.270676\pi\)
\(12\) 0 0
\(13\) −2.08447 1.20347i −0.578127 0.333782i 0.182262 0.983250i \(-0.441658\pi\)
−0.760389 + 0.649468i \(0.774992\pi\)
\(14\) 0 0
\(15\) 0.382920 0.663237i 0.0988696 0.171247i
\(16\) 0 0
\(17\) −2.29338 3.97225i −0.556226 0.963412i −0.997807 0.0661906i \(-0.978915\pi\)
0.441581 0.897221i \(-0.354418\pi\)
\(18\) 0 0
\(19\) −3.53104 + 2.55573i −0.810076 + 0.586325i
\(20\) 0 0
\(21\) −3.06659 + 1.77050i −0.669185 + 0.386354i
\(22\) 0 0
\(23\) −5.25150 3.03196i −1.09501 0.632207i −0.160107 0.987100i \(-0.551184\pi\)
−0.934907 + 0.354893i \(0.884517\pi\)
\(24\) 0 0
\(25\) 2.20674 3.82219i 0.441349 0.764439i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −8.74320 5.04789i −1.62357 0.937369i −0.985954 0.167016i \(-0.946587\pi\)
−0.637617 0.770353i \(-0.720080\pi\)
\(30\) 0 0
\(31\) 7.61199 1.36715 0.683577 0.729879i \(-0.260424\pi\)
0.683577 + 0.729879i \(0.260424\pi\)
\(32\) 0 0
\(33\) 4.31712 2.49249i 0.751514 0.433887i
\(34\) 0 0
\(35\) 2.34852 1.35592i 0.396973 0.229192i
\(36\) 0 0
\(37\) 0.475666i 0.0781991i −0.999235 0.0390995i \(-0.987551\pi\)
0.999235 0.0390995i \(-0.0124489\pi\)
\(38\) 0 0
\(39\) 2.40693i 0.385418i
\(40\) 0 0
\(41\) −6.27830 + 3.62478i −0.980505 + 0.566095i −0.902423 0.430852i \(-0.858213\pi\)
−0.0780825 + 0.996947i \(0.524880\pi\)
\(42\) 0 0
\(43\) −0.234413 + 0.135339i −0.0357477 + 0.0206389i −0.517767 0.855521i \(-0.673237\pi\)
0.482020 + 0.876160i \(0.339903\pi\)
\(44\) 0 0
\(45\) 0.765841 0.114165
\(46\) 0 0
\(47\) 10.2613 + 5.92434i 1.49676 + 0.864153i 0.999993 0.00373220i \(-0.00118800\pi\)
0.496764 + 0.867885i \(0.334521\pi\)
\(48\) 0 0
\(49\) −5.53865 −0.791236
\(50\) 0 0
\(51\) 2.29338 3.97225i 0.321137 0.556226i
\(52\) 0 0
\(53\) 6.18663 + 3.57185i 0.849799 + 0.490632i 0.860583 0.509310i \(-0.170099\pi\)
−0.0107838 + 0.999942i \(0.503433\pi\)
\(54\) 0 0
\(55\) −3.30622 + 1.90885i −0.445811 + 0.257389i
\(56\) 0 0
\(57\) −3.97885 1.78010i −0.527011 0.235780i
\(58\) 0 0
\(59\) −5.27481 9.13624i −0.686722 1.18944i −0.972892 0.231259i \(-0.925716\pi\)
0.286170 0.958179i \(-0.407618\pi\)
\(60\) 0 0
\(61\) −1.45406 + 2.51851i −0.186174 + 0.322463i −0.943971 0.330027i \(-0.892942\pi\)
0.757798 + 0.652490i \(0.226275\pi\)
\(62\) 0 0
\(63\) −3.06659 1.77050i −0.386354 0.223062i
\(64\) 0 0
\(65\) 1.84333i 0.228637i
\(66\) 0 0
\(67\) 6.84499 11.8559i 0.836249 1.44842i −0.0567613 0.998388i \(-0.518077\pi\)
0.893010 0.450037i \(-0.148589\pi\)
\(68\) 0 0
\(69\) 6.06391i 0.730009i
\(70\) 0 0
\(71\) −1.51989 2.63253i −0.180378 0.312424i 0.761631 0.648011i \(-0.224399\pi\)
−0.942009 + 0.335587i \(0.891065\pi\)
\(72\) 0 0
\(73\) −4.04820 7.01168i −0.473806 0.820655i 0.525745 0.850642i \(-0.323787\pi\)
−0.999550 + 0.0299871i \(0.990453\pi\)
\(74\) 0 0
\(75\) 4.41349 0.509626
\(76\) 0 0
\(77\) 17.6518 2.01161
\(78\) 0 0
\(79\) 4.67819 + 8.10286i 0.526338 + 0.911643i 0.999529 + 0.0306839i \(0.00976852\pi\)
−0.473192 + 0.880960i \(0.656898\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 14.4299i 1.58388i −0.610596 0.791942i \(-0.709070\pi\)
0.610596 0.791942i \(-0.290930\pi\)
\(84\) 0 0
\(85\) −1.75636 + 3.04211i −0.190504 + 0.329963i
\(86\) 0 0
\(87\) 10.0958i 1.08238i
\(88\) 0 0
\(89\) −3.70055 2.13651i −0.392257 0.226470i 0.290881 0.956759i \(-0.406052\pi\)
−0.683138 + 0.730290i \(0.739385\pi\)
\(90\) 0 0
\(91\) 4.26147 7.38109i 0.446724 0.773748i
\(92\) 0 0
\(93\) 3.80599 + 6.59217i 0.394663 + 0.683577i
\(94\) 0 0
\(95\) 3.04716 + 1.36328i 0.312632 + 0.139869i
\(96\) 0 0
\(97\) −13.1814 + 7.61030i −1.33837 + 0.772709i −0.986566 0.163364i \(-0.947765\pi\)
−0.351806 + 0.936073i \(0.614432\pi\)
\(98\) 0 0
\(99\) 4.31712 + 2.49249i 0.433887 + 0.250505i
\(100\) 0 0
\(101\) 5.37611 9.31169i 0.534943 0.926548i −0.464224 0.885718i \(-0.653667\pi\)
0.999166 0.0408297i \(-0.0130001\pi\)
\(102\) 0 0
\(103\) −17.2697 −1.70163 −0.850816 0.525465i \(-0.823892\pi\)
−0.850816 + 0.525465i \(0.823892\pi\)
\(104\) 0 0
\(105\) 2.34852 + 1.35592i 0.229192 + 0.132324i
\(106\) 0 0
\(107\) 8.85989 0.856518 0.428259 0.903656i \(-0.359127\pi\)
0.428259 + 0.903656i \(0.359127\pi\)
\(108\) 0 0
\(109\) −11.7211 + 6.76719i −1.12268 + 0.648180i −0.942084 0.335378i \(-0.891136\pi\)
−0.180596 + 0.983557i \(0.557803\pi\)
\(110\) 0 0
\(111\) 0.411939 0.237833i 0.0390995 0.0225741i
\(112\) 0 0
\(113\) 6.70795i 0.631031i −0.948920 0.315515i \(-0.897823\pi\)
0.948920 0.315515i \(-0.102177\pi\)
\(114\) 0 0
\(115\) 4.64399i 0.433054i
\(116\) 0 0
\(117\) 2.08447 1.20347i 0.192709 0.111261i
\(118\) 0 0
\(119\) 14.0657 8.12085i 1.28940 0.744437i
\(120\) 0 0
\(121\) −13.8500 −1.25909
\(122\) 0 0
\(123\) −6.27830 3.62478i −0.566095 0.326835i
\(124\) 0 0
\(125\) −7.20923 −0.644813
\(126\) 0 0
\(127\) −3.39784 + 5.88524i −0.301510 + 0.522230i −0.976478 0.215616i \(-0.930824\pi\)
0.674968 + 0.737847i \(0.264157\pi\)
