Properties

Label 1824.2.bb.a.31.14
Level $1824$
Weight $2$
Character 1824.31
Analytic conductor $14.565$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(31,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.14
Character \(\chi\) \(=\) 1824.31
Dual form 1824.2.bb.a.1471.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +(0.680039 + 1.17786i) q^{5} +3.19193i q^{7} +(-0.500000 + 0.866025i) q^{9} -0.815036i q^{11} +(2.19194 + 1.26551i) q^{13} +(0.680039 - 1.17786i) q^{15} +(-1.26229 - 2.18635i) q^{17} +(-2.03784 + 3.85321i) q^{19} +(2.76429 - 1.59596i) q^{21} +(0.396301 + 0.228805i) q^{23} +(1.57509 - 2.72814i) q^{25} +1.00000 q^{27} +(5.37187 + 3.10145i) q^{29} -5.98492 q^{31} +(-0.705842 + 0.407518i) q^{33} +(-3.75965 + 2.17063i) q^{35} +7.06140i q^{37} -2.53103i q^{39} +(-4.33973 + 2.50554i) q^{41} +(-9.05081 + 5.22549i) q^{43} -1.36008 q^{45} +(-1.58170 - 0.913193i) q^{47} -3.18840 q^{49} +(-1.26229 + 2.18635i) q^{51} +(-1.88215 - 1.08666i) q^{53} +(0.960000 - 0.554257i) q^{55} +(4.35590 - 0.161782i) q^{57} +(-2.98569 - 5.17136i) q^{59} +(0.497154 - 0.861096i) q^{61} +(-2.76429 - 1.59596i) q^{63} +3.44240i q^{65} +(-2.82835 + 4.89884i) q^{67} -0.457609i q^{69} +(3.55868 + 6.16382i) q^{71} +(-0.533501 - 0.924052i) q^{73} -3.15019 q^{75} +2.60154 q^{77} +(-1.26133 - 2.18469i) q^{79} +(-0.500000 - 0.866025i) q^{81} +13.1722i q^{83} +(1.71681 - 2.97361i) q^{85} -6.20290i q^{87} +(6.83357 + 3.94536i) q^{89} +(-4.03943 + 6.99650i) q^{91} +(2.99246 + 5.18309i) q^{93} +(-5.92436 + 0.220036i) q^{95} +(1.14814 - 0.662881i) q^{97} +(0.705842 + 0.407518i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 20 q^{3} - 20 q^{9} - 12 q^{13} + 8 q^{19} - 12 q^{21} - 20 q^{25} + 40 q^{27} - 40 q^{31} + 24 q^{41} - 12 q^{43} + 24 q^{47} - 16 q^{49} - 24 q^{53} - 4 q^{57} - 4 q^{61} + 12 q^{63} + 4 q^{67}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) 0.680039 + 1.17786i 0.304123 + 0.526756i 0.977066 0.212938i \(-0.0683034\pi\)
−0.672943 + 0.739694i \(0.734970\pi\)
\(6\) 0 0
\(7\) 3.19193i 1.20643i 0.797577 + 0.603217i \(0.206115\pi\)
−0.797577 + 0.603217i \(0.793885\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 0.815036i 0.245743i −0.992423 0.122871i \(-0.960790\pi\)
0.992423 0.122871i \(-0.0392103\pi\)
\(12\) 0 0
\(13\) 2.19194 + 1.26551i 0.607933 + 0.350991i 0.772156 0.635433i \(-0.219178\pi\)
−0.164223 + 0.986423i \(0.552512\pi\)
\(14\) 0 0
\(15\) 0.680039 1.17786i 0.175585 0.304123i
\(16\) 0 0
\(17\) −1.26229 2.18635i −0.306150 0.530268i 0.671367 0.741125i \(-0.265708\pi\)
−0.977517 + 0.210858i \(0.932374\pi\)
\(18\) 0 0
\(19\) −2.03784 + 3.85321i −0.467513 + 0.883986i
\(20\) 0 0
\(21\) 2.76429 1.59596i 0.603217 0.348268i
\(22\) 0 0
\(23\) 0.396301 + 0.228805i 0.0826346 + 0.0477091i 0.540748 0.841185i \(-0.318141\pi\)
−0.458113 + 0.888894i \(0.651475\pi\)
\(24\) 0 0
\(25\) 1.57509 2.72814i 0.315019 0.545628i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 5.37187 + 3.10145i 0.997531 + 0.575925i 0.907517 0.420016i \(-0.137975\pi\)
0.0900143 + 0.995940i \(0.471309\pi\)
\(30\) 0 0
\(31\) −5.98492 −1.07492 −0.537461 0.843288i \(-0.680617\pi\)
−0.537461 + 0.843288i \(0.680617\pi\)
\(32\) 0 0
\(33\) −0.705842 + 0.407518i −0.122871 + 0.0709398i
\(34\) 0 0
\(35\) −3.75965 + 2.17063i −0.635497 + 0.366904i
\(36\) 0 0
\(37\) 7.06140i 1.16089i 0.814301 + 0.580443i \(0.197121\pi\)
−0.814301 + 0.580443i \(0.802879\pi\)
\(38\) 0 0
\(39\) 2.53103i 0.405289i
\(40\) 0 0
\(41\) −4.33973 + 2.50554i −0.677752 + 0.391300i −0.799007 0.601321i \(-0.794641\pi\)
0.121256 + 0.992621i \(0.461308\pi\)
\(42\) 0 0
\(43\) −9.05081 + 5.22549i −1.38024 + 0.796879i −0.992187 0.124760i \(-0.960184\pi\)
−0.388048 + 0.921639i \(0.626851\pi\)
\(44\) 0 0
\(45\) −1.36008 −0.202748
\(46\) 0 0
\(47\) −1.58170 0.913193i −0.230714 0.133203i 0.380187 0.924910i \(-0.375860\pi\)
−0.610902 + 0.791707i \(0.709193\pi\)
\(48\) 0 0
\(49\) −3.18840 −0.455485
\(50\) 0 0
\(51\) −1.26229 + 2.18635i −0.176756 + 0.306150i
\(52\) 0 0
\(53\) −1.88215 1.08666i −0.258533 0.149264i 0.365132 0.930956i \(-0.381024\pi\)
−0.623665 + 0.781691i \(0.714357\pi\)
\(54\) 0 0
\(55\) 0.960000 0.554257i 0.129446 0.0747359i
\(56\) 0 0
\(57\) 4.35590 0.161782i 0.576952 0.0214286i
\(58\) 0 0
\(59\) −2.98569 5.17136i −0.388703 0.673254i 0.603572 0.797308i \(-0.293744\pi\)
−0.992275 + 0.124054i \(0.960410\pi\)
\(60\) 0 0
\(61\) 0.497154 0.861096i 0.0636541 0.110252i −0.832442 0.554112i \(-0.813058\pi\)
0.896096 + 0.443860i \(0.146391\pi\)
\(62\) 0 0
\(63\) −2.76429 1.59596i −0.348268 0.201072i
\(64\) 0 0
\(65\) 3.44240i 0.426977i
\(66\) 0 0
\(67\) −2.82835 + 4.89884i −0.345538 + 0.598489i −0.985451 0.169958i \(-0.945637\pi\)
0.639914 + 0.768447i \(0.278970\pi\)
\(68\) 0 0
\(69\) 0.457609i 0.0550897i
\(70\) 0 0
\(71\) 3.55868 + 6.16382i 0.422338 + 0.731511i 0.996168 0.0874637i \(-0.0278762\pi\)
−0.573830 + 0.818975i \(0.694543\pi\)
\(72\) 0 0
\(73\) −0.533501 0.924052i −0.0624416 0.108152i 0.833115 0.553100i \(-0.186555\pi\)
−0.895556 + 0.444948i \(0.853222\pi\)
\(74\) 0 0
\(75\) −3.15019 −0.363752
\(76\) 0 0
\(77\) 2.60154 0.296473
\(78\) 0 0
