Properties

Label 1824.2.bb.a.31.8
Level $1824$
Weight $2$
Character 1824.31
Analytic conductor $14.565$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(31,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.8
Character \(\chi\) \(=\) 1824.31
Dual form 1824.2.bb.a.1471.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +(-0.382920 - 0.663237i) q^{5} -3.54100i q^{7} +(-0.500000 + 0.866025i) q^{9} +4.98498i q^{11} +(-2.08447 - 1.20347i) q^{13} +(-0.382920 + 0.663237i) q^{15} +(-2.29338 - 3.97225i) q^{17} +(3.53104 - 2.55573i) q^{19} +(-3.06659 + 1.77050i) q^{21} +(5.25150 + 3.03196i) q^{23} +(2.20674 - 3.82219i) q^{25} +1.00000 q^{27} +(-8.74320 - 5.04789i) q^{29} -7.61199 q^{31} +(4.31712 - 2.49249i) q^{33} +(-2.34852 + 1.35592i) q^{35} -0.475666i q^{37} +2.40693i q^{39} +(-6.27830 + 3.62478i) q^{41} +(0.234413 - 0.135339i) q^{43} +0.765841 q^{45} +(-10.2613 - 5.92434i) q^{47} -5.53865 q^{49} +(-2.29338 + 3.97225i) q^{51} +(6.18663 + 3.57185i) q^{53} +(3.30622 - 1.90885i) q^{55} +(-3.97885 - 1.78010i) q^{57} +(5.27481 + 9.13624i) q^{59} +(-1.45406 + 2.51851i) q^{61} +(3.06659 + 1.77050i) q^{63} +1.84333i q^{65} +(-6.84499 + 11.8559i) q^{67} -6.06391i q^{69} +(1.51989 + 2.63253i) q^{71} +(-4.04820 - 7.01168i) q^{73} -4.41349 q^{75} +17.6518 q^{77} +(-4.67819 - 8.10286i) q^{79} +(-0.500000 - 0.866025i) q^{81} +14.4299i q^{83} +(-1.75636 + 3.04211i) q^{85} +10.0958i q^{87} +(-3.70055 - 2.13651i) q^{89} +(-4.26147 + 7.38109i) q^{91} +(3.80599 + 6.59217i) q^{93} +(-3.04716 - 1.36328i) q^{95} +(-13.1814 + 7.61030i) q^{97} +(-4.31712 - 2.49249i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 20 q^{3} - 20 q^{9} - 12 q^{13} + 8 q^{19} - 12 q^{21} - 20 q^{25} + 40 q^{27} - 40 q^{31} + 24 q^{41} - 12 q^{43} + 24 q^{47} - 16 q^{49} - 24 q^{53} - 4 q^{57} - 4 q^{61} + 12 q^{63} + 4 q^{67}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) −0.382920 0.663237i −0.171247 0.296609i 0.767609 0.640918i \(-0.221446\pi\)
−0.938856 + 0.344310i \(0.888113\pi\)
\(6\) 0 0
\(7\) 3.54100i 1.33837i −0.743096 0.669185i \(-0.766643\pi\)
0.743096 0.669185i \(-0.233357\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 4.98498i 1.50303i 0.659718 + 0.751514i \(0.270676\pi\)
−0.659718 + 0.751514i \(0.729324\pi\)
\(12\) 0 0
\(13\) −2.08447 1.20347i −0.578127 0.333782i 0.182262 0.983250i \(-0.441658\pi\)
−0.760389 + 0.649468i \(0.774992\pi\)
\(14\) 0 0
\(15\) −0.382920 + 0.663237i −0.0988696 + 0.171247i
\(16\) 0 0
\(17\) −2.29338 3.97225i −0.556226 0.963412i −0.997807 0.0661906i \(-0.978915\pi\)
0.441581 0.897221i \(-0.354418\pi\)
\(18\) 0 0
\(19\) 3.53104 2.55573i 0.810076 0.586325i
\(20\) 0 0
\(21\) −3.06659 + 1.77050i −0.669185 + 0.386354i
\(22\) 0 0
\(23\) 5.25150 + 3.03196i 1.09501 + 0.632207i 0.934907 0.354893i \(-0.115483\pi\)
0.160107 + 0.987100i \(0.448816\pi\)
\(24\) 0 0
\(25\) 2.20674 3.82219i 0.441349 0.764439i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −8.74320 5.04789i −1.62357 0.937369i −0.985954 0.167016i \(-0.946587\pi\)
−0.637617 0.770353i \(-0.720080\pi\)
\(30\) 0 0
\(31\) −7.61199 −1.36715 −0.683577 0.729879i \(-0.739576\pi\)
−0.683577 + 0.729879i \(0.739576\pi\)
\(32\) 0 0
\(33\) 4.31712 2.49249i 0.751514 0.433887i
\(34\) 0 0
\(35\) −2.34852 + 1.35592i −0.396973 + 0.229192i
\(36\) 0 0
\(37\) 0.475666i 0.0781991i −0.999235 0.0390995i \(-0.987551\pi\)
0.999235 0.0390995i \(-0.0124489\pi\)
\(38\) 0 0
\(39\) 2.40693i 0.385418i
\(40\) 0 0
\(41\) −6.27830 + 3.62478i −0.980505 + 0.566095i −0.902423 0.430852i \(-0.858213\pi\)
−0.0780825 + 0.996947i \(0.524880\pi\)
\(42\) 0 0
\(43\) 0.234413 0.135339i 0.0357477 0.0206389i −0.482020 0.876160i \(-0.660097\pi\)
0.517767 + 0.855521i \(0.326763\pi\)
\(44\) 0 0
\(45\) 0.765841 0.114165
\(46\) 0 0
\(47\) −10.2613 5.92434i −1.49676 0.864153i −0.496764 0.867885i \(-0.665479\pi\)
−0.999993 + 0.00373220i \(0.998812\pi\)
\(48\) 0 0
\(49\) −5.53865 −0.791236
\(50\) 0 0
\(51\) −2.29338 + 3.97225i −0.321137 + 0.556226i
\(52\) 0 0
\(53\) 6.18663 + 3.57185i 0.849799 + 0.490632i 0.860583 0.509310i \(-0.170099\pi\)
−0.0107838 + 0.999942i \(0.503433\pi\)
\(54\) 0 0
\(55\) 3.30622 1.90885i 0.445811 0.257389i
\(56\) 0 0
\(57\) −3.97885 1.78010i −0.527011 0.235780i
\(58\) 0 0
\(59\) 5.27481 + 9.13624i 0.686722 + 1.18944i 0.972892 + 0.231259i \(0.0742843\pi\)
−0.286170 + 0.958179i \(0.592382\pi\)
\(60\) 0 0
\(61\) −1.45406 + 2.51851i −0.186174 + 0.322463i −0.943971 0.330027i \(-0.892942\pi\)
0.757798 + 0.652490i \(0.226275\pi\)
\(62\) 0 0
\(63\) 3.06659 + 1.77050i 0.386354 + 0.223062i
\(64\) 0 0
\(65\) 1.84333i 0.228637i
\(66\) 0 0
\(67\) −6.84499 + 11.8559i −0.836249 + 1.44842i 0.0567613 + 0.998388i \(0.481923\pi\)
−0.893010 + 0.450037i \(0.851411\pi\)
\(68\) 0 0
\(69\) 6.06391i 0.730009i
\(70\) 0 0
\(71\) 1.51989 + 2.63253i 0.180378 + 0.312424i 0.942009 0.335587i \(-0.108935\pi\)
−0.761631 + 0.648011i \(0.775601\pi\)
\(72\) 0 0
\(73\) −4.04820 7.01168i −0.473806 0.820655i 0.525745 0.850642i \(-0.323787\pi\)
−0.999550 + 0.0299871i \(0.990453\pi\)
\(74\) 0 0
\(75\) −4.41349 −0.509626
\(76\) 0 0
\(77\) 17.6518 2.01161
\(78\) 0 0