\(128\) 0 0
\(129\) −0.234413 0.135339i −0.0206389 0.0119159i
\(130\) 0 0
\(131\) −9.40891 + 5.43224i −0.822060 + 0.474617i −0.851126 0.524961i \(-0.824080\pi\)
0.0290662 + 0.999577i \(0.490747\pi\)
\(132\) 0 0
\(133\) −9.04984 12.5034i −0.784720 1.08418i
\(134\) 0 0
\(135\) 0.382920 + 0.663237i 0.0329565 + 0.0570824i
\(136\) 0 0
\(137\) −8.06122 + 13.9624i −0.688717 + 1.19289i 0.283537 + 0.958961i \(0.408492\pi\)
−0.972253 + 0.233931i \(0.924841\pi\)
\(138\) 0 0
\(139\) 13.1833 + 7.61138i 1.11819 + 0.645589i 0.940939 0.338576i \(-0.109945\pi\)
0.177254 + 0.984165i \(0.443279\pi\)
\(140\) 0 0
\(141\) 11.8487i 0.997838i
\(142\) 0 0
\(143\) −5.99926 + 10.3910i −0.501683 + 0.868941i
\(144\) 0 0
\(145\) 7.73176i 0.642087i
\(146\) 0 0
\(147\) −2.76933 4.79661i −0.228410 0.395618i
\(148\) 0 0
\(149\) 1.73688 + 3.00836i 0.142291 + 0.246455i 0.928359 0.371685i \(-0.121220\pi\)
−0.786068 + 0.618140i \(0.787887\pi\)
\(150\) 0 0
\(151\) 12.5900 1.02456 0.512278 0.858820i \(-0.328802\pi\)
0.512278 + 0.858820i \(0.328802\pi\)
\(152\) 0 0
\(153\) 4.58676 0.370817
\(154\) 0 0
\(155\) −2.91478 5.04855i −0.234121 0.405510i
\(156\) 0 0
\(157\) −7.94583 13.7626i −0.634146 1.09837i −0.986695 0.162580i \(-0.948018\pi\)
0.352549 0.935793i \(-0.385315\pi\)
\(158\) 0 0
\(159\) 7.14371i 0.566533i
\(160\) 0 0
\(161\) 10.7361 18.5956i 0.846127 1.46553i
\(162\) 0 0
\(163\) 17.7591i 1.39100i −0.718527 0.695499i \(-0.755183\pi\)
0.718527 0.695499i \(-0.244817\pi\)
\(164\) 0 0
\(165\) −3.30622 1.90885i −0.257389 0.148604i
\(166\) 0 0
\(167\) −8.67278 + 15.0217i −0.671120 + 1.16241i 0.306467 + 0.951881i \(0.400853\pi\)
−0.977587 + 0.210533i \(0.932480\pi\)
\(168\) 0 0
\(169\) −3.60333 6.24115i −0.277179 0.480089i
\(170\) 0 0
\(171\) −0.447809 4.33584i −0.0342448 0.331570i
\(172\) 0 0
\(173\) −1.01105 + 0.583733i −0.0768691 + 0.0443804i −0.537942 0.842982i \(-0.680798\pi\)
0.461073 + 0.887362i \(0.347465\pi\)
\(174\) 0 0
\(175\) 13.5344 + 7.81407i 1.02310 + 0.590688i
\(176\) 0 0
\(177\) 5.27481 9.13624i 0.396479 0.686722i
\(178\) 0 0
\(179\) −1.89972 −0.141992 −0.0709960 0.997477i \(-0.522618\pi\)
−0.0709960 + 0.997477i \(0.522618\pi\)
\(180\) 0 0
\(181\) −12.9164 7.45728i −0.960068 0.554295i −0.0638737 0.997958i \(-0.520345\pi\)
−0.896194 + 0.443663i \(0.853679\pi\)
\(182\) 0 0
\(183\) −2.90813 −0.214975
\(184\) 0 0
\(185\) −0.315480 + 0.182142i −0.0231945 + 0.0133914i
\(186\) 0 0
\(187\) −19.8016 + 11.4324i −1.44803 + 0.836023i
\(188\) 0 0
\(189\) 3.54100i 0.257570i
\(190\) 0 0
\(191\) 14.7805i 1.06948i 0.845017 + 0.534739i \(0.179590\pi\)
−0.845017 + 0.534739i \(0.820410\pi\)
\(192\) 0 0
\(193\) 22.1644 12.7966i 1.59543 0.921122i 0.603078 0.797682i \(-0.293941\pi\)
0.992352 0.123440i \(-0.0393927\pi\)
\(194\) 0 0
\(195\) −1.59637 + 0.921664i −0.114318 + 0.0660017i
\(196\) 0 0
\(197\) 9.86493 0.702847 0.351424 0.936217i \(-0.385698\pi\)
0.351424 + 0.936217i \(0.385698\pi\)
\(198\) 0 0
\(199\) −1.43983 0.831285i −0.102067 0.0589282i 0.448098 0.893985i \(-0.352102\pi\)
−0.550164 + 0.835056i \(0.685435\pi\)
\(200\) 0 0
\(201\) 13.6900 0.965617
\(202\) 0 0
\(203\) 17.8746 30.9596i 1.25455 2.17294i
\(204\) 0 0
\(205\) 4.80817 + 2.77600i 0.335817 + 0.193884i
\(206\) 0 0
\(207\) 5.25150 3.03196i 0.365005 0.210736i
\(208\) 0 0
\(209\) 12.7403 + 17.6021i 0.881263 + 1.21757i
\(210\) 0 0
\(211\) 9.54849 + 16.5385i 0.657345 + 1.13855i 0.981300 + 0.192483i \(0.0616539\pi\)
−0.323955 + 0.946072i \(0.605013\pi\)
\(212\) 0 0
\(213\) 1.51989 2.63253i 0.104141 0.180378i
\(214\) 0 0
\(215\) 0.179523 + 0.103648i 0.0122434 + 0.00706872i
\(216\) 0 0
\(217\) 26.9540i 1.82976i
\(218\) 0 0
\(219\) 4.04820 7.01168i 0.273552 0.473806i
\(220\) 0 0
\(221\) 11.0400i 0.742633i
\(222\) 0 0
\(223\) −9.09785 15.7579i −0.609237 1.05523i −0.991366 0.131121i \(-0.958142\pi\)
0.382129 0.924109i \(-0.375191\pi\)
\(224\) 0 0
\(225\) 2.20674 + 3.82219i 0.147116 + 0.254813i
\(226\) 0 0
\(227\) −5.83589 −0.387342 −0.193671 0.981067i \(-0.562039\pi\)
−0.193671 + 0.981067i \(0.562039\pi\)
\(228\) 0 0
\(229\) −5.15561 −0.340692 −0.170346 0.985384i \(-0.554489\pi\)
−0.170346 + 0.985384i \(0.554489\pi\)
\(230\) 0 0
\(231\) 8.82589 + 15.2869i 0.580701 + 1.00580i
\(232\) 0 0
\(233\) 4.65031 + 8.05457i 0.304652 + 0.527673i 0.977184 0.212396i \(-0.0681265\pi\)
−0.672532 + 0.740068i \(0.734793\pi\)
\(234\) 0 0
\(235\) 9.07420i 0.591935i
\(236\) 0 0
\(237\) −4.67819 + 8.10286i −0.303881 + 0.526338i
\(238\) 0 0
\(239\) 19.3585i 1.25219i −0.779745 0.626097i \(-0.784651\pi\)
0.779745 0.626097i \(-0.215349\pi\)
\(240\) 0 0
\(241\) −0.322595 0.186250i −0.0207802 0.0119974i 0.489574 0.871962i \(-0.337152\pi\)
−0.510354 + 0.859964i \(0.670486\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 2.12086 + 3.67344i 0.135497 + 0.234688i
\(246\) 0 0
\(247\) 10.4361 1.07785i 0.664031 0.0685818i