\(79\) −1.26133 2.18469i −0.141911 0.245796i 0.786305 0.617838i \(-0.211991\pi\)
−0.928216 + 0.372042i \(0.878658\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 13.1722i 1.44584i 0.690931 + 0.722921i \(0.257201\pi\)
−0.690931 + 0.722921i \(0.742799\pi\)
\(84\) 0 0
\(85\) 1.71681 2.97361i 0.186214 0.322533i
\(86\) 0 0
\(87\) 6.20290i 0.665021i
\(88\) 0 0
\(89\) 6.83357 + 3.94536i 0.724357 + 0.418208i 0.816354 0.577552i \(-0.195992\pi\)
−0.0919973 + 0.995759i \(0.529325\pi\)
\(90\) 0 0
\(91\) −4.03943 + 6.99650i −0.423447 + 0.733432i
\(92\) 0 0
\(93\) 2.99246 + 5.18309i 0.310303 + 0.537461i
\(94\) 0 0
\(95\) −5.92436 + 0.220036i −0.607826 + 0.0225753i
\(96\) 0 0
\(97\) 1.14814 0.662881i 0.116576 0.0673054i −0.440578 0.897714i \(-0.645226\pi\)
0.557154 + 0.830409i \(0.311893\pi\)
\(98\) 0 0
\(99\) 0.705842 + 0.407518i 0.0709398 + 0.0409571i
\(100\) 0 0
\(101\) −4.95412 + 8.58078i −0.492953 + 0.853820i −0.999967 0.00811820i \(-0.997416\pi\)
0.507014 + 0.861938i \(0.330749\pi\)
\(102\) 0 0
\(103\) −0.522149 −0.0514488 −0.0257244 0.999669i \(-0.508189\pi\)
−0.0257244 + 0.999669i \(0.508189\pi\)
\(104\) 0 0
\(105\) 3.75965 + 2.17063i 0.366904 + 0.211832i
\(106\) 0 0
\(107\) −4.51235 −0.436225 −0.218113 0.975924i \(-0.569990\pi\)
−0.218113 + 0.975924i \(0.569990\pi\)
\(108\) 0 0
\(109\) −12.4683 + 7.19855i −1.19424 + 0.689497i −0.959266 0.282504i \(-0.908835\pi\)
−0.234977 + 0.972001i \(0.575501\pi\)
\(110\) 0 0
\(111\) 6.11535 3.53070i 0.580443 0.335119i
\(112\) 0 0
\(113\) 13.5013i 1.27010i 0.772472 + 0.635049i \(0.219020\pi\)
−0.772472 + 0.635049i \(0.780980\pi\)
\(114\) 0 0
\(115\) 0.622385i 0.0580377i
\(116\) 0 0
\(117\) −2.19194 + 1.26551i −0.202644 + 0.116997i
\(118\) 0 0
\(119\) 6.97867 4.02914i 0.639734 0.369350i
\(120\) 0 0
\(121\) 10.3357 0.939611
\(122\) 0 0
\(123\) 4.33973 + 2.50554i 0.391300 + 0.225917i
\(124\) 0 0
\(125\) 11.0849 0.991463
\(126\) 0 0
\(127\) 5.96269 10.3277i 0.529104 0.916434i −0.470320 0.882496i \(-0.655862\pi\)
0.999424 0.0339384i \(-0.0108050\pi\)
\(128\) 0 0
\(129\) 9.05081 + 5.22549i 0.796879 + 0.460078i
\(130\) 0 0
\(131\) 8.95943 5.17273i 0.782789 0.451944i −0.0546287 0.998507i \(-0.517398\pi\)
0.837418 + 0.546563i \(0.184064\pi\)
\(132\) 0 0
\(133\) −12.2992 6.50464i −1.06647 0.564024i
\(134\) 0 0
\(135\) 0.680039 + 1.17786i 0.0585284 + 0.101374i
\(136\) 0 0
\(137\) 2.61102 4.52243i 0.223075 0.386377i −0.732665 0.680589i \(-0.761724\pi\)
0.955740 + 0.294212i \(0.0950572\pi\)
\(138\) 0 0
\(139\) 0.253607 + 0.146420i 0.0215107 + 0.0124192i 0.510717 0.859749i \(-0.329380\pi\)
−0.489206 + 0.872168i \(0.662713\pi\)
\(140\) 0 0
\(141\) 1.82639i 0.153810i
\(142\) 0 0
\(143\) 1.03144 1.78651i 0.0862534 0.149395i
\(144\) 0 0
\(145\) 8.43643i 0.700607i
\(146\) 0 0
\(147\) 1.59420 + 2.76123i 0.131487 + 0.227743i
\(148\) 0 0
\(149\) 6.53165 + 11.3131i 0.535093 + 0.926809i 0.999159 + 0.0410079i \(0.0130569\pi\)
−0.464066 + 0.885801i \(0.653610\pi\)
\(150\) 0 0
\(151\) −6.88190 −0.560041 −0.280021 0.959994i \(-0.590341\pi\)
−0.280021 + 0.959994i \(0.590341\pi\)
\(152\) 0 0
\(153\) 2.52458 0.204100
\(154\) 0 0
\(155\) −4.06998 7.04941i −0.326908 0.566222i
\(156\) 0 0
\(157\) 3.63921 + 6.30330i 0.290441 + 0.503058i 0.973914 0.226918i \(-0.0728648\pi\)
−0.683473 + 0.729975i \(0.739531\pi\)
\(158\) 0 0
\(159\) 2.17332i 0.172356i
\(160\) 0 0
\(161\) −0.730328 + 1.26497i −0.0575579 + 0.0996932i
\(162\) 0 0
\(163\) 25.1818i 1.97239i 0.165589 + 0.986195i \(0.447047\pi\)
−0.165589 + 0.986195i \(0.552953\pi\)
\(164\) 0 0
\(165\) −0.960000 0.554257i −0.0747359 0.0431488i
\(166\) 0 0
\(167\) 9.24028 16.0046i 0.715034 1.23848i −0.247912 0.968783i \(-0.579744\pi\)
0.962946 0.269693i \(-0.0869222\pi\)
\(168\) 0 0
\(169\) −3.29695 5.71048i −0.253611 0.439268i
\(170\) 0 0
\(171\) −2.31806 3.69143i −0.177266 0.282290i
\(172\) 0 0
\(173\) 20.3193 11.7313i 1.54484 0.891916i 0.546322 0.837575i \(-0.316027\pi\)
0.998522 0.0543413i \(-0.0173059\pi\)
\(174\) 0 0
\(175\) 8.70803 + 5.02758i 0.658265 + 0.380050i
\(176\) 0 0
\(177\) −2.98569 + 5.17136i −0.224418 + 0.388703i
\(178\) 0 0
\(179\) −4.88650 −0.365234 −0.182617 0.983184i \(-0.558457\pi\)
−0.182617 + 0.983184i \(0.558457\pi\)
\(180\) 0 0
\(181\) −11.5109 6.64584i −0.855602 0.493982i 0.00693538 0.999976i \(-0.497792\pi\)
−0.862537 + 0.505994i \(0.831126\pi\)
\(182\) 0 0
\(183\) −0.994308 −0.0735014
\(184\) 0 0
\(185\) −8.31735 + 4.80202i −0.611504 + 0.353052i
\(186\) 0 0
\(187\) −1.78195 + 1.02881i −0.130309 + 0.0752342i
\(188\) 0 0
\(189\) 3.19193i 0.232179i
\(190\) 0 0
\(191\) 1.87431i 0.135620i 0.997698 + 0.0678102i \(0.0216012\pi\)
−0.997698 + 0.0678102i \(0.978399\pi\)
\(192\) 0 0
\(193\) −14.6260 + 8.44430i −1.05280 + 0.607834i −0.923432 0.383763i \(-0.874628\pi\)
−0.129367 + 0.991597i \(0.541295\pi\)
\(194\) 0 0
\(195\) 2.98120 1.72120i 0.213488 0.123258i
\(196\) 0 0
\(197\) 20.2011 1.43927 0.719633 0.694355i \(-0.244310\pi\)
0.719633 + 0.694355i \(0.244310\pi\)
\(198\) 0 0
\(199\) −11.9245 6.88462i −0.845306 0.488038i 0.0137580 0.999905i \(-0.495621\pi\)
−0.859064 + 0.511867i \(0.828954\pi\)
\(200\) 0 0
\(201\) 5.65670 0.398993
\(202\) 0 0