\(79\) −4.67819 8.10286i −0.526338 0.911643i −0.999529 0.0306839i \(-0.990231\pi\)
0.473192 0.880960i \(-0.343102\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 14.4299i 1.58388i 0.610596 + 0.791942i \(0.290930\pi\)
−0.610596 + 0.791942i \(0.709070\pi\)
\(84\) 0 0
\(85\) −1.75636 + 3.04211i −0.190504 + 0.329963i
\(86\) 0 0
\(87\) 10.0958i 1.08238i
\(88\) 0 0
\(89\) −3.70055 2.13651i −0.392257 0.226470i 0.290881 0.956759i \(-0.406052\pi\)
−0.683138 + 0.730290i \(0.739385\pi\)
\(90\) 0 0
\(91\) −4.26147 + 7.38109i −0.446724 + 0.773748i
\(92\) 0 0
\(93\) 3.80599 + 6.59217i 0.394663 + 0.683577i
\(94\) 0 0
\(95\) −3.04716 1.36328i −0.312632 0.139869i
\(96\) 0 0
\(97\) −13.1814 + 7.61030i −1.33837 + 0.772709i −0.986566 0.163364i \(-0.947765\pi\)
−0.351806 + 0.936073i \(0.614432\pi\)
\(98\) 0 0
\(99\) −4.31712 2.49249i −0.433887 0.250505i
\(100\) 0 0
\(101\) 5.37611 9.31169i 0.534943 0.926548i −0.464224 0.885718i \(-0.653667\pi\)
0.999166 0.0408297i \(-0.0130001\pi\)
\(102\) 0 0
\(103\) 17.2697 1.70163 0.850816 0.525465i \(-0.176108\pi\)
0.850816 + 0.525465i \(0.176108\pi\)
\(104\) 0 0
\(105\) 2.34852 + 1.35592i 0.229192 + 0.132324i
\(106\) 0 0
\(107\) −8.85989 −0.856518 −0.428259 0.903656i \(-0.640873\pi\)
−0.428259 + 0.903656i \(0.640873\pi\)
\(108\) 0 0
\(109\) −11.7211 + 6.76719i −1.12268 + 0.648180i −0.942084 0.335378i \(-0.891136\pi\)
−0.180596 + 0.983557i \(0.557803\pi\)
\(110\) 0 0
\(111\) −0.411939 + 0.237833i −0.0390995 + 0.0225741i
\(112\) 0 0
\(113\) 6.70795i 0.631031i −0.948920 0.315515i \(-0.897823\pi\)
0.948920 0.315515i \(-0.102177\pi\)
\(114\) 0 0
\(115\) 4.64399i 0.433054i
\(116\) 0 0
\(117\) 2.08447 1.20347i 0.192709 0.111261i
\(118\) 0 0
\(119\) −14.0657 + 8.12085i −1.28940 + 0.744437i
\(120\) 0 0
\(121\) −13.8500 −1.25909
\(122\) 0 0
\(123\) 6.27830 + 3.62478i 0.566095 + 0.326835i
\(124\) 0 0
\(125\) −7.20923 −0.644813
\(126\) 0 0
\(127\) 3.39784 5.88524i 0.301510 0.522230i −0.674968 0.737847i \(-0.735843\pi\)
0.976478 + 0.215616i \(0.0691761\pi\)
\(128\) 0 0
\(129\) −0.234413 0.135339i −0.0206389 0.0119159i
\(130\) 0 0
\(131\) 9.40891 5.43224i 0.822060 0.474617i −0.0290662 0.999577i \(-0.509253\pi\)
0.851126 + 0.524961i \(0.175920\pi\)
\(132\) 0 0
\(133\) −9.04984 12.5034i −0.784720 1.08418i
\(134\) 0 0
\(135\) −0.382920 0.663237i −0.0329565 0.0570824i
\(136\) 0 0
\(137\) −8.06122 + 13.9624i −0.688717 + 1.19289i 0.283537 + 0.958961i \(0.408492\pi\)
−0.972253 + 0.233931i \(0.924841\pi\)
\(138\) 0 0
\(139\) −13.1833 7.61138i −1.11819 0.645589i −0.177254 0.984165i \(-0.556721\pi\)
−0.940939 + 0.338576i \(0.890055\pi\)
\(140\) 0 0
\(141\) 11.8487i 0.997838i
\(142\) 0 0
\(143\) 5.99926 10.3910i 0.501683 0.868941i
\(144\) 0 0
\(145\) 7.73176i 0.642087i
\(146\) 0 0
\(147\) 2.76933 + 4.79661i 0.228410 + 0.395618i
\(148\) 0 0
\(149\) 1.73688 + 3.00836i 0.142291 + 0.246455i 0.928359 0.371685i \(-0.121220\pi\)
−0.786068 + 0.618140i \(0.787887\pi\)
\(150\) 0 0
\(151\) −12.5900 −1.02456 −0.512278 0.858820i \(-0.671198\pi\)
−0.512278 + 0.858820i \(0.671198\pi\)
\(152\) 0 0
\(153\) 4.58676 0.370817
\(154\) 0 0
\(155\) 2.91478 + 5.04855i 0.234121 + 0.405510i
\(156\) 0 0
\(157\) −7.94583 13.7626i −0.634146 1.09837i −0.986695 0.162580i \(-0.948018\pi\)
0.352549 0.935793i \(-0.385315\pi\)
\(158\) 0 0
\(159\) 7.14371i 0.566533i
\(160\) 0 0
\(161\) 10.7361 18.5956i 0.846127 1.46553i
\(162\) 0 0
\(163\) 17.7591i 1.39100i 0.718527 + 0.695499i \(0.244817\pi\)
−0.718527 + 0.695499i \(0.755183\pi\)
\(164\) 0 0
\(165\) −3.30622 1.90885i −0.257389 0.148604i
\(166\) 0 0
\(167\) 8.67278 15.0217i 0.671120 1.16241i −0.306467 0.951881i \(-0.599147\pi\)
0.977587 0.210533i \(-0.0675199\pi\)
\(168\) 0 0
\(169\) −3.60333 6.24115i −0.277179 0.480089i
\(170\) 0 0
\(171\) 0.447809 + 4.33584i 0.0342448 + 0.331570i
\(172\) 0 0
\(173\) −1.01105 + 0.583733i −0.0768691 + 0.0443804i −0.537942 0.842982i \(-0.680798\pi\)
0.461073 + 0.887362i \(0.347465\pi\)
\(174\) 0 0
\(175\) −13.5344 7.81407i −1.02310 0.590688i
\(176\) 0 0
\(177\) 5.27481 9.13624i 0.396479 0.686722i
\(178\) 0 0
\(179\) 1.89972 0.141992 0.0709960 0.997477i \(-0.477382\pi\)
0.0709960 + 0.997477i \(0.477382\pi\)
\(180\) 0 0
\(181\) −12.9164 7.45728i −0.960068 0.554295i −0.0638737 0.997958i \(-0.520345\pi\)
−0.896194 + 0.443663i \(0.853679\pi\)
\(182\) 0 0
\(183\) 2.90813 0.214975
\(184\) 0 0
\(185\) −0.315480 + 0.182142i −0.0231945 + 0.0133914i
\(186\) 0 0
\(187\) 19.8016 11.4324i 1.44803 0.836023i
\(188\) 0 0
\(189\) 3.54100i 0.257570i
\(190\) 0 0
\(191\) 14.7805i 1.06948i −0.845017 0.534739i \(-0.820410\pi\)
0.845017 0.534739i \(-0.179590\pi\)
\(192\) 0 0
\(193\) 22.1644 12.7966i 1.59543 0.921122i 0.603078 0.797682i \(-0.293941\pi\)
0.992352 0.123440i \(-0.0393927\pi\)
\(194\) 0 0
\(195\) 1.59637 0.921664i 0.114318 0.0660017i
\(196\) 0 0
\(197\) 9.86493 0.702847 0.351424 0.936217i \(-0.385698\pi\)
0.351424 + 0.936217i \(0.385698\pi\)
\(198\) 0 0
\(199\) 1.43983 + 0.831285i 0.102067 + 0.0589282i 0.550164 0.835056i \(-0.314565\pi\)
−0.448098 + 0.893985i \(0.647898\pi\)
\(200\) 0 0
\(201\) 13.6900 0.965617
\(202\) 0 0