\(248\) 0 0
\(249\) 12.4966 7.21494i 0.791942 0.457228i
\(250\) 0 0
\(251\) 14.7418 + 8.51119i 0.930495 + 0.537221i 0.886968 0.461831i \(-0.152807\pi\)
0.0435267 + 0.999052i \(0.486141\pi\)
\(252\) 0 0
\(253\) −15.1142 + 26.1786i −0.950224 + 1.64584i
\(254\) 0 0
\(255\) −3.51273 −0.219975
\(256\) 0 0
\(257\) −22.3631 12.9113i −1.39497 0.805387i −0.401111 0.916029i \(-0.631376\pi\)
−0.993860 + 0.110642i \(0.964709\pi\)
\(258\) 0 0
\(259\) 1.68433 0.104659
\(260\) 0 0
\(261\) 8.74320 5.04789i 0.541190 0.312456i
\(262\) 0 0
\(263\) 5.19782 3.00096i 0.320511 0.185047i −0.331109 0.943592i \(-0.607423\pi\)
0.651621 + 0.758545i \(0.274089\pi\)
\(264\) 0 0
\(265\) 5.47094i 0.336077i
\(266\) 0 0
\(267\) 4.27302i 0.261505i
\(268\) 0 0
\(269\) 18.3179 10.5758i 1.11686 0.644821i 0.176264 0.984343i \(-0.443599\pi\)
0.940598 + 0.339522i \(0.110265\pi\)
\(270\) 0 0
\(271\) −18.6166 + 10.7483i −1.13088 + 0.652912i −0.944155 0.329501i \(-0.893119\pi\)
−0.186721 + 0.982413i \(0.559786\pi\)
\(272\) 0 0
\(273\) 8.52295 0.515832
\(274\) 0 0
\(275\) −19.0535 11.0006i −1.14897 0.663359i
\(276\) 0 0
\(277\) 14.2720 0.857523 0.428761 0.903418i \(-0.358950\pi\)
0.428761 + 0.903418i \(0.358950\pi\)
\(278\) 0 0
\(279\) −3.80599 + 6.59217i −0.227859 + 0.394663i
\(280\) 0 0
\(281\) 11.0259 + 6.36583i 0.657752 + 0.379753i 0.791420 0.611273i \(-0.209342\pi\)
−0.133668 + 0.991026i \(0.542676\pi\)
\(282\) 0 0
\(283\) −22.1454 + 12.7857i −1.31641 + 0.760029i −0.983149 0.182806i \(-0.941482\pi\)
−0.333260 + 0.942835i \(0.608149\pi\)
\(284\) 0 0
\(285\) 0.342951 + 3.32056i 0.0203146 + 0.196693i
\(286\) 0 0
\(287\) −12.8353 22.2314i −0.757645 1.31228i
\(288\) 0 0
\(289\) −2.01918 + 3.49732i −0.118775 + 0.205725i
\(290\) 0 0
\(291\) −13.1814 7.61030i −0.772709 0.446124i
\(292\) 0 0
\(293\) 4.30275i 0.251369i −0.992070 0.125685i \(-0.959887\pi\)
0.992070 0.125685i \(-0.0401128\pi\)
\(294\) 0 0
\(295\) −4.03967 + 6.99691i −0.235198 + 0.407376i
\(296\) 0 0
\(297\) 4.98498i 0.289258i
\(298\) 0 0
\(299\) 7.29772 + 12.6400i 0.422038 + 0.730992i
\(300\) 0 0
\(301\) −0.479233 0.830057i −0.0276226 0.0478437i
\(302\) 0 0
\(303\) 10.7522 0.617699
\(304\) 0 0
\(305\) 2.22716 0.127527
\(306\) 0 0
\(307\) 10.4130 + 18.0358i 0.594301 + 1.02936i 0.993645 + 0.112559i \(0.0359047\pi\)
−0.399344 + 0.916801i \(0.630762\pi\)
\(308\) 0 0
\(309\) −8.63483 14.9560i −0.491219 0.850816i
\(310\) 0 0
\(311\) 16.7501i 0.949810i 0.880037 + 0.474905i \(0.157518\pi\)
−0.880037 + 0.474905i \(0.842482\pi\)
\(312\) 0 0
\(313\) 9.15253 15.8527i 0.517332 0.896045i −0.482466 0.875915i \(-0.660259\pi\)
0.999797 0.0201299i \(-0.00640799\pi\)
\(314\) 0 0
\(315\) 2.71184i 0.152795i
\(316\) 0 0
\(317\) −0.570292 0.329258i −0.0320308 0.0184930i 0.483899 0.875124i \(-0.339220\pi\)
−0.515930 + 0.856631i \(0.672553\pi\)
\(318\) 0 0
\(319\) −25.1636 + 43.5847i −1.40889 + 2.44027i
\(320\) 0 0
\(321\) 4.42995 + 7.67289i 0.247255 + 0.428259i
\(322\) 0 0
\(323\) 18.2500 + 8.16490i 1.01546 + 0.454307i
\(324\) 0 0
\(325\) −9.19977 + 5.31149i −0.510311 + 0.294628i
\(326\) 0 0
\(327\) −11.7211 6.76719i −0.648180 0.374227i
\(328\) 0 0
\(329\) −20.9781 + 36.3351i −1.15656 + 2.00322i
\(330\) 0 0
\(331\) −8.95321 −0.492113 −0.246057 0.969255i \(-0.579135\pi\)
−0.246057 + 0.969255i \(0.579135\pi\)
\(332\) 0 0
\(333\) 0.411939 + 0.237833i 0.0225741 + 0.0130332i
\(334\) 0 0
\(335\) −10.4843 −0.572821
\(336\) 0 0
\(337\) 8.02081 4.63082i 0.436921 0.252257i −0.265369 0.964147i \(-0.585494\pi\)
0.702291 + 0.711890i \(0.252161\pi\)
\(338\) 0 0
\(339\) 5.80925 3.35397i 0.315515 0.182163i
\(340\) 0 0
\(341\) 37.9456i 2.05487i
\(342\) 0 0
\(343\) 5.17462i 0.279403i
\(344\) 0 0
\(345\) −4.02181 + 2.32200i −0.216527 + 0.125012i
\(346\) 0 0
\(347\) −17.0068 + 9.81887i −0.912972 + 0.527104i −0.881386 0.472397i \(-0.843389\pi\)
−0.0315856 + 0.999501i \(0.510056\pi\)
\(348\) 0 0
\(349\) −5.77191 −0.308963 −0.154482 0.987996i \(-0.549371\pi\)
−0.154482 + 0.987996i \(0.549371\pi\)
\(350\) 0 0
\(351\) 2.08447 + 1.20347i 0.111261 + 0.0642363i
\(352\) 0 0
\(353\) −10.3931 −0.553169 −0.276584 0.960990i \(-0.589203\pi\)
−0.276584 + 0.960990i \(0.589203\pi\)
\(354\) 0 0
\(355\) −1.16399 + 2.01610i −0.0617784 + 0.107003i
\(356\) 0 0
\(357\) 14.0657 + 8.12085i 0.744437 + 0.429801i
\(358\) 0 0
\(359\) 4.26980 2.46517i 0.225352 0.130107i −0.383074 0.923718i \(-0.625135\pi\)
0.608426 + 0.793611i \(0.291801\pi\)
\(360\) 0 0
\(361\) 5.93647 18.0488i 0.312446 0.949936i
\(362\) 0 0
\(363\) −6.92500 11.9945i −0.363468 0.629545i
\(364\) 0 0
\(365\) −3.10027 + 5.36983i −0.162276 + 0.281070i
\(366\) 0 0
\(367\) 26.1587 + 15.1027i 1.36547 + 0.788355i 0.990346 0.138619i \(-0.0442662\pi\)
0.375126 + 0.926974i \(0.377600\pi\)
\(368\) 0 0
\(369\) 7.24955i 0.377397i
\(370\) 0 0
\(371\) −12.6479 + 21.9068i −0.656647 + 1.13735i