\(203\) −9.89960 + 17.1466i −0.694816 + 1.20346i
\(204\) 0 0
\(205\) −5.90237 3.40773i −0.412239 0.238006i
\(206\) 0 0
\(207\) −0.396301 + 0.228805i −0.0275449 + 0.0159030i
\(208\) 0 0
\(209\) 3.14050 + 1.66091i 0.217233 + 0.114888i
\(210\) 0 0
\(211\) 11.1743 + 19.3544i 0.769267 + 1.33241i 0.937961 + 0.346742i \(0.112712\pi\)
−0.168693 + 0.985669i \(0.553955\pi\)
\(212\) 0 0
\(213\) 3.55868 6.16382i 0.243837 0.422338i
\(214\) 0 0
\(215\) −12.3098 7.10707i −0.839522 0.484698i
\(216\) 0 0
\(217\) 19.1034i 1.29682i
\(218\) 0 0
\(219\) −0.533501 + 0.924052i −0.0360507 + 0.0624416i
\(220\) 0 0
\(221\) 6.38978i 0.429823i
\(222\) 0 0
\(223\) 8.05761 + 13.9562i 0.539577 + 0.934575i 0.998927 + 0.0463196i \(0.0147493\pi\)
−0.459349 + 0.888256i \(0.651917\pi\)
\(224\) 0 0
\(225\) 1.57509 + 2.72814i 0.105006 + 0.181876i
\(226\) 0 0
\(227\) −8.98401 −0.596290 −0.298145 0.954521i \(-0.596368\pi\)
−0.298145 + 0.954521i \(0.596368\pi\)
\(228\) 0 0
\(229\) −20.0571 −1.32541 −0.662706 0.748880i \(-0.730592\pi\)
−0.662706 + 0.748880i \(0.730592\pi\)
\(230\) 0 0
\(231\) −1.30077 2.25300i −0.0855843 0.148236i
\(232\) 0 0
\(233\) −2.16481 3.74957i −0.141822 0.245642i 0.786361 0.617767i \(-0.211963\pi\)
−0.928183 + 0.372125i \(0.878629\pi\)
\(234\) 0 0
\(235\) 2.48403i 0.162040i
\(236\) 0 0
\(237\) −1.26133 + 2.18469i −0.0819321 + 0.141911i
\(238\) 0 0
\(239\) 9.34522i 0.604492i −0.953230 0.302246i \(-0.902264\pi\)
0.953230 0.302246i \(-0.0977364\pi\)
\(240\) 0 0
\(241\) −9.78580 5.64984i −0.630359 0.363938i 0.150532 0.988605i \(-0.451901\pi\)
−0.780891 + 0.624667i \(0.785235\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) −2.16823 3.75549i −0.138523 0.239930i
\(246\) 0 0
\(247\) −9.34310 + 5.86706i −0.594487 + 0.373312i
\(248\) 0 0
\(249\) 11.4075 6.58612i 0.722921 0.417379i
\(250\) 0 0
\(251\) 18.3054 + 10.5686i 1.15543 + 0.667085i 0.950203 0.311630i \(-0.100875\pi\)
0.205222 + 0.978715i \(0.434208\pi\)
\(252\) 0 0
\(253\) 0.186484 0.323000i 0.0117242 0.0203068i
\(254\) 0 0
\(255\) −3.43363 −0.215022
\(256\) 0 0
\(257\) −14.2020 8.19950i −0.885894 0.511471i −0.0132965 0.999912i \(-0.504233\pi\)
−0.872597 + 0.488441i \(0.837566\pi\)
\(258\) 0 0
\(259\) −22.5395 −1.40053
\(260\) 0 0
\(261\) −5.37187 + 3.10145i −0.332510 + 0.191975i
\(262\) 0 0
\(263\) 18.6815 10.7858i 1.15195 0.665080i 0.202590 0.979264i \(-0.435064\pi\)
0.949362 + 0.314184i \(0.101731\pi\)
\(264\) 0 0
\(265\) 2.95589i 0.181579i
\(266\) 0 0
\(267\) 7.89073i 0.482905i
\(268\) 0 0
\(269\) 17.8072 10.2810i 1.08572 0.626842i 0.153288 0.988182i \(-0.451014\pi\)
0.932434 + 0.361340i \(0.117681\pi\)
\(270\) 0 0
\(271\) 1.29676 0.748682i 0.0787723 0.0454792i −0.460097 0.887869i \(-0.652185\pi\)
0.538869 + 0.842390i \(0.318852\pi\)
\(272\) 0 0
\(273\) 8.07886 0.488955
\(274\) 0 0
\(275\) −2.22354 1.28376i −0.134084 0.0774136i
\(276\) 0 0
\(277\) −9.23660 −0.554973 −0.277487 0.960729i \(-0.589501\pi\)
−0.277487 + 0.960729i \(0.589501\pi\)
\(278\) 0 0
\(279\) 2.99246 5.18309i 0.179154 0.310303i
\(280\) 0 0
\(281\) −9.31629 5.37876i −0.555763 0.320870i 0.195680 0.980668i \(-0.437309\pi\)
−0.751443 + 0.659798i \(0.770642\pi\)
\(282\) 0 0
\(283\) 16.6346 9.60401i 0.988826 0.570899i 0.0839028 0.996474i \(-0.473261\pi\)
0.904923 + 0.425575i \(0.139928\pi\)
\(284\) 0 0
\(285\) 3.15274 + 5.02063i 0.186752 + 0.297396i
\(286\) 0 0
\(287\) −7.99751 13.8521i −0.472078 0.817663i
\(288\) 0 0
\(289\) 5.31325 9.20282i 0.312544 0.541342i
\(290\) 0 0
\(291\) −1.14814 0.662881i −0.0673054 0.0388588i
\(292\) 0 0
\(293\) 3.18687i 0.186179i 0.995658 + 0.0930896i \(0.0296743\pi\)
−0.995658 + 0.0930896i \(0.970326\pi\)
\(294\) 0 0
\(295\) 4.06077 7.03346i 0.236427 0.409504i
\(296\) 0 0
\(297\) 0.815036i 0.0472932i
\(298\) 0 0
\(299\) 0.579111 + 1.00305i 0.0334909 + 0.0580079i
\(300\) 0 0
\(301\) −16.6794 28.8895i −0.961383 1.66516i
\(302\) 0 0
\(303\) 9.90823 0.569213
\(304\) 0 0
\(305\) 1.35234 0.0774346
\(306\) 0 0
\(307\) −8.62186 14.9335i −0.492075 0.852300i 0.507883 0.861426i \(-0.330428\pi\)
−0.999958 + 0.00912646i \(0.997095\pi\)
\(308\) 0 0
\(309\) 0.261074 + 0.452194i 0.0148520 + 0.0257244i
\(310\) 0 0
\(311\) 6.63930i 0.376480i −0.982123 0.188240i \(-0.939722\pi\)
0.982123 0.188240i \(-0.0602783\pi\)
\(312\) 0 0
\(313\) 2.13197 3.69268i 0.120506 0.208723i −0.799461 0.600718i \(-0.794882\pi\)
0.919967 + 0.391995i \(0.128215\pi\)
\(314\) 0 0
\(315\) 4.34127i 0.244603i
\(316\) 0 0
\(317\) −22.7804 13.1523i −1.27947 0.738705i −0.302723 0.953079i \(-0.597896\pi\)
−0.976752 + 0.214374i \(0.931229\pi\)
\(318\) 0 0
\(319\) 2.52779 4.37827i 0.141529 0.245136i
\(320\) 0 0
\(321\) 2.25617 + 3.90781i 0.125927 + 0.218113i
\(322\) 0 0
\(323\) 10.9968 0.408432i 0.611879 0.0227258i
\(324\) 0 0
\(325\) 6.90501 3.98661i 0.383021 0.221137i
\(326\) 0 0
\(327\) 12.4683 + 7.19855i 0.689497 + 0.398081i
\(328\) 0 0
\(329\) 2.91485 5.04866i 0.160701 0.278342i
\(330\) 0 0
\(331\) −23.0448 −1.26666 −0.633328 0.773884i \(-0.718312\pi\)
−0.633328 + 0.773884i \(0.718312\pi\)
\(332\) 0 0
\(333\) −6.11535 3.53070i −0.335119 0.193481i
\(334\) 0 0
\(335\) −7.69355 −0.420344
\(336\) 0 0