\(203\) −17.8746 + 30.9596i −1.25455 + 2.17294i
\(204\) 0 0
\(205\) 4.80817 + 2.77600i 0.335817 + 0.193884i
\(206\) 0 0
\(207\) −5.25150 + 3.03196i −0.365005 + 0.210736i
\(208\) 0 0
\(209\) 12.7403 + 17.6021i 0.881263 + 1.21757i
\(210\) 0 0
\(211\) −9.54849 16.5385i −0.657345 1.13855i −0.981300 0.192483i \(-0.938346\pi\)
0.323955 0.946072i \(-0.394987\pi\)
\(212\) 0 0
\(213\) 1.51989 2.63253i 0.104141 0.180378i
\(214\) 0 0
\(215\) −0.179523 0.103648i −0.0122434 0.00706872i
\(216\) 0 0
\(217\) 26.9540i 1.82976i
\(218\) 0 0
\(219\) −4.04820 + 7.01168i −0.273552 + 0.473806i
\(220\) 0 0
\(221\) 11.0400i 0.742633i
\(222\) 0 0
\(223\) 9.09785 + 15.7579i 0.609237 + 1.05523i 0.991366 + 0.131121i \(0.0418577\pi\)
−0.382129 + 0.924109i \(0.624809\pi\)
\(224\) 0 0
\(225\) 2.20674 + 3.82219i 0.147116 + 0.254813i
\(226\) 0 0
\(227\) 5.83589 0.387342 0.193671 0.981067i \(-0.437961\pi\)
0.193671 + 0.981067i \(0.437961\pi\)
\(228\) 0 0
\(229\) −5.15561 −0.340692 −0.170346 0.985384i \(-0.554489\pi\)
−0.170346 + 0.985384i \(0.554489\pi\)
\(230\) 0 0
\(231\) −8.82589 15.2869i −0.580701 1.00580i
\(232\) 0 0
\(233\) 4.65031 + 8.05457i 0.304652 + 0.527673i 0.977184 0.212396i \(-0.0681265\pi\)
−0.672532 + 0.740068i \(0.734793\pi\)
\(234\) 0 0
\(235\) 9.07420i 0.591935i
\(236\) 0 0
\(237\) −4.67819 + 8.10286i −0.303881 + 0.526338i
\(238\) 0 0
\(239\) 19.3585i 1.25219i 0.779745 + 0.626097i \(0.215349\pi\)
−0.779745 + 0.626097i \(0.784651\pi\)
\(240\) 0 0
\(241\) −0.322595 0.186250i −0.0207802 0.0119974i 0.489574 0.871962i \(-0.337152\pi\)
−0.510354 + 0.859964i \(0.670486\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 2.12086 + 3.67344i 0.135497 + 0.234688i
\(246\) 0 0
\(247\) −10.4361 + 1.07785i −0.664031 + 0.0685818i
\(248\) 0 0
\(249\) 12.4966 7.21494i 0.791942 0.457228i
\(250\) 0 0
\(251\) −14.7418 8.51119i −0.930495 0.537221i −0.0435267 0.999052i \(-0.513859\pi\)
−0.886968 + 0.461831i \(0.847193\pi\)
\(252\) 0 0
\(253\) −15.1142 + 26.1786i −0.950224 + 1.64584i
\(254\) 0 0
\(255\) 3.51273 0.219975
\(256\) 0 0
\(257\) −22.3631 12.9113i −1.39497 0.805387i −0.401111 0.916029i \(-0.631376\pi\)
−0.993860 + 0.110642i \(0.964709\pi\)
\(258\) 0 0
\(259\) −1.68433 −0.104659
\(260\) 0 0
\(261\) 8.74320 5.04789i 0.541190 0.312456i
\(262\) 0 0
\(263\) −5.19782 + 3.00096i −0.320511 + 0.185047i −0.651621 0.758545i \(-0.725911\pi\)
0.331109 + 0.943592i \(0.392577\pi\)
\(264\) 0 0
\(265\) 5.47094i 0.336077i
\(266\) 0 0
\(267\) 4.27302i 0.261505i
\(268\) 0 0
\(269\) 18.3179 10.5758i 1.11686 0.644821i 0.176264 0.984343i \(-0.443599\pi\)
0.940598 + 0.339522i \(0.110265\pi\)
\(270\) 0 0
\(271\) 18.6166 10.7483i 1.13088 0.652912i 0.186721 0.982413i \(-0.440214\pi\)
0.944155 + 0.329501i \(0.106881\pi\)
\(272\) 0 0
\(273\) 8.52295 0.515832
\(274\) 0 0
\(275\) 19.0535 + 11.0006i 1.14897 + 0.663359i
\(276\) 0 0
\(277\) 14.2720 0.857523 0.428761 0.903418i \(-0.358950\pi\)
0.428761 + 0.903418i \(0.358950\pi\)
\(278\) 0 0
\(279\) 3.80599 6.59217i 0.227859 0.394663i
\(280\) 0 0
\(281\) 11.0259 + 6.36583i 0.657752 + 0.379753i 0.791420 0.611273i \(-0.209342\pi\)
−0.133668 + 0.991026i \(0.542676\pi\)
\(282\) 0 0
\(283\) 22.1454 12.7857i 1.31641 0.760029i 0.333260 0.942835i \(-0.391851\pi\)
0.983149 + 0.182806i \(0.0585180\pi\)
\(284\) 0 0
\(285\) 0.342951 + 3.32056i 0.0203146 + 0.196693i
\(286\) 0 0
\(287\) 12.8353 + 22.2314i 0.757645 + 1.31228i
\(288\) 0 0
\(289\) −2.01918 + 3.49732i −0.118775 + 0.205725i
\(290\) 0 0
\(291\) 13.1814 + 7.61030i 0.772709 + 0.446124i
\(292\) 0 0
\(293\) 4.30275i 0.251369i −0.992070 0.125685i \(-0.959887\pi\)
0.992070 0.125685i \(-0.0401128\pi\)
\(294\) 0 0
\(295\) 4.03967 6.99691i 0.235198 0.407376i
\(296\) 0 0
\(297\) 4.98498i 0.289258i
\(298\) 0 0
\(299\) −7.29772 12.6400i −0.422038 0.730992i
\(300\) 0 0
\(301\) −0.479233 0.830057i −0.0276226 0.0478437i
\(302\) 0 0
\(303\) −10.7522 −0.617699
\(304\) 0 0
\(305\) 2.22716 0.127527
\(306\) 0 0
\(307\) −10.4130 18.0358i −0.594301 1.02936i −0.993645 0.112559i \(-0.964095\pi\)
0.399344 0.916801i \(-0.369238\pi\)
\(308\) 0 0
\(309\) −8.63483 14.9560i −0.491219 0.850816i
\(310\) 0 0
\(311\) 16.7501i 0.949810i −0.880037 0.474905i \(-0.842482\pi\)
0.880037 0.474905i \(-0.157518\pi\)
\(312\) 0 0
\(313\) 9.15253 15.8527i 0.517332 0.896045i −0.482466 0.875915i \(-0.660259\pi\)
0.999797 0.0201299i \(-0.00640799\pi\)
\(314\) 0 0
\(315\) 2.71184i 0.152795i
\(316\) 0 0
\(317\) −0.570292 0.329258i −0.0320308 0.0184930i 0.483899 0.875124i \(-0.339220\pi\)
−0.515930 + 0.856631i \(0.672553\pi\)
\(318\) 0 0
\(319\) 25.1636 43.5847i 1.40889 2.44027i
\(320\) 0 0
\(321\) 4.42995 + 7.67289i 0.247255 + 0.428259i
\(322\) 0 0
\(323\) −18.2500 8.16490i −1.01546 0.454307i
\(324\) 0 0
\(325\) −9.19977 + 5.31149i −0.510311 + 0.294628i
\(326\) 0 0
\(327\) 11.7211 + 6.76719i 0.648180 + 0.374227i
\(328\) 0 0
\(329\) −20.9781 + 36.3351i −1.15656 + 2.00322i
\(330\) 0 0
\(331\) 8.95321 0.492113 0.246057 0.969255i \(-0.420865\pi\)
0.246057 + 0.969255i \(0.420865\pi\)
\(332\) 0 0
\(333\) 0.411939 + 0.237833i 0.0225741 + 0.0130332i
\(334\) 0 0
\(335\) 10.4843 0.572821
\(336\) 0 0