\(372\) 0 0
\(373\) 11.5519i 0.598137i 0.954232 + 0.299069i \(0.0966759\pi\)
−0.954232 + 0.299069i \(0.903324\pi\)
\(374\) 0 0
\(375\) −3.60462 6.24338i −0.186142 0.322407i
\(376\) 0 0
\(377\) 12.1499 + 21.0443i 0.625754 + 1.08384i
\(378\) 0 0
\(379\) −4.03187 −0.207103 −0.103552 0.994624i \(-0.533021\pi\)
−0.103552 + 0.994624i \(0.533021\pi\)
\(380\) 0 0
\(381\) −6.79569 −0.348154
\(382\) 0 0
\(383\) −5.88659 10.1959i −0.300791 0.520985i 0.675524 0.737338i \(-0.263917\pi\)
−0.976315 + 0.216353i \(0.930584\pi\)
\(384\) 0 0
\(385\) −6.75923 11.7073i −0.344482 0.596661i
\(386\) 0 0
\(387\) 0.270677i 0.0137593i
\(388\) 0 0
\(389\) −1.96964 + 3.41152i −0.0998648 + 0.172971i −0.911629 0.411015i \(-0.865174\pi\)
0.811764 + 0.583986i \(0.198508\pi\)
\(390\) 0 0
\(391\) 27.8137i 1.40660i
\(392\) 0 0
\(393\) −9.40891 5.43224i −0.474617 0.274020i
\(394\) 0 0
\(395\) 3.58275 6.20550i 0.180268 0.312233i
\(396\) 0 0
\(397\) −5.62893 9.74958i −0.282508 0.489318i 0.689494 0.724291i \(-0.257833\pi\)
−0.972002 + 0.234974i \(0.924500\pi\)
\(398\) 0 0
\(399\) 6.30334 14.0891i 0.315562 0.705337i
\(400\) 0 0
\(401\) 4.76362 2.75028i 0.237884 0.137342i −0.376320 0.926490i \(-0.622811\pi\)
0.614204 + 0.789147i \(0.289477\pi\)
\(402\) 0 0
\(403\) −15.8669 9.16078i −0.790388 0.456331i
\(404\) 0 0
\(405\) −0.382920 + 0.663237i −0.0190275 + 0.0329565i
\(406\) 0 0
\(407\) −2.37119 −0.117535
\(408\) 0 0
\(409\) −2.43327 1.40485i −0.120317 0.0694652i 0.438634 0.898666i \(-0.355463\pi\)
−0.558951 + 0.829201i \(0.688796\pi\)
\(410\) 0 0
\(411\) −16.1224 −0.795262
\(412\) 0 0
\(413\) 32.3514 18.6781i 1.59191 0.919089i
\(414\) 0 0
\(415\) −9.57043 + 5.52549i −0.469794 + 0.271236i
\(416\) 0 0
\(417\) 15.2228i 0.745462i
\(418\) 0 0
\(419\) 12.0614i 0.589236i 0.955615 + 0.294618i \(0.0951924\pi\)
−0.955615 + 0.294618i \(0.904808\pi\)
\(420\) 0 0
\(421\) −27.6787 + 15.9803i −1.34898 + 0.778832i −0.988105 0.153783i \(-0.950854\pi\)
−0.360872 + 0.932615i \(0.617521\pi\)
\(422\) 0 0
\(423\) −10.2613 + 5.92434i −0.498919 + 0.288051i
\(424\) 0 0
\(425\) −20.2436 −0.981959
\(426\) 0 0
\(427\) −8.91804 5.14884i −0.431574 0.249170i
\(428\) 0 0
\(429\) −11.9985 −0.579294
\(430\) 0 0
\(431\) −7.77716 + 13.4704i −0.374612 + 0.648848i −0.990269 0.139167i \(-0.955558\pi\)
0.615656 + 0.788015i \(0.288891\pi\)
\(432\) 0 0
\(433\) 13.6152 + 7.86077i 0.654307 + 0.377764i 0.790104 0.612972i \(-0.210026\pi\)
−0.135797 + 0.990737i \(0.543360\pi\)
\(434\) 0 0
\(435\) −6.69590 + 3.86588i −0.321044 + 0.185355i
\(436\) 0 0
\(437\) 26.2921 2.71548i 1.25772 0.129899i
\(438\) 0 0
\(439\) 11.5520 + 20.0086i 0.551346 + 0.954959i 0.998178 + 0.0603409i \(0.0192188\pi\)
−0.446832 + 0.894618i \(0.647448\pi\)
\(440\) 0 0
\(441\) 2.76933 4.79661i 0.131873 0.228410i
\(442\) 0 0
\(443\) −1.52977 0.883216i −0.0726818 0.0419628i 0.463219 0.886244i \(-0.346694\pi\)
−0.535900 + 0.844281i \(0.680028\pi\)
\(444\) 0 0
\(445\) 3.27245i 0.155129i
\(446\) 0 0
\(447\) −1.73688 + 3.00836i −0.0821516 + 0.142291i
\(448\) 0 0
\(449\) 9.28909i 0.438379i −0.975682 0.219190i \(-0.929659\pi\)
0.975682 0.219190i \(-0.0703413\pi\)
\(450\) 0 0
\(451\) 18.0694 + 31.2972i 0.850856 + 1.47373i
\(452\) 0 0
\(453\) 6.29498 + 10.9032i 0.295764 + 0.512278i
\(454\) 0 0
\(455\) −6.52722 −0.306001
\(456\) 0 0
\(457\) 18.6288 0.871417 0.435709 0.900088i \(-0.356498\pi\)
0.435709 + 0.900088i \(0.356498\pi\)
\(458\) 0 0
\(459\) 2.29338 + 3.97225i 0.107046 + 0.185409i
\(460\) 0 0
\(461\) 15.4501 + 26.7604i 0.719585 + 1.24636i 0.961164 + 0.275976i \(0.0890012\pi\)
−0.241580 + 0.970381i \(0.577665\pi\)
\(462\) 0 0
\(463\) 9.51105i 0.442016i −0.975272 0.221008i \(-0.929065\pi\)
0.975272 0.221008i \(-0.0709347\pi\)
\(464\) 0 0
\(465\) 2.91478 5.04855i 0.135170 0.234121i
\(466\) 0 0
\(467\) 21.0377i 0.973511i −0.873538 0.486755i \(-0.838180\pi\)
0.873538 0.486755i \(-0.161820\pi\)
\(468\) 0 0
\(469\) 41.9816 + 24.2381i 1.93853 + 1.11921i
\(470\) 0 0
\(471\) 7.94583 13.7626i 0.366125 0.634146i
\(472\) 0 0
\(473\) 0.674660 + 1.16855i 0.0310209 + 0.0537298i
\(474\) 0 0
\(475\) 1.97640 + 19.1362i 0.0906835 + 0.878027i
\(476\) 0 0
\(477\) −6.18663 + 3.57185i −0.283266 + 0.163544i
\(478\) 0 0
\(479\) 4.85569 + 2.80343i 0.221862 + 0.128092i 0.606812 0.794845i \(-0.292448\pi\)
−0.384950 + 0.922937i \(0.625781\pi\)
\(480\) 0 0
\(481\) −0.572449 + 0.991511i −0.0261014 + 0.0452090i
\(482\) 0 0
\(483\) 21.4723 0.977023
\(484\) 0 0
\(485\) 10.0949 + 5.82828i 0.458385 + 0.264648i
\(486\) 0 0
\(487\) 4.92392 0.223124 0.111562 0.993757i \(-0.464415\pi\)
0.111562 + 0.993757i \(0.464415\pi\)
\(488\) 0 0
\(489\) 15.3798 8.87954i 0.695499 0.401547i
\(490\) 0 0
\(491\) −19.6305 + 11.3336i −0.885910 + 0.511480i −0.872602 0.488431i \(-0.837569\pi\)
−0.0133075 + 0.999911i \(0.504236\pi\)
\(492\) 0 0
\(493\) 46.3069i 2.08556i
\(494\) 0 0