\(337\) −17.3138 + 9.99611i −0.943141 + 0.544523i −0.890944 0.454114i \(-0.849956\pi\)
−0.0521976 + 0.998637i \(0.516623\pi\)
\(338\) 0 0
\(339\) 11.6925 6.75066i 0.635049 0.366646i
\(340\) 0 0
\(341\) 4.87792i 0.264154i
\(342\) 0 0
\(343\) 12.1664i 0.656922i
\(344\) 0 0
\(345\) 0.539001 0.311192i 0.0290188 0.0167540i
\(346\) 0 0
\(347\) 13.6726 7.89388i 0.733984 0.423766i −0.0858941 0.996304i \(-0.527375\pi\)
0.819878 + 0.572539i \(0.194041\pi\)
\(348\) 0 0
\(349\) 14.5286 0.777699 0.388849 0.921301i \(-0.372873\pi\)
0.388849 + 0.921301i \(0.372873\pi\)
\(350\) 0 0
\(351\) 2.19194 + 1.26551i 0.116997 + 0.0675482i
\(352\) 0 0
\(353\) −26.1997 −1.39447 −0.697235 0.716843i \(-0.745586\pi\)
−0.697235 + 0.716843i \(0.745586\pi\)
\(354\) 0 0
\(355\) −4.84009 + 8.38328i −0.256885 + 0.444938i
\(356\) 0 0
\(357\) −6.97867 4.02914i −0.369350 0.213245i
\(358\) 0 0
\(359\) 20.5978 11.8922i 1.08711 0.627644i 0.154306 0.988023i \(-0.450686\pi\)
0.932806 + 0.360379i \(0.117352\pi\)
\(360\) 0 0
\(361\) −10.6944 15.7044i −0.562864 0.826550i
\(362\) 0 0
\(363\) −5.16786 8.95099i −0.271242 0.469805i
\(364\) 0 0
\(365\) 0.725604 1.25678i 0.0379798 0.0657830i
\(366\) 0 0
\(367\) 29.8775 + 17.2498i 1.55959 + 0.900430i 0.997296 + 0.0734935i \(0.0234148\pi\)
0.562295 + 0.826937i \(0.309919\pi\)
\(368\) 0 0
\(369\) 5.01109i 0.260867i
\(370\) 0 0
\(371\) 3.46854 6.00769i 0.180078 0.311904i
\(372\) 0 0
\(373\) 0.832538i 0.0431072i −0.999768 0.0215536i \(-0.993139\pi\)
0.999768 0.0215536i \(-0.00686125\pi\)
\(374\) 0 0
\(375\) −5.54245 9.59980i −0.286211 0.495731i
\(376\) 0 0
\(377\) 7.84986 + 13.5964i 0.404288 + 0.700248i
\(378\) 0 0
\(379\) 19.6123 1.00742 0.503709 0.863873i \(-0.331968\pi\)
0.503709 + 0.863873i \(0.331968\pi\)
\(380\) 0 0
\(381\) −11.9254 −0.610956
\(382\) 0 0
\(383\) −3.09036 5.35266i −0.157910 0.273508i 0.776205 0.630481i \(-0.217142\pi\)
−0.934115 + 0.356973i \(0.883809\pi\)
\(384\) 0 0
\(385\) 1.76915 + 3.06425i 0.0901640 + 0.156169i
\(386\) 0 0
\(387\) 10.4510i 0.531253i
\(388\) 0 0
\(389\) −1.99527 + 3.45591i −0.101164 + 0.175222i −0.912165 0.409824i \(-0.865590\pi\)
0.811000 + 0.585046i \(0.198923\pi\)
\(390\) 0 0
\(391\) 1.15527i 0.0584246i
\(392\) 0 0
\(393\) −8.95943 5.17273i −0.451944 0.260930i
\(394\) 0 0
\(395\) 1.71551 2.97134i 0.0863165 0.149505i
\(396\) 0 0
\(397\) −5.06348 8.77021i −0.254129 0.440164i 0.710530 0.703667i \(-0.248455\pi\)
−0.964659 + 0.263503i \(0.915122\pi\)
\(398\) 0 0
\(399\) 0.516397 + 13.9037i 0.0258522 + 0.696056i
\(400\) 0 0
\(401\) 1.17546 0.678651i 0.0586996 0.0338902i −0.470363 0.882473i \(-0.655877\pi\)
0.529063 + 0.848583i \(0.322544\pi\)
\(402\) 0 0
\(403\) −13.1185 7.57400i −0.653481 0.377288i
\(404\) 0 0
\(405\) 0.680039 1.17786i 0.0337914 0.0585284i
\(406\) 0 0
\(407\) 5.75529 0.285279
\(408\) 0 0
\(409\) 26.2823 + 15.1741i 1.29958 + 0.750310i 0.980331 0.197362i \(-0.0632375\pi\)
0.319245 + 0.947672i \(0.396571\pi\)
\(410\) 0 0
\(411\) −5.22205 −0.257585
\(412\) 0 0
\(413\) 16.5066 9.53010i 0.812237 0.468945i
\(414\) 0 0
\(415\) −15.5151 + 8.95764i −0.761606 + 0.439713i
\(416\) 0 0
\(417\) 0.292840i 0.0143405i
\(418\) 0 0
\(419\) 24.5003i 1.19692i −0.801154 0.598458i \(-0.795780\pi\)
0.801154 0.598458i \(-0.204220\pi\)
\(420\) 0 0
\(421\) −3.71552 + 2.14516i −0.181083 + 0.104549i −0.587802 0.809005i \(-0.700006\pi\)
0.406718 + 0.913554i \(0.366673\pi\)
\(422\) 0 0
\(423\) 1.58170 0.913193i 0.0769048 0.0444010i
\(424\) 0 0
\(425\) −7.95290 −0.385772
\(426\) 0 0
\(427\) 2.74856 + 1.58688i 0.133012 + 0.0767945i
\(428\) 0 0
\(429\) −2.06288 −0.0995968
\(430\) 0 0
\(431\) 7.64144 13.2354i 0.368075 0.637525i −0.621189 0.783660i \(-0.713350\pi\)
0.989265 + 0.146136i \(0.0466836\pi\)
\(432\) 0 0
\(433\) 8.61795 + 4.97558i 0.414152 + 0.239111i 0.692572 0.721348i \(-0.256477\pi\)
−0.278420 + 0.960459i \(0.589811\pi\)
\(434\) 0 0
\(435\) 7.30616 4.21821i 0.350304 0.202248i
\(436\) 0 0
\(437\) −1.68923 + 1.06076i −0.0808069 + 0.0507432i
\(438\) 0 0
\(439\) −1.05795 1.83243i −0.0504933 0.0874569i 0.839674 0.543091i \(-0.182746\pi\)
−0.890167 + 0.455634i \(0.849413\pi\)
\(440\) 0 0
\(441\) 1.59420 2.76123i 0.0759142 0.131487i
\(442\) 0 0
\(443\) 12.6417 + 7.29871i 0.600627 + 0.346772i 0.769288 0.638902i \(-0.220611\pi\)
−0.168661 + 0.985674i \(0.553944\pi\)
\(444\) 0 0
\(445\) 10.7320i 0.508746i
\(446\) 0 0
\(447\) 6.53165 11.3131i 0.308936 0.535093i
\(448\) 0 0
\(449\) 38.9286i 1.83716i −0.395240 0.918578i \(-0.629338\pi\)
0.395240 0.918578i \(-0.370662\pi\)
\(450\) 0 0
\(451\) 2.04211 + 3.53704i 0.0961591 + 0.166552i
\(452\) 0 0
\(453\) 3.44095 + 5.95990i 0.161670 + 0.280021i
\(454\) 0 0
\(455\) −10.9879 −0.515120
\(456\) 0 0
\(457\) 21.3893 1.00055 0.500274 0.865867i \(-0.333232\pi\)
0.500274 + 0.865867i \(0.333232\pi\)
\(458\) 0 0
\(459\) −1.26229 2.18635i −0.0589186 0.102050i
\(460\) 0 0
\(461\) 8.75205 + 15.1590i 0.407624 + 0.706025i 0.994623 0.103563i \(-0.0330242\pi\)
−0.586999 + 0.809587i \(0.699691\pi\)
\(462\) 0 0
\(463\) 14.3545i 0.667109i 0.942731 + 0.333554i \(0.108248\pi\)
−0.942731 + 0.333554i \(0.891752\pi\)
\(464\) 0 0
\(465\) −4.06998 + 7.04941i −0.188741 + 0.326908i