\(337\) 8.02081 4.63082i 0.436921 0.252257i −0.265369 0.964147i \(-0.585494\pi\)
0.702291 + 0.711890i \(0.252161\pi\)
\(338\) 0 0
\(339\) −5.80925 + 3.35397i −0.315515 + 0.182163i
\(340\) 0 0
\(341\) 37.9456i 2.05487i
\(342\) 0 0
\(343\) 5.17462i 0.279403i
\(344\) 0 0
\(345\) −4.02181 + 2.32200i −0.216527 + 0.125012i
\(346\) 0 0
\(347\) 17.0068 9.81887i 0.912972 0.527104i 0.0315856 0.999501i \(-0.489944\pi\)
0.881386 + 0.472397i \(0.156611\pi\)
\(348\) 0 0
\(349\) −5.77191 −0.308963 −0.154482 0.987996i \(-0.549371\pi\)
−0.154482 + 0.987996i \(0.549371\pi\)
\(350\) 0 0
\(351\) −2.08447 1.20347i −0.111261 0.0642363i
\(352\) 0 0
\(353\) −10.3931 −0.553169 −0.276584 0.960990i \(-0.589203\pi\)
−0.276584 + 0.960990i \(0.589203\pi\)
\(354\) 0 0
\(355\) 1.16399 2.01610i 0.0617784 0.107003i
\(356\) 0 0
\(357\) 14.0657 + 8.12085i 0.744437 + 0.429801i
\(358\) 0 0
\(359\) −4.26980 + 2.46517i −0.225352 + 0.130107i −0.608426 0.793611i \(-0.708199\pi\)
0.383074 + 0.923718i \(0.374865\pi\)
\(360\) 0 0
\(361\) 5.93647 18.0488i 0.312446 0.949936i
\(362\) 0 0
\(363\) 6.92500 + 11.9945i 0.363468 + 0.629545i
\(364\) 0 0
\(365\) −3.10027 + 5.36983i −0.162276 + 0.281070i
\(366\) 0 0
\(367\) −26.1587 15.1027i −1.36547 0.788355i −0.375126 0.926974i \(-0.622400\pi\)
−0.990346 + 0.138619i \(0.955734\pi\)
\(368\) 0 0
\(369\) 7.24955i 0.377397i
\(370\) 0 0
\(371\) 12.6479 21.9068i 0.656647 1.13735i
\(372\) 0 0
\(373\) 11.5519i 0.598137i 0.954232 + 0.299069i \(0.0966759\pi\)
−0.954232 + 0.299069i \(0.903324\pi\)
\(374\) 0 0
\(375\) 3.60462 + 6.24338i 0.186142 + 0.322407i
\(376\) 0 0
\(377\) 12.1499 + 21.0443i 0.625754 + 1.08384i
\(378\) 0 0
\(379\) 4.03187 0.207103 0.103552 0.994624i \(-0.466979\pi\)
0.103552 + 0.994624i \(0.466979\pi\)
\(380\) 0 0
\(381\) −6.79569 −0.348154
\(382\) 0 0
\(383\) 5.88659 + 10.1959i 0.300791 + 0.520985i 0.976315 0.216353i \(-0.0694160\pi\)
−0.675524 + 0.737338i \(0.736083\pi\)
\(384\) 0 0
\(385\) −6.75923 11.7073i −0.344482 0.596661i
\(386\) 0 0
\(387\) 0.270677i 0.0137593i
\(388\) 0 0
\(389\) −1.96964 + 3.41152i −0.0998648 + 0.172971i −0.911629 0.411015i \(-0.865174\pi\)
0.811764 + 0.583986i \(0.198508\pi\)
\(390\) 0 0
\(391\) 27.8137i 1.40660i
\(392\) 0 0
\(393\) −9.40891 5.43224i −0.474617 0.274020i
\(394\) 0 0
\(395\) −3.58275 + 6.20550i −0.180268 + 0.312233i
\(396\) 0 0
\(397\) −5.62893 9.74958i −0.282508 0.489318i 0.689494 0.724291i \(-0.257833\pi\)
−0.972002 + 0.234974i \(0.924500\pi\)
\(398\) 0 0
\(399\) −6.30334 + 14.0891i −0.315562 + 0.705337i
\(400\) 0 0
\(401\) 4.76362 2.75028i 0.237884 0.137342i −0.376320 0.926490i \(-0.622811\pi\)
0.614204 + 0.789147i \(0.289477\pi\)
\(402\) 0 0
\(403\) 15.8669 + 9.16078i 0.790388 + 0.456331i
\(404\) 0 0
\(405\) −0.382920 + 0.663237i −0.0190275 + 0.0329565i
\(406\) 0 0
\(407\) 2.37119 0.117535
\(408\) 0 0
\(409\) −2.43327 1.40485i −0.120317 0.0694652i 0.438634 0.898666i \(-0.355463\pi\)
−0.558951 + 0.829201i \(0.688796\pi\)
\(410\) 0 0
\(411\) 16.1224 0.795262
\(412\) 0 0
\(413\) 32.3514 18.6781i 1.59191 0.919089i
\(414\) 0 0
\(415\) 9.57043 5.52549i 0.469794 0.271236i
\(416\) 0 0
\(417\) 15.2228i 0.745462i
\(418\) 0 0
\(419\) 12.0614i 0.589236i −0.955615 0.294618i \(-0.904808\pi\)
0.955615 0.294618i \(-0.0951924\pi\)
\(420\) 0 0
\(421\) −27.6787 + 15.9803i −1.34898 + 0.778832i −0.988105 0.153783i \(-0.950854\pi\)
−0.360872 + 0.932615i \(0.617521\pi\)
\(422\) 0 0
\(423\) 10.2613 5.92434i 0.498919 0.288051i
\(424\) 0 0
\(425\) −20.2436 −0.981959
\(426\) 0 0
\(427\) 8.91804 + 5.14884i 0.431574 + 0.249170i
\(428\) 0 0
\(429\) −11.9985 −0.579294
\(430\) 0 0
\(431\) 7.77716 13.4704i 0.374612 0.648848i −0.615656 0.788015i \(-0.711109\pi\)
0.990269 + 0.139167i \(0.0444424\pi\)
\(432\) 0 0
\(433\) 13.6152 + 7.86077i 0.654307 + 0.377764i 0.790104 0.612972i \(-0.210026\pi\)
−0.135797 + 0.990737i \(0.543360\pi\)
\(434\) 0 0
\(435\) 6.69590 3.86588i 0.321044 0.185355i
\(436\) 0 0
\(437\) 26.2921 2.71548i 1.25772 0.129899i
\(438\) 0 0
\(439\) −11.5520 20.0086i −0.551346 0.954959i −0.998178 0.0603409i \(-0.980781\pi\)
0.446832 0.894618i \(-0.352552\pi\)
\(440\) 0 0
\(441\) 2.76933 4.79661i 0.131873 0.228410i
\(442\) 0 0
\(443\) 1.52977 + 0.883216i 0.0726818 + 0.0419628i 0.535900 0.844281i \(-0.319972\pi\)
−0.463219 + 0.886244i \(0.653306\pi\)
\(444\) 0 0
\(445\) 3.27245i 0.155129i
\(446\) 0 0
\(447\) 1.73688 3.00836i 0.0821516 0.142291i
\(448\) 0 0
\(449\) 9.28909i 0.438379i −0.975682 0.219190i \(-0.929659\pi\)
0.975682 0.219190i \(-0.0703413\pi\)
\(450\) 0 0
\(451\) −18.0694 31.2972i −0.850856 1.47373i
\(452\) 0 0
\(453\) 6.29498 + 10.9032i 0.295764 + 0.512278i
\(454\) 0 0
\(455\) 6.52722 0.306001
\(456\) 0 0
\(457\) 18.6288 0.871417 0.435709 0.900088i \(-0.356498\pi\)
0.435709 + 0.900088i \(0.356498\pi\)
\(458\) 0 0
\(459\) −2.29338 3.97225i −0.107046 0.185409i
\(460\) 0 0
\(461\) 15.4501 + 26.7604i 0.719585 + 1.24636i 0.961164 + 0.275976i \(0.0890012\pi\)
−0.241580 + 0.970381i \(0.577665\pi\)
\(462\) 0 0
\(463\) 9.51105i 0.442016i 0.975272 + 0.221008i \(0.0709347\pi\)
−0.975272 + 0.221008i \(0.929065\pi\)
\(464\) 0 0
\(465\) 2.91478 5.04855i 0.135170 0.234121i