\(495\) 3.81770i 0.171593i
\(496\) 0 0
\(497\) 9.32177 5.38193i 0.418139 0.241412i
\(498\) 0 0
\(499\) 4.67366 2.69834i 0.209222 0.120794i −0.391728 0.920081i \(-0.628123\pi\)
0.600950 + 0.799287i \(0.294789\pi\)
\(500\) 0 0
\(501\) −17.3456 −0.774943
\(502\) 0 0
\(503\) −5.80937 3.35404i −0.259027 0.149549i 0.364864 0.931061i \(-0.381116\pi\)
−0.623891 + 0.781512i \(0.714449\pi\)
\(504\) 0 0
\(505\) −8.23448 −0.366430
\(506\) 0 0
\(507\) 3.60333 6.24115i 0.160030 0.277179i
\(508\) 0 0
\(509\) −15.6116 9.01337i −0.691973 0.399511i 0.112378 0.993666i \(-0.464153\pi\)
−0.804351 + 0.594155i \(0.797487\pi\)
\(510\) 0 0
\(511\) 24.8283 14.3346i 1.09834 0.634127i
\(512\) 0 0
\(513\) 3.53104 2.55573i 0.155899 0.112838i
\(514\) 0 0
\(515\) 6.61291 + 11.4539i 0.291400 + 0.504719i
\(516\) 0 0
\(517\) 29.5327 51.1521i 1.29885 2.24967i
\(518\) 0 0
\(519\) −1.01105 0.583733i −0.0443804 0.0256230i
\(520\) 0 0
\(521\) 2.18624i 0.0957808i −0.998853 0.0478904i \(-0.984750\pi\)
0.998853 0.0478904i \(-0.0152498\pi\)
\(522\) 0 0
\(523\) 1.75609 3.04164i 0.0767884 0.133001i −0.825074 0.565024i \(-0.808867\pi\)
0.901863 + 0.432023i \(0.142200\pi\)
\(524\) 0 0
\(525\) 15.6281i 0.682068i
\(526\) 0 0
\(527\) −17.4572 30.2367i −0.760446 1.31713i
\(528\) 0 0
\(529\) 6.88552 + 11.9261i 0.299371 + 0.518525i
\(530\) 0 0
\(531\) 10.5496 0.457815
\(532\) 0 0
\(533\) 17.4492 0.755809
\(534\) 0 0
\(535\) −3.39263 5.87621i −0.146676 0.254051i
\(536\) 0 0
\(537\) −0.949862 1.64521i −0.0409896 0.0709960i
\(538\) 0 0
\(539\) 27.6101i 1.18925i
\(540\) 0 0
\(541\) 7.40522 12.8262i 0.318375 0.551442i −0.661774 0.749704i \(-0.730196\pi\)
0.980149 + 0.198261i \(0.0635294\pi\)
\(542\) 0 0
\(543\) 14.9146i 0.640045i
\(544\) 0 0
\(545\) 8.97651 + 5.18259i 0.384512 + 0.221998i
\(546\) 0 0
\(547\) 9.33681 16.1718i 0.399213 0.691458i −0.594416 0.804158i \(-0.702617\pi\)
0.993629 + 0.112700i \(0.0359500\pi\)
\(548\) 0 0
\(549\) −1.45406 2.51851i −0.0620579 0.107488i
\(550\) 0 0
\(551\) 43.7736 4.52098i 1.86482 0.192600i
\(552\) 0 0
\(553\) −28.6922 + 16.5655i −1.22012 + 0.704435i
\(554\) 0 0
\(555\) −0.315480 0.182142i −0.0133914 0.00773151i
\(556\) 0 0
\(557\) 9.53546 16.5159i 0.404031 0.699801i −0.590178 0.807273i \(-0.700942\pi\)
0.994208 + 0.107472i \(0.0342756\pi\)
\(558\) 0 0
\(559\) 0.651502 0.0275556
\(560\) 0 0
\(561\) −19.8016 11.4324i −0.836023 0.482678i
\(562\) 0 0
\(563\) 22.4464 0.946004 0.473002 0.881061i \(-0.343170\pi\)
0.473002 + 0.881061i \(0.343170\pi\)
\(564\) 0 0
\(565\) −4.44896 + 2.56861i −0.187169 + 0.108062i
\(566\) 0 0
\(567\) 3.06659 1.77050i 0.128785 0.0743539i
\(568\) 0 0
\(569\) 28.8173i 1.20808i 0.796953 + 0.604041i \(0.206444\pi\)
−0.796953 + 0.604041i \(0.793556\pi\)
\(570\) 0 0
\(571\) 38.0508i 1.59238i −0.605048 0.796189i \(-0.706846\pi\)
0.605048 0.796189i \(-0.293154\pi\)
\(572\) 0 0
\(573\) −12.8003 + 7.39024i −0.534739 + 0.308732i
\(574\) 0 0
\(575\) −23.1774 + 13.3815i −0.966566 + 0.558047i
\(576\) 0 0
\(577\) 30.8624 1.28482 0.642410 0.766361i \(-0.277935\pi\)
0.642410 + 0.766361i \(0.277935\pi\)
\(578\) 0 0
\(579\) 22.1644 + 12.7966i 0.921122 + 0.531810i
\(580\) 0 0
\(581\) 51.0961 2.11982
\(582\) 0 0
\(583\) 17.8056 30.8402i 0.737433 1.27727i
\(584\) 0 0
\(585\) −1.59637 0.921664i −0.0660017 0.0381061i
\(586\) 0 0
\(587\) −8.10606 + 4.68004i −0.334573 + 0.193166i −0.657870 0.753132i \(-0.728542\pi\)
0.323297 + 0.946298i \(0.395209\pi\)
\(588\) 0 0
\(589\) −26.8782 + 19.4542i −1.10750 + 0.801596i
\(590\) 0 0
\(591\) 4.93247 + 8.54328i 0.202895 + 0.351424i
\(592\) 0 0
\(593\) 3.60213 6.23907i 0.147922 0.256208i −0.782537 0.622604i \(-0.786075\pi\)
0.930459 + 0.366396i \(0.119408\pi\)
\(594\) 0 0
\(595\) −10.7721 6.21928i −0.441613 0.254965i
\(596\) 0 0
\(597\) 1.66257i 0.0680445i
\(598\) 0 0
\(599\) −0.462423 + 0.800940i −0.0188941 + 0.0327255i −0.875318 0.483548i \(-0.839348\pi\)
0.856424 + 0.516274i \(0.172681\pi\)
\(600\) 0 0
\(601\) 32.3262i 1.31861i 0.751874 + 0.659307i \(0.229150\pi\)
−0.751874 + 0.659307i \(0.770850\pi\)
\(602\) 0 0
\(603\) 6.84499 + 11.8559i 0.278750 + 0.482808i
\(604\) 0 0
\(605\) 5.30345 + 9.18584i 0.215616 + 0.373457i
\(606\) 0 0
\(607\) −16.2659 −0.660213 −0.330106 0.943944i \(-0.607085\pi\)
−0.330106 + 0.943944i \(0.607085\pi\)
\(608\) 0 0
\(609\) 35.7491 1.44863
\(610\) 0 0
\(611\) −14.2595 24.6982i −0.576877 0.999181i
\(612\) 0 0
\(613\) −22.6606 39.2493i −0.915254 1.58527i −0.806529 0.591194i \(-0.798657\pi\)
−0.108724 0.994072i \(-0.534677\pi\)
\(614\) 0 0
\(615\) 5.55200i 0.223878i
\(616\) 0 0
\(617\) 4.21726 7.30450i 0.169780 0.294068i −0.768562 0.639775i \(-0.779028\pi\)
0.938343 + 0.345707i \(0.112361\pi\)
\(618\) 0 0
\(619\) 5.23372i 0.210361i −0.994453 0.105180i \(-0.966458\pi\)
0.994453 0.105180i \(-0.0335420\pi\)
\(620\) 0 0
\(621\) 5.25150 + 3.03196i 0.210736 + 0.121668i