\(466\) 0 0
\(467\) 7.15526i 0.331106i −0.986201 0.165553i \(-0.947059\pi\)
0.986201 0.165553i \(-0.0529409\pi\)
\(468\) 0 0
\(469\) −15.6368 9.02788i −0.722038 0.416869i
\(470\) 0 0
\(471\) 3.63921 6.30330i 0.167686 0.290441i
\(472\) 0 0
\(473\) 4.25896 + 7.37674i 0.195827 + 0.339183i
\(474\) 0 0
\(475\) 7.30231 + 11.6287i 0.335053 + 0.533560i
\(476\) 0 0
\(477\) 1.88215 1.08666i 0.0861778 0.0497548i
\(478\) 0 0
\(479\) 15.9376 + 9.20159i 0.728208 + 0.420431i 0.817766 0.575550i \(-0.195212\pi\)
−0.0895581 + 0.995982i \(0.528545\pi\)
\(480\) 0 0
\(481\) −8.93630 + 15.4781i −0.407460 + 0.705742i
\(482\) 0 0
\(483\) 1.46066 0.0664621
\(484\) 0 0
\(485\) 1.56157 + 0.901570i 0.0709070 + 0.0409382i
\(486\) 0 0
\(487\) −2.84071 −0.128725 −0.0643625 0.997927i \(-0.520501\pi\)
−0.0643625 + 0.997927i \(0.520501\pi\)
\(488\) 0 0
\(489\) 21.8081 12.5909i 0.986195 0.569380i
\(490\) 0 0
\(491\) −17.5739 + 10.1463i −0.793100 + 0.457896i −0.841053 0.540953i \(-0.818064\pi\)
0.0479529 + 0.998850i \(0.484730\pi\)
\(492\) 0 0
\(493\) 15.6597i 0.705278i
\(494\) 0 0
\(495\) 1.10851i 0.0498240i
\(496\) 0 0
\(497\) −19.6745 + 11.3591i −0.882520 + 0.509523i
\(498\) 0 0
\(499\) 33.2101 19.1739i 1.48669 0.858340i 0.486803 0.873512i \(-0.338163\pi\)
0.999885 + 0.0151717i \(0.00482948\pi\)
\(500\) 0 0
\(501\) −18.4806 −0.825650
\(502\) 0 0
\(503\) 22.0135 + 12.7095i 0.981532 + 0.566688i 0.902732 0.430203i \(-0.141558\pi\)
0.0787998 + 0.996890i \(0.474891\pi\)
\(504\) 0 0
\(505\) −13.4760 −0.599673
\(506\) 0 0
\(507\) −3.29695 + 5.71048i −0.146423 + 0.253611i
\(508\) 0 0
\(509\) 8.99961 + 5.19593i 0.398901 + 0.230305i 0.686010 0.727593i \(-0.259361\pi\)
−0.287109 + 0.957898i \(0.592694\pi\)
\(510\) 0 0
\(511\) 2.94951 1.70290i 0.130478 0.0753318i
\(512\) 0 0
\(513\) −2.03784 + 3.85321i −0.0899728 + 0.170123i
\(514\) 0 0
\(515\) −0.355081 0.615019i −0.0156468 0.0271010i
\(516\) 0 0
\(517\) −0.744286 + 1.28914i −0.0327336 + 0.0566963i
\(518\) 0 0
\(519\) −20.3193 11.7313i −0.891916 0.514948i
\(520\) 0 0
\(521\) 33.4183i 1.46408i −0.681260 0.732042i \(-0.738568\pi\)
0.681260 0.732042i \(-0.261432\pi\)
\(522\) 0 0
\(523\) 9.27666 16.0676i 0.405640 0.702589i −0.588756 0.808311i \(-0.700382\pi\)
0.994396 + 0.105722i \(0.0337154\pi\)
\(524\) 0 0
\(525\) 10.0552i 0.438844i
\(526\) 0 0
\(527\) 7.55470 + 13.0851i 0.329088 + 0.569997i
\(528\) 0 0
\(529\) −11.3953 19.7372i −0.495448 0.858141i
\(530\) 0 0
\(531\) 5.97137 0.259136
\(532\) 0 0
\(533\) −12.6832 −0.549370
\(534\) 0 0
\(535\) −3.06857 5.31493i −0.132666 0.229784i
\(536\) 0 0
\(537\) 2.44325 + 4.23183i 0.105434 + 0.182617i
\(538\) 0 0
\(539\) 2.59866i 0.111932i
\(540\) 0 0
\(541\) −0.416972 + 0.722217i −0.0179270 + 0.0310505i −0.874850 0.484394i \(-0.839040\pi\)
0.856923 + 0.515445i \(0.172373\pi\)
\(542\) 0 0
\(543\) 13.2917i 0.570401i
\(544\) 0 0
\(545\) −16.9578 9.79060i −0.726393 0.419383i
\(546\) 0 0
\(547\) 0.360313 0.624081i 0.0154059 0.0266838i −0.858220 0.513283i \(-0.828429\pi\)
0.873626 + 0.486599i \(0.161763\pi\)
\(548\) 0 0
\(549\) 0.497154 + 0.861096i 0.0212180 + 0.0367507i
\(550\) 0 0
\(551\) −22.8975 + 14.3787i −0.975468 + 0.612552i
\(552\) 0 0
\(553\) 6.97336 4.02607i 0.296537 0.171206i
\(554\) 0 0
\(555\) 8.31735 + 4.80202i 0.353052 + 0.203835i
\(556\) 0 0
\(557\) 12.2451 21.2091i 0.518841 0.898659i −0.480919 0.876765i \(-0.659697\pi\)
0.999760 0.0218943i \(-0.00696972\pi\)
\(558\) 0 0
\(559\) −26.4517 −1.11879
\(560\) 0 0
\(561\) 1.78195 + 1.02881i 0.0752342 + 0.0434365i
\(562\) 0 0
\(563\) −8.83717 −0.372442 −0.186221 0.982508i \(-0.559624\pi\)
−0.186221 + 0.982508i \(0.559624\pi\)
\(564\) 0 0
\(565\) −15.9027 + 9.18143i −0.669032 + 0.386266i
\(566\) 0 0
\(567\) 2.76429 1.59596i 0.116089 0.0670242i
\(568\) 0 0
\(569\) 44.5270i 1.86667i 0.359008 + 0.933335i \(0.383115\pi\)
−0.359008 + 0.933335i \(0.616885\pi\)
\(570\) 0 0
\(571\) 6.83228i 0.285922i −0.989728 0.142961i \(-0.954338\pi\)
0.989728 0.142961i \(-0.0456624\pi\)
\(572\) 0 0
\(573\) 1.62320 0.937156i 0.0678102 0.0391502i
\(574\) 0 0
\(575\) 1.24842 0.720778i 0.0520629 0.0300585i
\(576\) 0 0
\(577\) 9.38182 0.390570 0.195285 0.980747i \(-0.437437\pi\)
0.195285 + 0.980747i \(0.437437\pi\)
\(578\) 0 0
\(579\) 14.6260 + 8.44430i 0.607834 + 0.350933i
\(580\) 0 0
\(581\) −42.0448 −1.74431
\(582\) 0 0
\(583\) −0.885668 + 1.53402i −0.0366806 + 0.0635327i
\(584\) 0 0
\(585\) −2.98120 1.72120i −0.123258 0.0711628i
\(586\) 0 0
\(587\) 24.6717 14.2442i 1.01831 0.587923i 0.104697 0.994504i \(-0.466613\pi\)
0.913615 + 0.406581i \(0.133279\pi\)
\(588\) 0 0
\(589\) 12.1963 23.0611i 0.502540 0.950217i
\(590\) 0 0
\(591\) −10.1005 17.4946i −0.415480 0.719633i
\(592\) 0 0
\(593\) 1.68664 2.92135i 0.0692622 0.119966i −0.829315 0.558782i \(-0.811269\pi\)
0.898577 + 0.438816i \(0.144602\pi\)
\(594\) 0 0
\(595\) 9.49154 + 5.47994i 0.389115 + 0.224656i
\(596\) 0 0
\(597\) 13.7692i 0.563538i
\(598\) 0 0
\(599\) −0.463791 + 0.803310i −0.0189500 + 0.0328224i −0.875345 0.483499i \(-0.839366\pi\)
0.856395 + 0.516321i \(0.172699\pi\)
\(600\) 0 0
\(601\) 25.7094i 1.04871i −0.851501 0.524353i \(-0.824307\pi\)