\(466\) 0 0
\(467\) 21.0377i 0.973511i 0.873538 + 0.486755i \(0.161820\pi\)
−0.873538 + 0.486755i \(0.838180\pi\)
\(468\) 0 0
\(469\) 41.9816 + 24.2381i 1.93853 + 1.11921i
\(470\) 0 0
\(471\) −7.94583 + 13.7626i −0.366125 + 0.634146i
\(472\) 0 0
\(473\) 0.674660 + 1.16855i 0.0310209 + 0.0537298i
\(474\) 0 0
\(475\) −1.97640 19.1362i −0.0906835 0.878027i
\(476\) 0 0
\(477\) −6.18663 + 3.57185i −0.283266 + 0.163544i
\(478\) 0 0
\(479\) −4.85569 2.80343i −0.221862 0.128092i 0.384950 0.922937i \(-0.374219\pi\)
−0.606812 + 0.794845i \(0.707552\pi\)
\(480\) 0 0
\(481\) −0.572449 + 0.991511i −0.0261014 + 0.0452090i
\(482\) 0 0
\(483\) −21.4723 −0.977023
\(484\) 0 0
\(485\) 10.0949 + 5.82828i 0.458385 + 0.264648i
\(486\) 0 0
\(487\) −4.92392 −0.223124 −0.111562 0.993757i \(-0.535585\pi\)
−0.111562 + 0.993757i \(0.535585\pi\)
\(488\) 0 0
\(489\) 15.3798 8.87954i 0.695499 0.401547i
\(490\) 0 0
\(491\) 19.6305 11.3336i 0.885910 0.511480i 0.0133075 0.999911i \(-0.495764\pi\)
0.872602 + 0.488431i \(0.162431\pi\)
\(492\) 0 0
\(493\) 46.3069i 2.08556i
\(494\) 0 0
\(495\) 3.81770i 0.171593i
\(496\) 0 0
\(497\) 9.32177 5.38193i 0.418139 0.241412i
\(498\) 0 0
\(499\) −4.67366 + 2.69834i −0.209222 + 0.120794i −0.600950 0.799287i \(-0.705211\pi\)
0.391728 + 0.920081i \(0.371877\pi\)
\(500\) 0 0
\(501\) −17.3456 −0.774943
\(502\) 0 0
\(503\) 5.80937 + 3.35404i 0.259027 + 0.149549i 0.623891 0.781512i \(-0.285551\pi\)
−0.364864 + 0.931061i \(0.618884\pi\)
\(504\) 0 0
\(505\) −8.23448 −0.366430
\(506\) 0 0
\(507\) −3.60333 + 6.24115i −0.160030 + 0.277179i
\(508\) 0 0
\(509\) −15.6116 9.01337i −0.691973 0.399511i 0.112378 0.993666i \(-0.464153\pi\)
−0.804351 + 0.594155i \(0.797487\pi\)
\(510\) 0 0
\(511\) −24.8283 + 14.3346i −1.09834 + 0.634127i
\(512\) 0 0
\(513\) 3.53104 2.55573i 0.155899 0.112838i
\(514\) 0 0
\(515\) −6.61291 11.4539i −0.291400 0.504719i
\(516\) 0 0
\(517\) 29.5327 51.1521i 1.29885 2.24967i
\(518\) 0 0
\(519\) 1.01105 + 0.583733i 0.0443804 + 0.0256230i
\(520\) 0 0
\(521\) 2.18624i 0.0957808i −0.998853 0.0478904i \(-0.984750\pi\)
0.998853 0.0478904i \(-0.0152498\pi\)
\(522\) 0 0
\(523\) −1.75609 + 3.04164i −0.0767884 + 0.133001i −0.901863 0.432023i \(-0.857800\pi\)
0.825074 + 0.565024i \(0.191133\pi\)
\(524\) 0 0
\(525\) 15.6281i 0.682068i
\(526\) 0 0
\(527\) 17.4572 + 30.2367i 0.760446 + 1.31713i
\(528\) 0 0
\(529\) 6.88552 + 11.9261i 0.299371 + 0.518525i
\(530\) 0 0
\(531\) −10.5496 −0.457815
\(532\) 0 0
\(533\) 17.4492 0.755809
\(534\) 0 0
\(535\) 3.39263 + 5.87621i 0.146676 + 0.254051i
\(536\) 0 0
\(537\) −0.949862 1.64521i −0.0409896 0.0709960i
\(538\) 0 0
\(539\) 27.6101i 1.18925i
\(540\) 0 0
\(541\) 7.40522 12.8262i 0.318375 0.551442i −0.661774 0.749704i \(-0.730196\pi\)
0.980149 + 0.198261i \(0.0635294\pi\)
\(542\) 0 0
\(543\) 14.9146i 0.640045i
\(544\) 0 0
\(545\) 8.97651 + 5.18259i 0.384512 + 0.221998i
\(546\) 0 0
\(547\) −9.33681 + 16.1718i −0.399213 + 0.691458i −0.993629 0.112700i \(-0.964050\pi\)
0.594416 + 0.804158i \(0.297383\pi\)
\(548\) 0 0
\(549\) −1.45406 2.51851i −0.0620579 0.107488i
\(550\) 0 0
\(551\) −43.7736 + 4.52098i −1.86482 + 0.192600i
\(552\) 0 0
\(553\) −28.6922 + 16.5655i −1.22012 + 0.704435i
\(554\) 0 0
\(555\) 0.315480 + 0.182142i 0.0133914 + 0.00773151i
\(556\) 0 0
\(557\) 9.53546 16.5159i 0.404031 0.699801i −0.590178 0.807273i \(-0.700942\pi\)
0.994208 + 0.107472i \(0.0342756\pi\)
\(558\) 0 0
\(559\) −0.651502 −0.0275556
\(560\) 0 0
\(561\) −19.8016 11.4324i −0.836023 0.482678i
\(562\) 0 0
\(563\) −22.4464 −0.946004 −0.473002 0.881061i \(-0.656830\pi\)
−0.473002 + 0.881061i \(0.656830\pi\)
\(564\) 0 0
\(565\) −4.44896 + 2.56861i −0.187169 + 0.108062i
\(566\) 0 0
\(567\) −3.06659 + 1.77050i −0.128785 + 0.0743539i
\(568\) 0 0
\(569\) 28.8173i 1.20808i 0.796953 + 0.604041i \(0.206444\pi\)
−0.796953 + 0.604041i \(0.793556\pi\)
\(570\) 0 0
\(571\) 38.0508i 1.59238i 0.605048 + 0.796189i \(0.293154\pi\)
−0.605048 + 0.796189i \(0.706846\pi\)
\(572\) 0 0
\(573\) −12.8003 + 7.39024i −0.534739 + 0.308732i
\(574\) 0 0
\(575\) 23.1774 13.3815i 0.966566 0.558047i
\(576\) 0 0
\(577\) 30.8624 1.28482 0.642410 0.766361i \(-0.277935\pi\)
0.642410 + 0.766361i \(0.277935\pi\)
\(578\) 0 0
\(579\) −22.1644 12.7966i −0.921122 0.531810i
\(580\) 0 0
\(581\) 51.0961 2.11982
\(582\) 0 0
\(583\) −17.8056 + 30.8402i −0.737433 + 1.27727i
\(584\) 0 0
\(585\) −1.59637 0.921664i −0.0660017 0.0381061i
\(586\) 0 0
\(587\) 8.10606 4.68004i 0.334573 0.193166i −0.323297 0.946298i \(-0.604791\pi\)
0.657870 + 0.753132i \(0.271458\pi\)
\(588\) 0 0
\(589\) −26.8782 + 19.4542i −1.10750 + 0.801596i
\(590\) 0 0
\(591\) −4.93247 8.54328i −0.202895 0.351424i
\(592\) 0 0
\(593\) 3.60213 6.23907i 0.147922 0.256208i −0.782537 0.622604i \(-0.786075\pi\)
0.930459 + 0.366396i \(0.119408\pi\)
\(594\) 0 0
\(595\) 10.7721 + 6.21928i 0.441613 + 0.254965i
\(596\) 0 0
\(597\) 1.66257i 0.0680445i
\(598\) 0 0
\(599\) 0.462423 0.800940i 0.0188941 0.0327255i −0.856424 0.516274i \(-0.827319\pi\)
0.875318 + 0.483548i \(0.160652\pi\)
\(600\) 0 0
\(601\) 32.3262i 1.31861i 0.751874 + 0.659307i \(0.229150\pi\)