\(622\) 0 0
\(623\) 7.56538 13.1036i 0.303101 0.524985i
\(624\) 0 0
\(625\) −8.27316 14.3295i −0.330926 0.573181i
\(626\) 0 0
\(627\) −8.87378 + 19.8345i −0.354384 + 0.792112i
\(628\) 0 0
\(629\) −1.88947 + 1.09088i −0.0753379 + 0.0434964i
\(630\) 0 0
\(631\) −29.8529 17.2356i −1.18842 0.686137i −0.230475 0.973078i \(-0.574028\pi\)
−0.957948 + 0.286942i \(0.907361\pi\)
\(632\) 0 0
\(633\) −9.54849 + 16.5385i −0.379518 + 0.657345i
\(634\) 0 0
\(635\) 5.20441 0.206531
\(636\) 0 0
\(637\) 11.5451 + 6.66559i 0.457435 + 0.264100i
\(638\) 0 0
\(639\) 3.03978 0.120252
\(640\) 0 0
\(641\) −21.3314 + 12.3157i −0.842538 + 0.486440i −0.858126 0.513439i \(-0.828371\pi\)
0.0155879 + 0.999879i \(0.495038\pi\)
\(642\) 0 0
\(643\) −35.6236 + 20.5673i −1.40486 + 0.811096i −0.994886 0.101002i \(-0.967795\pi\)
−0.409973 + 0.912098i \(0.634462\pi\)
\(644\) 0 0
\(645\) 0.207296i 0.00816226i
\(646\) 0 0
\(647\) 22.0336i 0.866229i −0.901339 0.433115i \(-0.857415\pi\)
0.901339 0.433115i \(-0.142585\pi\)
\(648\) 0 0
\(649\) −45.5440 + 26.2948i −1.78776 + 1.03216i
\(650\) 0 0
\(651\) −23.3429 + 13.4770i −0.914879 + 0.528206i
\(652\) 0 0
\(653\) −16.3470 −0.639708 −0.319854 0.947467i \(-0.603634\pi\)
−0.319854 + 0.947467i \(0.603634\pi\)
\(654\) 0 0
\(655\) 7.20572 + 4.16023i 0.281551 + 0.162554i
\(656\) 0 0
\(657\) 8.09639 0.315870
\(658\) 0 0
\(659\) −12.9432 + 22.4182i −0.504194 + 0.873290i 0.495794 + 0.868440i \(0.334877\pi\)
−0.999988 + 0.00484954i \(0.998456\pi\)
\(660\) 0 0
\(661\) 22.4003 + 12.9328i 0.871272 + 0.503029i 0.867771 0.496965i \(-0.165552\pi\)
0.00350098 + 0.999994i \(0.498886\pi\)
\(662\) 0 0
\(663\) −9.56095 + 5.52002i −0.371316 + 0.214380i
\(664\) 0 0
\(665\) −4.82735 + 10.7900i −0.187197 + 0.418418i
\(666\) 0 0
\(667\) 30.6100 + 53.0180i 1.18522 + 2.05287i
\(668\) 0 0
\(669\) 9.09785 15.7579i 0.351743 0.609237i
\(670\) 0 0
\(671\) 12.5547 + 7.24848i 0.484670 + 0.279824i
\(672\) 0 0
\(673\) 36.3544i 1.40136i −0.713476 0.700679i \(-0.752880\pi\)
0.713476 0.700679i \(-0.247120\pi\)
\(674\) 0 0
\(675\) −2.20674 + 3.82219i −0.0849376 + 0.147116i
\(676\) 0 0
\(677\) 11.0217i 0.423599i 0.977313 + 0.211800i \(0.0679324\pi\)
−0.977313 + 0.211800i \(0.932068\pi\)
\(678\) 0 0
\(679\) −26.9480 46.6754i −1.03417 1.79124i
\(680\) 0 0
\(681\) −2.91795 5.05403i −0.111816 0.193671i
\(682\) 0 0
\(683\) 14.5509 0.556773 0.278386 0.960469i \(-0.410200\pi\)
0.278386 + 0.960469i \(0.410200\pi\)
\(684\) 0 0
\(685\) 12.3472 0.471763
\(686\) 0 0
\(687\) −2.57781 4.46489i −0.0983494 0.170346i
\(688\) 0 0
\(689\) −8.59722 14.8908i −0.327528 0.567295i
\(690\) 0 0
\(691\) 24.7586i 0.941861i 0.882170 + 0.470931i \(0.156082\pi\)
−0.882170 + 0.470931i \(0.843918\pi\)
\(692\) 0 0
\(693\) −8.82589 + 15.2869i −0.335268 + 0.580701i
\(694\) 0 0
\(695\) 11.6582i 0.442221i
\(696\) 0 0
\(697\) 28.7970 + 16.6260i 1.09077 + 0.629754i
\(698\) 0 0
\(699\) −4.65031 + 8.05457i −0.175891 + 0.304652i
\(700\) 0 0
\(701\) −13.1949 22.8543i −0.498366 0.863196i 0.501632 0.865081i \(-0.332733\pi\)
−0.999998 + 0.00188540i \(0.999400\pi\)
\(702\) 0 0
\(703\) 1.21568 + 1.67960i 0.0458501 + 0.0633472i
\(704\) 0 0
\(705\) 7.85848 4.53710i 0.295968 0.170877i
\(706\) 0 0
\(707\) 32.9727 + 19.0368i 1.24006 + 0.715952i
\(708\) 0 0
\(709\) −8.64831 + 14.9793i −0.324794 + 0.562560i −0.981471 0.191612i \(-0.938628\pi\)
0.656677 + 0.754172i \(0.271962\pi\)
\(710\) 0 0
\(711\) −9.35638 −0.350892
\(712\) 0 0
\(713\) −39.9744 23.0792i −1.49705 0.864323i
\(714\) 0 0
\(715\) 9.18895 0.343647
\(716\) 0 0
\(717\) 16.7649 9.67923i 0.626097 0.361478i
\(718\) 0 0
\(719\) 13.3898 7.73061i 0.499356 0.288303i −0.229092 0.973405i \(-0.573576\pi\)
0.728448 + 0.685102i \(0.240242\pi\)
\(720\) 0 0
\(721\) 61.1518i 2.27741i
\(722\) 0 0
\(723\) 0.372501i 0.0138535i
\(724\) 0 0
\(725\) −38.5880 + 22.2788i −1.43312 + 0.827414i
\(726\) 0 0
\(727\) −5.19985 + 3.00213i −0.192852 + 0.111343i −0.593317 0.804969i \(-0.702182\pi\)
0.400465 + 0.916312i \(0.368849\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 1.07520 + 0.620766i 0.0397676 + 0.0229598i
\(732\) 0 0
\(733\) −15.5147 −0.573048 −0.286524 0.958073i \(-0.592500\pi\)
−0.286524 + 0.958073i \(0.592500\pi\)
\(734\) 0 0
\(735\) −2.12086 + 3.67344i −0.0782292 + 0.135497i
\(736\) 0 0
\(737\) −59.1012 34.1221i −2.17702 1.25690i
\(738\) 0 0
\(739\) 9.81188 5.66489i 0.360936 0.208386i −0.308555 0.951206i \(-0.599846\pi\)
0.669491 + 0.742820i \(0.266512\pi\)
\(740\) 0 0
\(741\) 6.15148 + 8.49898i 0.225980 + 0.312218i
\(742\) 0 0
\(743\) 8.03831 + 13.9228i 0.294897 + 0.510776i 0.974961 0.222376i \(-0.0713814\pi\)
−0.680064 + 0.733153i \(0.738048\pi\)
\(744\) 0 0
\(745\) 1.33017 2.30393i 0.0487338 0.0844093i
\(746\) 0 0
\(747\) 12.4966 + 7.21494i 0.457228 + 0.263981i
\(748\) 0 0
\(749\) 31.3728i 1.14634i
\(750\) 0 0