0.851501 0.524353i \(-0.175693\pi\)
\(602\) 0 0
\(603\) −2.82835 4.89884i −0.115179 0.199496i
\(604\) 0 0
\(605\) 7.02869 + 12.1740i 0.285757 + 0.494945i
\(606\) 0 0
\(607\) 7.05732 0.286448 0.143224 0.989690i \(-0.454253\pi\)
0.143224 + 0.989690i \(0.454253\pi\)
\(608\) 0 0
\(609\) 19.7992 0.802304
\(610\) 0 0
\(611\) −2.31132 4.00332i −0.0935059 0.161957i
\(612\) 0 0
\(613\) 3.53993 + 6.13133i 0.142976 + 0.247642i 0.928616 0.371042i \(-0.120999\pi\)
−0.785640 + 0.618684i \(0.787666\pi\)
\(614\) 0 0
\(615\) 6.81547i 0.274826i
\(616\) 0 0
\(617\) −7.35470 + 12.7387i −0.296089 + 0.512842i −0.975238 0.221159i \(-0.929016\pi\)
0.679148 + 0.734001i \(0.262349\pi\)
\(618\) 0 0
\(619\) 7.12552i 0.286399i 0.989694 + 0.143199i \(0.0457390\pi\)
−0.989694 + 0.143199i \(0.954261\pi\)
\(620\) 0 0
\(621\) 0.396301 + 0.228805i 0.0159030 + 0.00918162i
\(622\) 0 0
\(623\) −12.5933 + 21.8123i −0.504540 + 0.873889i
\(624\) 0 0
\(625\) −0.337309 0.584237i −0.0134924 0.0233695i
\(626\) 0 0
\(627\) −0.131858 3.55021i −0.00526592 0.141782i
\(628\) 0 0
\(629\) 15.4387 8.91353i 0.615581 0.355406i
\(630\) 0 0
\(631\) −4.93065 2.84671i −0.196286 0.113326i 0.398636 0.917109i \(-0.369484\pi\)
−0.594922 + 0.803783i \(0.702817\pi\)
\(632\) 0 0
\(633\) 11.1743 19.3544i 0.444137 0.769267i
\(634\) 0 0
\(635\) 16.2195 0.643650
\(636\) 0 0
\(637\) −6.98876 4.03496i −0.276905 0.159871i
\(638\) 0 0
\(639\) −7.11737 −0.281559
\(640\) 0 0
\(641\) −19.3178 + 11.1532i −0.763009 + 0.440523i −0.830375 0.557205i \(-0.811874\pi\)
0.0673661 + 0.997728i \(0.478540\pi\)
\(642\) 0 0
\(643\) −20.0419 + 11.5712i −0.790376 + 0.456324i −0.840095 0.542439i \(-0.817501\pi\)
0.0497186 + 0.998763i \(0.484168\pi\)
\(644\) 0 0
\(645\) 14.2141i 0.559681i
\(646\) 0 0
\(647\) 41.9410i 1.64887i 0.565957 + 0.824435i \(0.308507\pi\)
−0.565957 + 0.824435i \(0.691493\pi\)
\(648\) 0 0
\(649\) −4.21485 + 2.43344i −0.165447 + 0.0955210i
\(650\) 0 0
\(651\) −16.5440 + 9.55171i −0.648412 + 0.374361i
\(652\) 0 0
\(653\) 43.9617 1.72036 0.860178 0.509994i \(-0.170352\pi\)
0.860178 + 0.509994i \(0.170352\pi\)
\(654\) 0 0
\(655\) 12.1855 + 7.03532i 0.476128 + 0.274893i
\(656\) 0 0
\(657\) 1.06700 0.0416278
\(658\) 0 0
\(659\) −1.56095 + 2.70365i −0.0608061 + 0.105319i −0.894826 0.446415i \(-0.852700\pi\)
0.834020 + 0.551734i \(0.186034\pi\)
\(660\) 0 0
\(661\) 4.30829 + 2.48739i 0.167573 + 0.0967483i 0.581441 0.813589i \(-0.302489\pi\)
−0.413868 + 0.910337i \(0.635822\pi\)
\(662\) 0 0
\(663\) −5.53371 + 3.19489i −0.214912 + 0.124079i
\(664\) 0 0
\(665\) −0.702340 18.9101i −0.0272356 0.733303i
\(666\) 0 0
\(667\) 1.41925 + 2.45822i 0.0549537 + 0.0951826i
\(668\) 0 0
\(669\) 8.05761 13.9562i 0.311525 0.539577i
\(670\) 0 0
\(671\) −0.701825 0.405199i −0.0270936 0.0156425i
\(672\) 0 0
\(673\) 21.4458i 0.826673i 0.910578 + 0.413337i \(0.135637\pi\)
−0.910578 + 0.413337i \(0.864363\pi\)
\(674\) 0 0
\(675\) 1.57509 2.72814i 0.0606254 0.105006i
\(676\) 0 0
\(677\) 35.6558i 1.37036i 0.728373 + 0.685181i \(0.240277\pi\)
−0.728373 + 0.685181i \(0.759723\pi\)
\(678\) 0 0
\(679\) 2.11587 + 3.66479i 0.0811996 + 0.140642i
\(680\) 0 0
\(681\) 4.49200 + 7.78038i 0.172134 + 0.298145i
\(682\) 0 0
\(683\) 18.2026 0.696504 0.348252 0.937401i \(-0.386775\pi\)
0.348252 + 0.937401i \(0.386775\pi\)
\(684\) 0 0
\(685\) 7.10240 0.271369
\(686\) 0 0
\(687\) 10.0286 + 17.3700i 0.382614 + 0.662706i
\(688\) 0 0
\(689\) −2.75037 4.76378i −0.104781 0.181486i
\(690\) 0 0
\(691\) 24.1474i 0.918609i −0.888279 0.459304i \(-0.848099\pi\)
0.888279 0.459304i \(-0.151901\pi\)
\(692\) 0 0
\(693\) −1.30077 + 2.25300i −0.0494121 + 0.0855843i
\(694\) 0 0
\(695\) 0.398286i 0.0151078i
\(696\) 0 0
\(697\) 10.9560 + 6.32544i 0.414988 + 0.239593i
\(698\) 0 0
\(699\) −2.16481 + 3.74957i −0.0818808 + 0.141822i
\(700\) 0 0
\(701\) 21.6821 + 37.5544i 0.818920 + 1.41841i 0.906479 + 0.422252i \(0.138760\pi\)
−0.0875585 + 0.996159i \(0.527906\pi\)
\(702\) 0 0
\(703\) −27.2090 14.3900i −1.02621 0.542729i
\(704\) 0 0
\(705\) −2.15123 + 1.24201i −0.0810201 + 0.0467770i
\(706\) 0 0
\(707\) −27.3892 15.8132i −1.03008 0.594716i
\(708\) 0 0
\(709\) −21.4501 + 37.1527i −0.805575 + 1.39530i 0.110327 + 0.993895i \(0.464810\pi\)
−0.915902 + 0.401402i \(0.868523\pi\)
\(710\) 0 0
\(711\) 2.52266 0.0946071
\(712\) 0 0
\(713\) −2.37183 1.36938i −0.0888257 0.0512836i
\(714\) 0 0
\(715\) 2.80568 0.104926
\(716\) 0 0
\(717\) −8.09320 + 4.67261i −0.302246 + 0.174502i
\(718\) 0 0
\(719\) −6.00523 + 3.46712i −0.223957 + 0.129302i −0.607781 0.794104i \(-0.707940\pi\)
0.383824 + 0.923406i \(0.374607\pi\)
\(720\) 0 0
\(721\) 1.66666i 0.0620697i
\(722\) 0 0
\(723\) 11.2997i 0.420239i
\(724\) 0 0
\(725\) 16.9224 9.77015i 0.628482 0.362854i
\(726\) 0 0
\(727\) 14.5089 8.37670i 0.538104 0.310674i −0.206206 0.978509i \(-0.566112\pi\)
0.744310 + 0.667834i \(0.232778\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 22.8495 + 13.1922i 0.845119 + 0.487930i
\(732\) 0 0
\(733\) 0.0389329 0.00143802 0.000719010 1.00000i \(-0.499771\pi\)
0.000719010 1.00000i \(0.499771\pi\)
\(734\) 0 0
\(735\) −2.16823 + 3.75549i −0.0799765 + 0.138523i
\(736\) 0 0