−0.751874 + 0.659307i \(0.770850\pi\)
\(602\) 0 0
\(603\) −6.84499 11.8559i −0.278750 0.482808i
\(604\) 0 0
\(605\) 5.30345 + 9.18584i 0.215616 + 0.373457i
\(606\) 0 0
\(607\) 16.2659 0.660213 0.330106 0.943944i \(-0.392915\pi\)
0.330106 + 0.943944i \(0.392915\pi\)
\(608\) 0 0
\(609\) 35.7491 1.44863
\(610\) 0 0
\(611\) 14.2595 + 24.6982i 0.576877 + 0.999181i
\(612\) 0 0
\(613\) −22.6606 39.2493i −0.915254 1.58527i −0.806529 0.591194i \(-0.798657\pi\)
−0.108724 0.994072i \(-0.534677\pi\)
\(614\) 0 0
\(615\) 5.55200i 0.223878i
\(616\) 0 0
\(617\) 4.21726 7.30450i 0.169780 0.294068i −0.768562 0.639775i \(-0.779028\pi\)
0.938343 + 0.345707i \(0.112361\pi\)
\(618\) 0 0
\(619\) 5.23372i 0.210361i 0.994453 + 0.105180i \(0.0335420\pi\)
−0.994453 + 0.105180i \(0.966458\pi\)
\(620\) 0 0
\(621\) 5.25150 + 3.03196i 0.210736 + 0.121668i
\(622\) 0 0
\(623\) −7.56538 + 13.1036i −0.303101 + 0.524985i
\(624\) 0 0
\(625\) −8.27316 14.3295i −0.330926 0.573181i
\(626\) 0 0
\(627\) 8.87378 19.8345i 0.354384 0.792112i
\(628\) 0 0
\(629\) −1.88947 + 1.09088i −0.0753379 + 0.0434964i
\(630\) 0 0
\(631\) 29.8529 + 17.2356i 1.18842 + 0.686137i 0.957948 0.286942i \(-0.0926386\pi\)
0.230475 + 0.973078i \(0.425972\pi\)
\(632\) 0 0
\(633\) −9.54849 + 16.5385i −0.379518 + 0.657345i
\(634\) 0 0
\(635\) −5.20441 −0.206531
\(636\) 0 0
\(637\) 11.5451 + 6.66559i 0.457435 + 0.264100i
\(638\) 0 0
\(639\) −3.03978 −0.120252
\(640\) 0 0
\(641\) −21.3314 + 12.3157i −0.842538 + 0.486440i −0.858126 0.513439i \(-0.828371\pi\)
0.0155879 + 0.999879i \(0.495038\pi\)
\(642\) 0 0
\(643\) 35.6236 20.5673i 1.40486 0.811096i 0.409973 0.912098i \(-0.365538\pi\)
0.994886 + 0.101002i \(0.0322048\pi\)
\(644\) 0 0
\(645\) 0.207296i 0.00816226i
\(646\) 0 0
\(647\) 22.0336i 0.866229i 0.901339 + 0.433115i \(0.142585\pi\)
−0.901339 + 0.433115i \(0.857415\pi\)
\(648\) 0 0
\(649\) −45.5440 + 26.2948i −1.78776 + 1.03216i
\(650\) 0 0
\(651\) 23.3429 13.4770i 0.914879 0.528206i
\(652\) 0 0
\(653\) −16.3470 −0.639708 −0.319854 0.947467i \(-0.603634\pi\)
−0.319854 + 0.947467i \(0.603634\pi\)
\(654\) 0 0
\(655\) −7.20572 4.16023i −0.281551 0.162554i
\(656\) 0 0
\(657\) 8.09639 0.315870
\(658\) 0 0
\(659\) 12.9432 22.4182i 0.504194 0.873290i −0.495794 0.868440i \(-0.665123\pi\)
0.999988 0.00484954i \(-0.00154366\pi\)
\(660\) 0 0
\(661\) 22.4003 + 12.9328i 0.871272 + 0.503029i 0.867771 0.496965i \(-0.165552\pi\)
0.00350098 + 0.999994i \(0.498886\pi\)
\(662\) 0 0
\(663\) 9.56095 5.52002i 0.371316 0.214380i
\(664\) 0 0
\(665\) −4.82735 + 10.7900i −0.187197 + 0.418418i
\(666\) 0 0
\(667\) −30.6100 53.0180i −1.18522 2.05287i
\(668\) 0 0
\(669\) 9.09785 15.7579i 0.351743 0.609237i
\(670\) 0 0
\(671\) −12.5547 7.24848i −0.484670 0.279824i
\(672\) 0 0
\(673\) 36.3544i 1.40136i −0.713476 0.700679i \(-0.752880\pi\)
0.713476 0.700679i \(-0.247120\pi\)
\(674\) 0 0
\(675\) 2.20674 3.82219i 0.0849376 0.147116i
\(676\) 0 0
\(677\) 11.0217i 0.423599i 0.977313 + 0.211800i \(0.0679324\pi\)
−0.977313 + 0.211800i \(0.932068\pi\)
\(678\) 0 0
\(679\) 26.9480 + 46.6754i 1.03417 + 1.79124i
\(680\) 0 0
\(681\) −2.91795 5.05403i −0.111816 0.193671i
\(682\) 0 0
\(683\) −14.5509 −0.556773 −0.278386 0.960469i \(-0.589800\pi\)
−0.278386 + 0.960469i \(0.589800\pi\)
\(684\) 0 0
\(685\) 12.3472 0.471763
\(686\) 0 0
\(687\) 2.57781 + 4.46489i 0.0983494 + 0.170346i
\(688\) 0 0
\(689\) −8.59722 14.8908i −0.327528 0.567295i
\(690\) 0 0
\(691\) 24.7586i 0.941861i −0.882170 0.470931i \(-0.843918\pi\)
0.882170 0.470931i \(-0.156082\pi\)
\(692\) 0 0
\(693\) −8.82589 + 15.2869i −0.335268 + 0.580701i
\(694\) 0 0
\(695\) 11.6582i 0.442221i
\(696\) 0 0
\(697\) 28.7970 + 16.6260i 1.09077 + 0.629754i
\(698\) 0 0
\(699\) 4.65031 8.05457i 0.175891 0.304652i
\(700\) 0 0
\(701\) −13.1949 22.8543i −0.498366 0.863196i 0.501632 0.865081i \(-0.332733\pi\)
−0.999998 + 0.00188540i \(0.999400\pi\)
\(702\) 0 0
\(703\) −1.21568 1.67960i −0.0458501 0.0633472i
\(704\) 0 0
\(705\) 7.85848 4.53710i 0.295968 0.170877i
\(706\) 0 0
\(707\) −32.9727 19.0368i −1.24006 0.715952i
\(708\) 0 0
\(709\) −8.64831 + 14.9793i −0.324794 + 0.562560i −0.981471 0.191612i \(-0.938628\pi\)
0.656677 + 0.754172i \(0.271962\pi\)
\(710\) 0 0
\(711\) 9.35638 0.350892
\(712\) 0 0
\(713\) −39.9744 23.0792i −1.49705 0.864323i
\(714\) 0 0
\(715\) −9.18895 −0.343647
\(716\) 0 0
\(717\) 16.7649 9.67923i 0.626097 0.361478i
\(718\) 0 0
\(719\) −13.3898 + 7.73061i −0.499356 + 0.288303i −0.728448 0.685102i \(-0.759758\pi\)
0.229092 + 0.973405i \(0.426424\pi\)
\(720\) 0 0
\(721\) 61.1518i 2.27741i
\(722\) 0 0
\(723\) 0.372501i 0.0138535i
\(724\) 0 0
\(725\) −38.5880 + 22.2788i −1.43312 + 0.827414i
\(726\) 0 0
\(727\) 5.19985 3.00213i 0.192852 0.111343i −0.400465 0.916312i \(-0.631151\pi\)
0.593317 + 0.804969i \(0.297818\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −1.07520 0.620766i −0.0397676 0.0229598i
\(732\) 0 0
\(733\) −15.5147 −0.573048 −0.286524 0.958073i \(-0.592500\pi\)
−0.286524 + 0.958073i \(0.592500\pi\)
\(734\) 0 0
\(735\) 2.12086 3.67344i 0.0782292 0.135497i
\(736\) 0 0
\(737\) −59.1012 34.1221i −2.17702 1.25690i