\(751\) 12.5509 21.7389i 0.457990 0.793263i −0.540864 0.841110i \(-0.681903\pi\)
0.998855 + 0.0478472i \(0.0152361\pi\)
\(752\) 0 0
\(753\) 17.0224i 0.620330i
\(754\) 0 0
\(755\) −4.82095 8.35013i −0.175452 0.303892i
\(756\) 0 0
\(757\) −20.2757 35.1185i −0.736931 1.27640i −0.953871 0.300217i \(-0.902941\pi\)
0.216940 0.976185i \(-0.430392\pi\)
\(758\) 0 0
\(759\) −30.2285 −1.09722
\(760\) 0 0
\(761\) −38.2420 −1.38627 −0.693136 0.720807i \(-0.743771\pi\)
−0.693136 + 0.720807i \(0.743771\pi\)
\(762\) 0 0
\(763\) −23.9626 41.5045i −0.867505 1.50256i
\(764\) 0 0
\(765\) −1.75636 3.04211i −0.0635014 0.109988i
\(766\) 0 0
\(767\) 25.3923i 0.916861i
\(768\) 0 0
\(769\) 22.4975 38.9668i 0.811280 1.40518i −0.100688 0.994918i \(-0.532104\pi\)
0.911968 0.410261i \(-0.134562\pi\)
\(770\) 0 0
\(771\) 25.8227i 0.929981i
\(772\) 0 0
\(773\) −24.3891 14.0810i −0.877214 0.506460i −0.00747514 0.999972i \(-0.502379\pi\)
−0.869739 + 0.493512i \(0.835713\pi\)
\(774\) 0 0
\(775\) 16.7977 29.0945i 0.603391 1.04510i
\(776\) 0 0
\(777\) 0.842166 + 1.45868i 0.0302126 + 0.0523297i
\(778\) 0 0
\(779\) 12.9050 28.8449i 0.462368 1.03347i
\(780\) 0 0
\(781\) −13.1231 + 7.57662i −0.469581 + 0.271113i
\(782\) 0 0
\(783\) 8.74320 + 5.04789i 0.312456 + 0.180397i
\(784\) 0 0
\(785\) −6.08524 + 10.5399i −0.217192 + 0.376187i
\(786\) 0 0
\(787\) 33.8028 1.20494 0.602470 0.798142i \(-0.294183\pi\)
0.602470 + 0.798142i \(0.294183\pi\)
\(788\) 0 0
\(789\) 5.19782 + 3.00096i 0.185047 + 0.106837i
\(790\) 0 0
\(791\) 23.7528 0.844553
\(792\) 0 0
\(793\) 6.06190 3.49984i 0.215264 0.124283i
\(794\) 0 0
\(795\) 4.73797 2.73547i 0.168039 0.0970172i
\(796\) 0 0
\(797\) 13.9616i 0.494546i −0.968946 0.247273i \(-0.920466\pi\)
0.968946 0.247273i \(-0.0795344\pi\)
\(798\) 0 0
\(799\) 54.3470i 1.92266i
\(800\) 0 0
\(801\) 3.70055 2.13651i 0.130752 0.0754899i
\(802\) 0 0
\(803\) −34.9531 + 20.1802i −1.23347 + 0.712143i
\(804\) 0 0
\(805\) −16.4444 −0.579587
\(806\) 0 0
\(807\) 18.3179 + 10.5758i 0.644821 + 0.372287i
\(808\) 0 0
\(809\) 41.3510 1.45382 0.726911 0.686731i \(-0.240955\pi\)
0.726911 + 0.686731i \(0.240955\pi\)
\(810\) 0 0
\(811\) −7.65969 + 13.2670i −0.268968 + 0.465866i −0.968596 0.248641i \(-0.920016\pi\)
0.699628 + 0.714508i \(0.253349\pi\)
\(812\) 0 0
\(813\) −18.6166 10.7483i −0.652912 0.376959i
\(814\) 0 0
\(815\) −11.7785 + 6.80031i −0.412582 + 0.238205i
\(816\) 0 0
\(817\) 0.481833 1.07698i 0.0168572 0.0376789i
\(818\) 0 0
\(819\) 4.26147 + 7.38109i 0.148908 + 0.257916i
\(820\) 0 0
\(821\) 13.6553 23.6517i 0.476575 0.825451i −0.523065 0.852293i \(-0.675212\pi\)
0.999640 + 0.0268413i \(0.00854489\pi\)
\(822\) 0 0
\(823\) 3.63942 + 2.10122i 0.126862 + 0.0732438i 0.562088 0.827077i \(-0.309998\pi\)
−0.435226 + 0.900321i \(0.643332\pi\)
\(824\) 0 0
\(825\) 22.0011i 0.765981i
\(826\) 0 0
\(827\) −0.981304 + 1.69967i −0.0341233 + 0.0591033i −0.882583 0.470157i \(-0.844197\pi\)
0.848459 + 0.529260i \(0.177531\pi\)
\(828\) 0 0
\(829\) 9.57003i 0.332381i 0.986094 + 0.166190i \(0.0531466\pi\)
−0.986094 + 0.166190i \(0.946853\pi\)
\(830\) 0 0
\(831\) 7.13601 + 12.3599i 0.247546 + 0.428761i
\(832\) 0 0
\(833\) 12.7022 + 22.0009i 0.440106 + 0.762287i
\(834\) 0 0
\(835\) 13.2839 0.459710
\(836\) 0 0
\(837\) −7.61199 −0.263109
\(838\) 0 0
\(839\) −7.08677 12.2746i −0.244662 0.423768i 0.717374 0.696688i \(-0.245344\pi\)
−0.962037 + 0.272920i \(0.912010\pi\)
\(840\) 0 0
\(841\) 36.4624 + 63.1547i 1.25732 + 2.17775i
\(842\) 0 0
\(843\) 12.7317i 0.438501i
\(844\) 0 0
\(845\) −2.75958 + 4.77973i −0.0949324 + 0.164428i
\(846\) 0 0
\(847\) 49.0428i 1.68513i
\(848\) 0 0
\(849\) −22.1454 12.7857i −0.760029 0.438803i
\(850\) 0 0
\(851\) −1.44220 + 2.49796i −0.0494380 + 0.0856291i
\(852\) 0 0
\(853\) 6.49133 + 11.2433i 0.222259 + 0.384964i 0.955494 0.295012i \(-0.0953237\pi\)
−0.733235 + 0.679976i \(0.761990\pi\)
\(854\) 0 0
\(855\) −2.70421 + 1.95728i −0.0924821 + 0.0669377i
\(856\) 0 0
\(857\) −6.91087 + 3.98999i −0.236071 + 0.136296i −0.613369 0.789796i \(-0.710186\pi\)
0.377299 + 0.926092i \(0.376853\pi\)
\(858\) 0 0
\(859\) 19.4044 + 11.2032i 0.662071 + 0.382247i 0.793066 0.609136i \(-0.208484\pi\)
−0.130995 + 0.991383i \(0.541817\pi\)
\(860\) 0 0
\(861\) 12.8353 22.2314i 0.437426 0.757645i
\(862\) 0 0
\(863\) −12.1588 −0.413891 −0.206945 0.978352i \(-0.566352\pi\)
−0.206945 + 0.978352i \(0.566352\pi\)
\(864\) 0 0
\(865\) 0.774307 + 0.447046i 0.0263272 + 0.0152000i
\(866\) 0 0
\(867\) −4.03836 −0.137150
\(868\) 0 0
\(869\) 40.3926 23.3207i 1.37022 0.791100i
\(870\) 0 0
\(871\) −28.5363 + 16.4754i −0.966916 + 0.558249i
\(872\) 0 0
\(873\) 15.2206i 0.515139i
\(874\) 0 0
\(875\) 25.5279i 0.862999i
\(876\) 0 0
\(877\) −5.01764 + 2.89694i −0.169434 + 0.0978227i −0.582319 0.812960i \(-0.697854\pi\)
0.412885 + 0.910783i \(0.364521\pi\)
\(878\) 0 0
\(879\) 3.72629 2.15137i 0.125685 0.0725641i