\(737\) 3.99274 + 2.30521i 0.147074 + 0.0849134i
\(738\) 0 0
\(739\) 32.0677 18.5143i 1.17963 0.681059i 0.223700 0.974658i \(-0.428187\pi\)
0.955928 + 0.293600i \(0.0948532\pi\)
\(740\) 0 0
\(741\) 9.75258 + 5.15783i 0.358270 + 0.189478i
\(742\) 0 0
\(743\) −3.35804 5.81630i −0.123195 0.213379i 0.797831 0.602881i \(-0.205981\pi\)
−0.921026 + 0.389502i \(0.872647\pi\)
\(744\) 0 0
\(745\) −8.88355 + 15.3868i −0.325468 + 0.563727i
\(746\) 0 0
\(747\) −11.4075 6.58612i −0.417379 0.240974i
\(748\) 0 0
\(749\) 14.4031i 0.526277i
\(750\) 0 0
\(751\) 24.1661 41.8568i 0.881832 1.52738i 0.0325296 0.999471i \(-0.489644\pi\)
0.849302 0.527907i \(-0.177023\pi\)
\(752\) 0 0
\(753\) 21.1372i 0.770284i
\(754\) 0 0
\(755\) −4.67996 8.10593i −0.170321 0.295005i
\(756\) 0 0
\(757\) 13.3014 + 23.0386i 0.483446 + 0.837354i 0.999819 0.0190101i \(-0.00605145\pi\)
−0.516373 + 0.856364i \(0.672718\pi\)
\(758\) 0 0
\(759\) −0.372968 −0.0135379
\(760\) 0 0
\(761\) 7.29404 0.264409 0.132204 0.991222i \(-0.457794\pi\)
0.132204 + 0.991222i \(0.457794\pi\)
\(762\) 0 0
\(763\) −22.9773 39.7978i −0.831833 1.44078i
\(764\) 0 0
\(765\) 1.71681 + 2.97361i 0.0620715 + 0.107511i
\(766\) 0 0
\(767\) 15.1137i 0.545725i
\(768\) 0 0
\(769\) −12.2903 + 21.2874i −0.443199 + 0.767643i −0.997925 0.0643900i \(-0.979490\pi\)
0.554726 + 0.832033i \(0.312823\pi\)
\(770\) 0 0
\(771\) 16.3990i 0.590596i
\(772\) 0 0
\(773\) 17.8715 + 10.3181i 0.642792 + 0.371116i 0.785689 0.618621i \(-0.212308\pi\)
−0.142897 + 0.989738i \(0.545642\pi\)
\(774\) 0 0
\(775\) −9.42680 + 16.3277i −0.338621 + 0.586508i
\(776\) 0 0
\(777\) 11.2697 + 19.5197i 0.404299 + 0.700267i
\(778\) 0 0
\(779\) −0.810704 21.8278i −0.0290465 0.782061i
\(780\) 0 0
\(781\) 5.02374 2.90046i 0.179763 0.103786i
\(782\) 0 0
\(783\) 5.37187 + 3.10145i 0.191975 + 0.110837i
\(784\) 0 0
\(785\) −4.94961 + 8.57297i −0.176659 + 0.305983i
\(786\) 0 0
\(787\) −7.12095 −0.253835 −0.126917 0.991913i \(-0.540508\pi\)
−0.126917 + 0.991913i \(0.540508\pi\)
\(788\) 0 0
\(789\) −18.6815 10.7858i −0.665080 0.383984i
\(790\) 0 0
\(791\) −43.0952 −1.53229
\(792\) 0 0
\(793\) 2.17946 1.25831i 0.0773949 0.0446840i
\(794\) 0 0
\(795\) −2.55987 + 1.47794i −0.0907894 + 0.0524173i
\(796\) 0 0
\(797\) 22.2823i 0.789279i −0.918836 0.394640i \(-0.870869\pi\)
0.918836 0.394640i \(-0.129131\pi\)
\(798\) 0 0
\(799\) 4.61086i 0.163120i
\(800\) 0 0
\(801\) −6.83357 + 3.94536i −0.241452 + 0.139403i
\(802\) 0 0
\(803\) −0.753136 + 0.434823i −0.0265776 + 0.0153446i
\(804\) 0 0
\(805\) −1.98661 −0.0700187
\(806\) 0 0
\(807\) −17.8072 10.2810i −0.626842 0.361907i
\(808\) 0 0
\(809\) −48.8066 −1.71595 −0.857974 0.513694i \(-0.828277\pi\)
−0.857974 + 0.513694i \(0.828277\pi\)
\(810\) 0 0
\(811\) 2.84729 4.93165i 0.0999819 0.173174i −0.811695 0.584082i \(-0.801455\pi\)
0.911677 + 0.410908i \(0.134788\pi\)
\(812\) 0 0
\(813\) −1.29676 0.748682i −0.0454792 0.0262574i
\(814\) 0 0
\(815\) −29.6607 + 17.1246i −1.03897 + 0.599848i
\(816\) 0 0
\(817\) −1.69078 45.5233i −0.0591529 1.59266i
\(818\) 0 0
\(819\) −4.03943 6.99650i −0.141149 0.244477i
\(820\) 0 0
\(821\) −7.75928 + 13.4395i −0.270801 + 0.469041i −0.969067 0.246797i \(-0.920622\pi\)
0.698266 + 0.715838i \(0.253955\pi\)
\(822\) 0 0
\(823\) −9.98402 5.76427i −0.348021 0.200930i 0.315792 0.948828i \(-0.397730\pi\)
−0.663813 + 0.747898i \(0.731063\pi\)
\(824\) 0 0
\(825\) 2.56752i 0.0893895i
\(826\) 0 0
\(827\) 10.2704 17.7889i 0.357138 0.618581i −0.630344 0.776316i \(-0.717086\pi\)
0.987481 + 0.157736i \(0.0504194\pi\)
\(828\) 0 0
\(829\) 9.67745i 0.336112i 0.985777 + 0.168056i \(0.0537489\pi\)
−0.985777 + 0.168056i \(0.946251\pi\)
\(830\) 0 0
\(831\) 4.61830 + 7.99913i 0.160207 + 0.277487i
\(832\) 0 0
\(833\) 4.02468 + 6.97095i 0.139447 + 0.241529i
\(834\) 0 0
\(835\) 25.1350 0.869833
\(836\) 0 0
\(837\) −5.98492 −0.206869
\(838\) 0 0
\(839\) 27.5193 + 47.6649i 0.950073 + 1.64557i 0.745260 + 0.666774i \(0.232325\pi\)
0.204813 + 0.978801i \(0.434341\pi\)
\(840\) 0 0
\(841\) 4.73799 + 8.20644i 0.163379 + 0.282981i
\(842\) 0 0
\(843\) 10.7575i 0.370509i
\(844\) 0 0
\(845\) 4.48411 7.76670i 0.154258 0.267183i
\(846\) 0 0
\(847\) 32.9908i 1.13358i
\(848\) 0 0
\(849\) −16.6346 9.60401i −0.570899 0.329609i
\(850\) 0 0
\(851\) −1.61568 + 2.79844i −0.0553848 + 0.0959293i
\(852\) 0 0
\(853\) 11.0083 + 19.0670i 0.376918 + 0.652840i 0.990612 0.136703i \(-0.0436507\pi\)
−0.613694 + 0.789544i \(0.710317\pi\)
\(854\) 0 0
\(855\) 2.77162 5.24066i 0.0947875 0.179227i
\(856\) 0 0
\(857\) 4.23150 2.44306i 0.144545 0.0834532i −0.425983 0.904731i \(-0.640072\pi\)
0.570528 + 0.821278i \(0.306738\pi\)
\(858\) 0 0
\(859\) −31.8248 18.3740i −1.08585 0.626914i −0.153380 0.988167i \(-0.549016\pi\)
−0.932468 + 0.361253i \(0.882349\pi\)
\(860\) 0 0
\(861\) −7.99751 + 13.8521i −0.272554 + 0.472078i
\(862\) 0 0
\(863\) −54.2500 −1.84669 −0.923345 0.383971i \(-0.874556\pi\)
−0.923345 + 0.383971i \(0.874556\pi\)
\(864\) 0 0
\(865\) 27.6358 + 15.9555i 0.939645 + 0.542504i
\(866\) 0 0
\(867\) −10.6265 −0.360895
\(868\) 0 0
\(869\) −1.78060 + 1.02803i −0.0604027 + 0.0348735i
\(870\) 0 0
\(871\) −12.3991 + 7.15863i −0.420128 + 0.242561i