\(738\) 0 0
\(739\) −9.81188 + 5.66489i −0.360936 + 0.208386i −0.669491 0.742820i \(-0.733488\pi\)
0.308555 + 0.951206i \(0.400154\pi\)
\(740\) 0 0
\(741\) 6.15148 + 8.49898i 0.225980 + 0.312218i
\(742\) 0 0
\(743\) −8.03831 13.9228i −0.294897 0.510776i 0.680064 0.733153i \(-0.261952\pi\)
−0.974961 + 0.222376i \(0.928619\pi\)
\(744\) 0 0
\(745\) 1.33017 2.30393i 0.0487338 0.0844093i
\(746\) 0 0
\(747\) −12.4966 7.21494i −0.457228 0.263981i
\(748\) 0 0
\(749\) 31.3728i 1.14634i
\(750\) 0 0
\(751\) −12.5509 + 21.7389i −0.457990 + 0.793263i −0.998855 0.0478472i \(-0.984764\pi\)
0.540864 + 0.841110i \(0.318097\pi\)
\(752\) 0 0
\(753\) 17.0224i 0.620330i
\(754\) 0 0
\(755\) 4.82095 + 8.35013i 0.175452 + 0.303892i
\(756\) 0 0
\(757\) −20.2757 35.1185i −0.736931 1.27640i −0.953871 0.300217i \(-0.902941\pi\)
0.216940 0.976185i \(-0.430392\pi\)
\(758\) 0 0
\(759\) 30.2285 1.09722
\(760\) 0 0
\(761\) −38.2420 −1.38627 −0.693136 0.720807i \(-0.743771\pi\)
−0.693136 + 0.720807i \(0.743771\pi\)
\(762\) 0 0
\(763\) 23.9626 + 41.5045i 0.867505 + 1.50256i
\(764\) 0 0
\(765\) −1.75636 3.04211i −0.0635014 0.109988i
\(766\) 0 0
\(767\) 25.3923i 0.916861i
\(768\) 0 0
\(769\) 22.4975 38.9668i 0.811280 1.40518i −0.100688 0.994918i \(-0.532104\pi\)
0.911968 0.410261i \(-0.134562\pi\)
\(770\) 0 0
\(771\) 25.8227i 0.929981i
\(772\) 0 0
\(773\) −24.3891 14.0810i −0.877214 0.506460i −0.00747514 0.999972i \(-0.502379\pi\)
−0.869739 + 0.493512i \(0.835713\pi\)
\(774\) 0 0
\(775\) −16.7977 + 29.0945i −0.603391 + 1.04510i
\(776\) 0 0
\(777\) 0.842166 + 1.45868i 0.0302126 + 0.0523297i
\(778\) 0 0
\(779\) −12.9050 + 28.8449i −0.462368 + 1.03347i
\(780\) 0 0
\(781\) −13.1231 + 7.57662i −0.469581 + 0.271113i
\(782\) 0 0
\(783\) −8.74320 5.04789i −0.312456 0.180397i
\(784\) 0 0
\(785\) −6.08524 + 10.5399i −0.217192 + 0.376187i
\(786\) 0 0
\(787\) −33.8028 −1.20494 −0.602470 0.798142i \(-0.705817\pi\)
−0.602470 + 0.798142i \(0.705817\pi\)
\(788\) 0 0
\(789\) 5.19782 + 3.00096i 0.185047 + 0.106837i
\(790\) 0 0
\(791\) −23.7528 −0.844553
\(792\) 0 0
\(793\) 6.06190 3.49984i 0.215264 0.124283i
\(794\) 0 0
\(795\) −4.73797 + 2.73547i −0.168039 + 0.0970172i
\(796\) 0 0
\(797\) 13.9616i 0.494546i −0.968946 0.247273i \(-0.920466\pi\)
0.968946 0.247273i \(-0.0795344\pi\)
\(798\) 0 0
\(799\) 54.3470i 1.92266i
\(800\) 0 0
\(801\) 3.70055 2.13651i 0.130752 0.0754899i
\(802\) 0 0
\(803\) 34.9531 20.1802i 1.23347 0.712143i
\(804\) 0 0
\(805\) −16.4444 −0.579587
\(806\) 0 0
\(807\) −18.3179 10.5758i −0.644821 0.372287i
\(808\) 0 0
\(809\) 41.3510 1.45382 0.726911 0.686731i \(-0.240955\pi\)
0.726911 + 0.686731i \(0.240955\pi\)
\(810\) 0 0
\(811\) 7.65969 13.2670i 0.268968 0.465866i −0.699628 0.714508i \(-0.746651\pi\)
0.968596 + 0.248641i \(0.0799841\pi\)
\(812\) 0 0
\(813\) −18.6166 10.7483i −0.652912 0.376959i
\(814\) 0 0
\(815\) 11.7785 6.80031i 0.412582 0.238205i
\(816\) 0 0
\(817\) 0.481833 1.07698i 0.0168572 0.0376789i
\(818\) 0 0
\(819\) −4.26147 7.38109i −0.148908 0.257916i
\(820\) 0 0
\(821\) 13.6553 23.6517i 0.476575 0.825451i −0.523065 0.852293i \(-0.675212\pi\)
0.999640 + 0.0268413i \(0.00854489\pi\)
\(822\) 0 0
\(823\) −3.63942 2.10122i −0.126862 0.0732438i 0.435226 0.900321i \(-0.356668\pi\)
−0.562088 + 0.827077i \(0.690002\pi\)
\(824\) 0 0
\(825\) 22.0011i 0.765981i
\(826\) 0 0
\(827\) 0.981304 1.69967i 0.0341233 0.0591033i −0.848459 0.529260i \(-0.822469\pi\)
0.882583 + 0.470157i \(0.155803\pi\)
\(828\) 0 0
\(829\) 9.57003i 0.332381i 0.986094 + 0.166190i \(0.0531466\pi\)
−0.986094 + 0.166190i \(0.946853\pi\)
\(830\) 0 0
\(831\) −7.13601 12.3599i −0.247546 0.428761i
\(832\) 0 0
\(833\) 12.7022 + 22.0009i 0.440106 + 0.762287i
\(834\) 0 0
\(835\) −13.2839 −0.459710
\(836\) 0 0
\(837\) −7.61199 −0.263109
\(838\) 0 0
\(839\) 7.08677 + 12.2746i 0.244662 + 0.423768i 0.962037 0.272920i \(-0.0879895\pi\)
−0.717374 + 0.696688i \(0.754656\pi\)
\(840\) 0 0
\(841\) 36.4624 + 63.1547i 1.25732 + 2.17775i
\(842\) 0 0
\(843\) 12.7317i 0.438501i
\(844\) 0 0
\(845\) −2.75958 + 4.77973i −0.0949324 + 0.164428i
\(846\) 0 0
\(847\) 49.0428i 1.68513i
\(848\) 0 0
\(849\) −22.1454 12.7857i −0.760029 0.438803i
\(850\) 0 0
\(851\) 1.44220 2.49796i 0.0494380 0.0856291i
\(852\) 0 0
\(853\) 6.49133 + 11.2433i 0.222259 + 0.384964i 0.955494 0.295012i \(-0.0953237\pi\)
−0.733235 + 0.679976i \(0.761990\pi\)
\(854\) 0 0
\(855\) 2.70421 1.95728i 0.0924821 0.0669377i
\(856\) 0 0
\(857\) −6.91087 + 3.98999i −0.236071 + 0.136296i −0.613369 0.789796i \(-0.710186\pi\)
0.377299 + 0.926092i \(0.376853\pi\)
\(858\) 0 0
\(859\) −19.4044 11.2032i −0.662071 0.382247i 0.130995 0.991383i \(-0.458183\pi\)
−0.793066 + 0.609136i \(0.791516\pi\)
\(860\) 0 0
\(861\) 12.8353 22.2314i 0.437426 0.757645i
\(862\) 0 0
\(863\) 12.1588 0.413891 0.206945 0.978352i \(-0.433648\pi\)
0.206945 + 0.978352i \(0.433648\pi\)
\(864\) 0 0
\(865\) 0.774307 + 0.447046i 0.0263272 + 0.0152000i
\(866\) 0 0
\(867\) 4.03836 0.137150
\(868\) 0 0
\(869\) 40.3926 23.3207i 1.37022 0.791100i
\(870\) 0 0
\(871\) 28.5363 16.4754i 0.966916 0.558249i
\(872\) 0 0