\(880\) 0 0
\(881\) 35.6938 1.20255 0.601277 0.799041i \(-0.294659\pi\)
0.601277 + 0.799041i \(0.294659\pi\)
\(882\) 0 0
\(883\) −15.9300 9.19717i −0.536086 0.309510i 0.207405 0.978255i \(-0.433498\pi\)
−0.743491 + 0.668746i \(0.766832\pi\)
\(884\) 0 0
\(885\) −8.07933 −0.271584
\(886\) 0 0
\(887\) 1.90551 3.30044i 0.0639808 0.110818i −0.832261 0.554385i \(-0.812954\pi\)
0.896241 + 0.443567i \(0.146287\pi\)
\(888\) 0 0
\(889\) −20.8396 12.0317i −0.698938 0.403532i
\(890\) 0 0
\(891\) −4.31712 + 2.49249i −0.144629 + 0.0835015i
\(892\) 0 0
\(893\) −51.3739 + 5.30595i −1.71916 + 0.177557i
\(894\) 0 0
\(895\) 0.727443 + 1.25997i 0.0243157 + 0.0421161i
\(896\) 0 0
\(897\) −7.29772 + 12.6400i −0.243664 + 0.422038i
\(898\) 0 0
\(899\) −66.5531 38.4245i −2.21967 1.28153i
\(900\) 0 0
\(901\) 32.7665i 1.09161i
\(902\) 0 0
\(903\) 0.479233 0.830057i 0.0159479 0.0276226i
\(904\) 0 0
\(905\) 11.4222i 0.379686i
\(906\) 0 0
\(907\) −7.73022 13.3891i −0.256678 0.444579i 0.708672 0.705538i \(-0.249295\pi\)
−0.965350 + 0.260959i \(0.915961\pi\)
\(908\) 0 0
\(909\) 5.37611 + 9.31169i 0.178314 + 0.308849i
\(910\) 0 0
\(911\) 16.9523 0.561655 0.280827 0.959758i \(-0.409391\pi\)
0.280827 + 0.959758i \(0.409391\pi\)
\(912\) 0 0
\(913\) −71.9326 −2.38062
\(914\) 0 0
\(915\) 1.11358 + 1.92878i 0.0368139 + 0.0637635i
\(916\) 0 0
\(917\) −19.2355 33.3169i −0.635213 1.10022i
\(918\) 0 0
\(919\) 2.52503i 0.0832930i −0.999132 0.0416465i \(-0.986740\pi\)
0.999132 0.0416465i \(-0.0132603\pi\)
\(920\) 0 0
\(921\) −10.4130 + 18.0358i −0.343120 + 0.594301i
\(922\) 0 0
\(923\) 7.31656i 0.240827i
\(924\) 0 0
\(925\) −1.81809 1.04967i −0.0597784 0.0345131i
\(926\) 0 0
\(927\) 8.63483 14.9560i 0.283605 0.491219i
\(928\) 0 0
\(929\) −8.66440 15.0072i −0.284270 0.492370i 0.688162 0.725557i \(-0.258418\pi\)
−0.972432 + 0.233187i \(0.925085\pi\)
\(930\) 0 0
\(931\) 19.5572 14.1553i 0.640961 0.463922i
\(932\) 0 0
\(933\) −14.5060 + 8.37504i −0.474905 + 0.274187i
\(934\) 0 0
\(935\) 15.1649 + 8.75543i 0.495944 + 0.286333i
\(936\) 0 0
\(937\) 16.1887 28.0396i 0.528861 0.916015i −0.470572 0.882361i \(-0.655952\pi\)
0.999434 0.0336533i \(-0.0107142\pi\)
\(938\) 0 0
\(939\) 18.3051 0.597363
\(940\) 0 0
\(941\) −0.547543 0.316124i −0.0178494 0.0103053i 0.491049 0.871132i \(-0.336614\pi\)
−0.508898 + 0.860827i \(0.669947\pi\)
\(942\) 0 0
\(943\) 43.9607 1.43156
\(944\) 0 0
\(945\) −2.34852 + 1.35592i −0.0763974 + 0.0441081i
\(946\) 0 0
\(947\) 23.0392 13.3017i 0.748672 0.432246i −0.0765417 0.997066i \(-0.524388\pi\)
0.825214 + 0.564820i \(0.191055\pi\)
\(948\) 0 0
\(949\) 19.4875i 0.632591i
\(950\) 0 0
\(951\) 0.658516i 0.0213538i
\(952\) 0 0
\(953\) 4.93313 2.84815i 0.159800 0.0922605i −0.417968 0.908462i \(-0.637257\pi\)
0.577767 + 0.816201i \(0.303924\pi\)
\(954\) 0 0
\(955\) 9.80296 5.65974i 0.317216 0.183145i
\(956\) 0 0
\(957\) −50.3272 −1.62685
\(958\) 0 0
\(959\) −49.4410 28.5448i −1.59653 0.921758i
\(960\) 0 0
\(961\) 26.9423 0.869108
\(962\) 0 0
\(963\) −4.42995 + 7.67289i −0.142753 + 0.247255i
\(964\) 0 0
\(965\) −16.9744 9.80019i −0.546426 0.315479i
\(966\) 0 0
\(967\) 32.3670 18.6871i 1.04085 0.600937i 0.120778 0.992680i \(-0.461461\pi\)
0.920075 + 0.391743i \(0.128128\pi\)
\(968\) 0 0
\(969\) 2.05399 + 19.8874i 0.0659838 + 0.638876i
\(970\) 0 0
\(971\) 7.63248 + 13.2198i 0.244938 + 0.424245i 0.962114 0.272647i \(-0.0878991\pi\)
−0.717176 + 0.696892i \(0.754566\pi\)
\(972\) 0 0
\(973\) −26.9519 + 46.6820i −0.864037 + 1.49656i
\(974\) 0 0
\(975\) −9.19977 5.31149i −0.294628 0.170104i
\(976\) 0 0
\(977\) 12.2300i 0.391274i 0.980676 + 0.195637i \(0.0626774\pi\)
−0.980676 + 0.195637i \(0.937323\pi\)
\(978\) 0 0
\(979\) −10.6505 + 18.4471i −0.340390 + 0.589573i
\(980\) 0 0
\(981\) 13.5344i 0.432120i
\(982\) 0 0
\(983\) 5.41249 + 9.37471i 0.172632 + 0.299007i 0.939339 0.342990i \(-0.111440\pi\)
−0.766707 + 0.641997i \(0.778106\pi\)
\(984\) 0 0
\(985\) −3.77748 6.54279i −0.120361 0.208471i
\(986\) 0 0
\(987\) −41.9561 −1.33548
\(988\) 0 0
\(989\) 1.64136 0.0521923
\(990\) 0 0
\(991\) −6.73008 11.6568i −0.213788 0.370292i 0.739109 0.673586i \(-0.235247\pi\)
−0.952897 + 0.303294i \(0.901914\pi\)
\(992\) 0 0
\(993\) −4.47661 7.75371i −0.142061 0.246057i
\(994\) 0 0
\(995\) 1.27326i 0.0403652i
\(996\) 0 0
\(997\) 15.9323 27.5955i 0.504581 0.873960i −0.495405 0.868662i \(-0.664980\pi\)
0.999986 0.00529757i \(-0.00168628\pi\)
\(998\) 0 0
\(999\) 0.475666i 0.0150494i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.bb.b.31.8 yes 40
4.3 odd 2 1824.2.bb.a.31.8 40
19.8 odd 6 1824.2.bb.a.1471.8 yes 40
76.27 even 6 inner 1824.2.bb.b.1471.8 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.bb.a.31.8 40 4.3 odd 2
1824.2.bb.a.1471.8 yes 40 19.8 odd 6
1824.2.bb.b.31.8 yes 40 1.1 even 1 trivial
1824.2.bb.b.1471.8 yes 40 76.27 even 6 inner