\(872\) 0 0
\(873\) 1.32576i 0.0448703i
\(874\) 0 0
\(875\) 35.3822i 1.19614i
\(876\) 0 0
\(877\) 37.9181 21.8920i 1.28040 0.739240i 0.303480 0.952838i \(-0.401851\pi\)
0.976922 + 0.213598i \(0.0685181\pi\)
\(878\) 0 0
\(879\) 2.75991 1.59344i 0.0930896 0.0537453i
\(880\) 0 0
\(881\) −49.0180 −1.65146 −0.825729 0.564067i \(-0.809236\pi\)
−0.825729 + 0.564067i \(0.809236\pi\)
\(882\) 0 0
\(883\) 11.8069 + 6.81671i 0.397333 + 0.229400i 0.685333 0.728230i \(-0.259657\pi\)
−0.287999 + 0.957631i \(0.592990\pi\)
\(884\) 0 0
\(885\) −8.12154 −0.273002
\(886\) 0 0
\(887\) −9.13155 + 15.8163i −0.306607 + 0.531059i −0.977618 0.210388i \(-0.932527\pi\)
0.671011 + 0.741448i \(0.265861\pi\)
\(888\) 0 0
\(889\) 32.9652 + 19.0325i 1.10562 + 0.638329i
\(890\) 0 0
\(891\) −0.705842 + 0.407518i −0.0236466 + 0.0136524i
\(892\) 0 0
\(893\) 6.74197 4.23367i 0.225611 0.141674i
\(894\) 0 0
\(895\) −3.32301 5.75562i −0.111076 0.192389i
\(896\) 0 0
\(897\) 0.579111 1.00305i 0.0193360 0.0334909i
\(898\) 0 0
\(899\) −32.1502 18.5619i −1.07227 0.619075i
\(900\) 0 0
\(901\) 5.48672i 0.182789i
\(902\) 0 0
\(903\) −16.6794 + 28.8895i −0.555055 + 0.961383i
\(904\) 0 0
\(905\) 18.0777i 0.600924i
\(906\) 0 0
\(907\) 9.17887 + 15.8983i 0.304779 + 0.527893i 0.977212 0.212265i \(-0.0680840\pi\)
−0.672433 + 0.740158i \(0.734751\pi\)
\(908\) 0 0
\(909\) −4.95412 8.58078i −0.164318 0.284607i
\(910\) 0 0
\(911\) −21.4173 −0.709586 −0.354793 0.934945i \(-0.615449\pi\)
−0.354793 + 0.934945i \(0.615449\pi\)
\(912\) 0 0
\(913\) 10.7359 0.355305
\(914\) 0 0
\(915\) −0.676169 1.17116i −0.0223534 0.0387173i
\(916\) 0 0
\(917\) 16.5110 + 28.5979i 0.545240 + 0.944384i
\(918\) 0 0
\(919\) 3.75300i 0.123800i −0.998082 0.0619001i \(-0.980284\pi\)
0.998082 0.0619001i \(-0.0197160\pi\)
\(920\) 0 0
\(921\) −8.62186 + 14.9335i −0.284100 + 0.492075i
\(922\) 0 0
\(923\) 18.0143i 0.592947i
\(924\) 0 0
\(925\) 19.2645 + 11.1224i 0.633413 + 0.365701i
\(926\) 0 0
\(927\) 0.261074 0.452194i 0.00857481 0.0148520i
\(928\) 0 0
\(929\) 10.9369 + 18.9433i 0.358829 + 0.621511i 0.987766 0.155946i \(-0.0498426\pi\)
−0.628936 + 0.777457i \(0.716509\pi\)
\(930\) 0 0
\(931\) 6.49744 12.2856i 0.212945 0.402643i
\(932\) 0 0
\(933\) −5.74980 + 3.31965i −0.188240 + 0.108680i
\(934\) 0 0
\(935\) −2.42360 1.39926i −0.0792601 0.0457608i
\(936\) 0 0
\(937\) 18.6543 32.3102i 0.609409 1.05553i −0.381929 0.924192i \(-0.624740\pi\)
0.991338 0.131336i \(-0.0419266\pi\)
\(938\) 0 0
\(939\) −4.26394 −0.139148
\(940\) 0 0
\(941\) −30.1328 17.3972i −0.982302 0.567132i −0.0793375 0.996848i \(-0.525280\pi\)
−0.902964 + 0.429716i \(0.858614\pi\)
\(942\) 0 0
\(943\) −2.29312 −0.0746743
\(944\) 0 0
\(945\) −3.75965 + 2.17063i −0.122301 + 0.0706108i
\(946\) 0 0
\(947\) −0.368948 + 0.213012i −0.0119892 + 0.00692196i −0.505983 0.862544i \(-0.668870\pi\)
0.493993 + 0.869466i \(0.335537\pi\)
\(948\) 0 0
\(949\) 2.70062i 0.0876657i
\(950\) 0 0
\(951\) 26.3045i 0.852983i
\(952\) 0 0
\(953\) 43.0070 24.8301i 1.39313 0.804325i 0.399471 0.916746i \(-0.369194\pi\)
0.993661 + 0.112420i \(0.0358603\pi\)
\(954\) 0 0
\(955\) −2.20768 + 1.27460i −0.0714389 + 0.0412452i
\(956\) 0 0
\(957\) −5.05559 −0.163424
\(958\) 0 0
\(959\) 14.4353 + 8.33420i 0.466139 + 0.269125i
\(960\) 0 0
\(961\) 4.81921 0.155458
\(962\) 0 0
\(963\) 2.25617 3.90781i 0.0727042 0.125927i
\(964\) 0 0
\(965\) −19.8924 11.4849i −0.640360 0.369712i
\(966\) 0 0
\(967\) −25.4959 + 14.7200i −0.819892 + 0.473365i −0.850379 0.526170i \(-0.823627\pi\)
0.0304874 + 0.999535i \(0.490294\pi\)
\(968\) 0 0
\(969\) −5.85211 9.31930i −0.187997 0.299379i
\(970\) 0 0
\(971\) −30.2269 52.3545i −0.970027 1.68014i −0.695456 0.718569i \(-0.744798\pi\)
−0.274571 0.961567i \(-0.588536\pi\)
\(972\) 0 0
\(973\) −0.467362 + 0.809495i −0.0149829 + 0.0259512i
\(974\) 0 0
\(975\) −6.90501 3.98661i −0.221137 0.127674i
\(976\) 0 0
\(977\) 47.3648i 1.51533i 0.652642 + 0.757667i \(0.273661\pi\)
−0.652642 + 0.757667i \(0.726339\pi\)
\(978\) 0 0
\(979\) 3.21561 5.56961i 0.102771 0.178005i
\(980\) 0 0
\(981\) 14.3971i 0.459664i
\(982\) 0 0
\(983\) 28.4043 + 49.1977i 0.905956 + 1.56916i 0.819629 + 0.572895i \(0.194180\pi\)
0.0863269 + 0.996267i \(0.472487\pi\)
\(984\) 0 0
\(985\) 13.7375 + 23.7941i 0.437713 + 0.758142i
\(986\) 0 0
\(987\) −5.82969 −0.185561
\(988\) 0 0
\(989\) −4.78246 −0.152073
\(990\) 0 0
\(991\) −6.05888 10.4943i −0.192467 0.333362i 0.753600 0.657333i \(-0.228315\pi\)
−0.946067 + 0.323971i \(0.894982\pi\)
\(992\) 0 0
\(993\) 11.5224 + 19.9574i 0.365652 + 0.633328i
\(994\) 0 0
\(995\) 18.7272i 0.593694i
\(996\) 0 0
\(997\) 13.2196 22.8970i 0.418669 0.725157i −0.577137 0.816648i \(-0.695830\pi\)
0.995806 + 0.0914910i \(0.0291633\pi\)
\(998\) 0 0
\(999\) 7.06140i 0.223413i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.bb.a.31.14 40
4.3 odd 2 1824.2.bb.b.31.14 yes 40
19.8 odd 6 1824.2.bb.b.1471.14 yes 40
76.27 even 6 inner 1824.2.bb.a.1471.14 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.bb.a.31.14 40 1.1 even 1 trivial
1824.2.bb.a.1471.14 yes 40 76.27 even 6 inner
1824.2.bb.b.31.14 yes 40 4.3 odd 2
1824.2.bb.b.1471.14 yes 40 19.8 odd 6