\(873\) 15.2206i 0.515139i
\(874\) 0 0
\(875\) 25.5279i 0.862999i
\(876\) 0 0
\(877\) −5.01764 + 2.89694i −0.169434 + 0.0978227i −0.582319 0.812960i \(-0.697854\pi\)
0.412885 + 0.910783i \(0.364521\pi\)
\(878\) 0 0
\(879\) −3.72629 + 2.15137i −0.125685 + 0.0725641i
\(880\) 0 0
\(881\) 35.6938 1.20255 0.601277 0.799041i \(-0.294659\pi\)
0.601277 + 0.799041i \(0.294659\pi\)
\(882\) 0 0
\(883\) 15.9300 + 9.19717i 0.536086 + 0.309510i 0.743491 0.668746i \(-0.233168\pi\)
−0.207405 + 0.978255i \(0.566502\pi\)
\(884\) 0 0
\(885\) −8.07933 −0.271584
\(886\) 0 0
\(887\) −1.90551 + 3.30044i −0.0639808 + 0.110818i −0.896241 0.443567i \(-0.853713\pi\)
0.832261 + 0.554385i \(0.187046\pi\)
\(888\) 0 0
\(889\) −20.8396 12.0317i −0.698938 0.403532i
\(890\) 0 0
\(891\) 4.31712 2.49249i 0.144629 0.0835015i
\(892\) 0 0
\(893\) −51.3739 + 5.30595i −1.71916 + 0.177557i
\(894\) 0 0
\(895\) −0.727443 1.25997i −0.0243157 0.0421161i
\(896\) 0 0
\(897\) −7.29772 + 12.6400i −0.243664 + 0.422038i
\(898\) 0 0
\(899\) 66.5531 + 38.4245i 2.21967 + 1.28153i
\(900\) 0 0
\(901\) 32.7665i 1.09161i
\(902\) 0 0
\(903\) −0.479233 + 0.830057i −0.0159479 + 0.0276226i
\(904\) 0 0
\(905\) 11.4222i 0.379686i
\(906\) 0 0
\(907\) 7.73022 + 13.3891i 0.256678 + 0.444579i 0.965350 0.260959i \(-0.0840388\pi\)
−0.708672 + 0.705538i \(0.750705\pi\)
\(908\) 0 0
\(909\) 5.37611 + 9.31169i 0.178314 + 0.308849i
\(910\) 0 0
\(911\) −16.9523 −0.561655 −0.280827 0.959758i \(-0.590609\pi\)
−0.280827 + 0.959758i \(0.590609\pi\)
\(912\) 0 0
\(913\) −71.9326 −2.38062
\(914\) 0 0
\(915\) −1.11358 1.92878i −0.0368139 0.0637635i
\(916\) 0 0
\(917\) −19.2355 33.3169i −0.635213 1.10022i
\(918\) 0 0
\(919\) 2.52503i 0.0832930i 0.999132 + 0.0416465i \(0.0132603\pi\)
−0.999132 + 0.0416465i \(0.986740\pi\)
\(920\) 0 0
\(921\) −10.4130 + 18.0358i −0.343120 + 0.594301i
\(922\) 0 0
\(923\) 7.31656i 0.240827i
\(924\) 0 0
\(925\) −1.81809 1.04967i −0.0597784 0.0345131i
\(926\) 0 0
\(927\) −8.63483 + 14.9560i −0.283605 + 0.491219i
\(928\) 0 0
\(929\) −8.66440 15.0072i −0.284270 0.492370i 0.688162 0.725557i \(-0.258418\pi\)
−0.972432 + 0.233187i \(0.925085\pi\)
\(930\) 0 0
\(931\) −19.5572 + 14.1553i −0.640961 + 0.463922i
\(932\) 0 0
\(933\) −14.5060 + 8.37504i −0.474905 + 0.274187i
\(934\) 0 0
\(935\) −15.1649 8.75543i −0.495944 0.286333i
\(936\) 0 0
\(937\) 16.1887 28.0396i 0.528861 0.916015i −0.470572 0.882361i \(-0.655952\pi\)
0.999434 0.0336533i \(-0.0107142\pi\)
\(938\) 0 0
\(939\) −18.3051 −0.597363
\(940\) 0 0
\(941\) −0.547543 0.316124i −0.0178494 0.0103053i 0.491049 0.871132i \(-0.336614\pi\)
−0.508898 + 0.860827i \(0.669947\pi\)
\(942\) 0 0
\(943\) −43.9607 −1.43156
\(944\) 0 0
\(945\) −2.34852 + 1.35592i −0.0763974 + 0.0441081i
\(946\) 0 0
\(947\) −23.0392 + 13.3017i −0.748672 + 0.432246i −0.825214 0.564820i \(-0.808945\pi\)
0.0765417 + 0.997066i \(0.475612\pi\)
\(948\) 0 0
\(949\) 19.4875i 0.632591i
\(950\) 0 0
\(951\) 0.658516i 0.0213538i
\(952\) 0 0
\(953\) 4.93313 2.84815i 0.159800 0.0922605i −0.417968 0.908462i \(-0.637257\pi\)
0.577767 + 0.816201i \(0.303924\pi\)
\(954\) 0 0
\(955\) −9.80296 + 5.65974i −0.317216 + 0.183145i
\(956\) 0 0
\(957\) −50.3272 −1.62685
\(958\) 0 0
\(959\) 49.4410 + 28.5448i 1.59653 + 0.921758i
\(960\) 0 0
\(961\) 26.9423 0.869108
\(962\) 0 0
\(963\) 4.42995 7.67289i 0.142753 0.247255i
\(964\) 0 0
\(965\) −16.9744 9.80019i −0.546426 0.315479i
\(966\) 0 0
\(967\) −32.3670 + 18.6871i −1.04085 + 0.600937i −0.920075 0.391743i \(-0.871872\pi\)
−0.120778 + 0.992680i \(0.538539\pi\)
\(968\) 0 0
\(969\) 2.05399 + 19.8874i 0.0659838 + 0.638876i
\(970\) 0 0
\(971\) −7.63248 13.2198i −0.244938 0.424245i 0.717176 0.696892i \(-0.245434\pi\)
−0.962114 + 0.272647i \(0.912101\pi\)
\(972\) 0 0
\(973\) −26.9519 + 46.6820i −0.864037 + 1.49656i
\(974\) 0 0
\(975\) 9.19977 + 5.31149i 0.294628 + 0.170104i
\(976\) 0 0
\(977\) 12.2300i 0.391274i 0.980676 + 0.195637i \(0.0626774\pi\)
−0.980676 + 0.195637i \(0.937323\pi\)
\(978\) 0 0
\(979\) 10.6505 18.4471i 0.340390 0.589573i
\(980\) 0 0
\(981\) 13.5344i 0.432120i
\(982\) 0 0
\(983\) −5.41249 9.37471i −0.172632 0.299007i 0.766707 0.641997i \(-0.221894\pi\)
−0.939339 + 0.342990i \(0.888560\pi\)
\(984\) 0 0
\(985\) −3.77748 6.54279i −0.120361 0.208471i
\(986\) 0 0
\(987\) 41.9561 1.33548
\(988\) 0 0
\(989\) 1.64136 0.0521923
\(990\) 0 0
\(991\) 6.73008 + 11.6568i 0.213788 + 0.370292i 0.952897 0.303294i \(-0.0980864\pi\)
−0.739109 + 0.673586i \(0.764753\pi\)
\(992\) 0 0
\(993\) −4.47661 7.75371i −0.142061 0.246057i
\(994\) 0 0
\(995\) 1.27326i 0.0403652i
\(996\) 0 0
\(997\) 15.9323 27.5955i 0.504581 0.873960i −0.495405 0.868662i \(-0.664980\pi\)
0.999986 0.00529757i \(-0.00168628\pi\)
\(998\) 0 0
\(999\) 0.475666i 0.0150494i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.bb.a.31.8 40
4.3 odd 2 1824.2.bb.b.31.8 yes 40
19.8 odd 6 1824.2.bb.b.1471.8 yes 40
76.27 even 6 inner 1824.2.bb.a.1471.8 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.bb.a.31.8 40 1.1 even 1 trivial
1824.2.bb.a.1471.8 yes 40 76.27 even 6 inner
1824.2.bb.b.31.8 yes 40 4.3 odd 2
1824.2.bb.b.1471.8 yes 40 19.8 odd 6