Properties

Label 1824.2.bb.a.1471.14
Level $1824$
Weight $2$
Character 1824.1471
Analytic conductor $14.565$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1824,2,Mod(31,1824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1824, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1824.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1824 = 2^{5} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1824.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.5647133287\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1471.14
Character \(\chi\) \(=\) 1824.1471
Dual form 1824.2.bb.a.31.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(0.680039 - 1.17786i) q^{5} -3.19193i q^{7} +(-0.500000 - 0.866025i) q^{9} +0.815036i q^{11} +(2.19194 - 1.26551i) q^{13} +(0.680039 + 1.17786i) q^{15} +(-1.26229 + 2.18635i) q^{17} +(-2.03784 - 3.85321i) q^{19} +(2.76429 + 1.59596i) q^{21} +(0.396301 - 0.228805i) q^{23} +(1.57509 + 2.72814i) q^{25} +1.00000 q^{27} +(5.37187 - 3.10145i) q^{29} -5.98492 q^{31} +(-0.705842 - 0.407518i) q^{33} +(-3.75965 - 2.17063i) q^{35} -7.06140i q^{37} +2.53103i q^{39} +(-4.33973 - 2.50554i) q^{41} +(-9.05081 - 5.22549i) q^{43} -1.36008 q^{45} +(-1.58170 + 0.913193i) q^{47} -3.18840 q^{49} +(-1.26229 - 2.18635i) q^{51} +(-1.88215 + 1.08666i) q^{53} +(0.960000 + 0.554257i) q^{55} +(4.35590 + 0.161782i) q^{57} +(-2.98569 + 5.17136i) q^{59} +(0.497154 + 0.861096i) q^{61} +(-2.76429 + 1.59596i) q^{63} -3.44240i q^{65} +(-2.82835 - 4.89884i) q^{67} +0.457609i q^{69} +(3.55868 - 6.16382i) q^{71} +(-0.533501 + 0.924052i) q^{73} -3.15019 q^{75} +2.60154 q^{77} +(-1.26133 + 2.18469i) q^{79} +(-0.500000 + 0.866025i) q^{81} -13.1722i q^{83} +(1.71681 + 2.97361i) q^{85} +6.20290i q^{87} +(6.83357 - 3.94536i) q^{89} +(-4.03943 - 6.99650i) q^{91} +(2.99246 - 5.18309i) q^{93} +(-5.92436 - 0.220036i) q^{95} +(1.14814 + 0.662881i) q^{97} +(0.705842 - 0.407518i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 20 q^{3} - 20 q^{9} - 12 q^{13} + 8 q^{19} - 12 q^{21} - 20 q^{25} + 40 q^{27} - 40 q^{31} + 24 q^{41} - 12 q^{43} + 24 q^{47} - 16 q^{49} - 24 q^{53} - 4 q^{57} - 4 q^{61} + 12 q^{63} + 4 q^{67}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1824\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(799\) \(1217\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0.680039 1.17786i 0.304123 0.526756i −0.672943 0.739694i \(-0.734970\pi\)
0.977066 + 0.212938i \(0.0683034\pi\)
\(6\) 0 0
\(7\) 3.19193i 1.20643i −0.797577 0.603217i \(-0.793885\pi\)
0.797577 0.603217i \(-0.206115\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 0.815036i 0.245743i 0.992423 + 0.122871i \(0.0392103\pi\)
−0.992423 + 0.122871i \(0.960790\pi\)
\(12\) 0 0
\(13\) 2.19194 1.26551i 0.607933 0.350991i −0.164223 0.986423i \(-0.552512\pi\)
0.772156 + 0.635433i \(0.219178\pi\)
\(14\) 0 0
\(15\) 0.680039 + 1.17786i 0.175585 + 0.304123i
\(16\) 0 0
\(17\) −1.26229 + 2.18635i −0.306150 + 0.530268i −0.977517 0.210858i \(-0.932374\pi\)
0.671367 + 0.741125i \(0.265708\pi\)
\(18\) 0 0
\(19\) −2.03784 3.85321i −0.467513 0.883986i
\(20\) 0 0
\(21\) 2.76429 + 1.59596i 0.603217 + 0.348268i
\(22\) 0 0
\(23\) 0.396301 0.228805i 0.0826346 0.0477091i −0.458113 0.888894i \(-0.651475\pi\)
0.540748 + 0.841185i \(0.318141\pi\)
\(24\) 0 0
\(25\) 1.57509 + 2.72814i 0.315019 + 0.545628i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 5.37187 3.10145i 0.997531 0.575925i 0.0900143 0.995940i \(-0.471309\pi\)
0.907517 + 0.420016i \(0.137975\pi\)
\(30\) 0 0
\(31\) −5.98492 −1.07492 −0.537461 0.843288i \(-0.680617\pi\)
−0.537461 + 0.843288i \(0.680617\pi\)
\(32\) 0 0
\(33\) −0.705842 0.407518i −0.122871 0.0709398i
\(34\) 0 0
\(35\) −3.75965 2.17063i −0.635497 0.366904i
\(36\) 0 0
\(37\) 7.06140i 1.16089i −0.814301 0.580443i \(-0.802879\pi\)
0.814301 0.580443i \(-0.197121\pi\)
\(38\) 0 0
\(39\) 2.53103i 0.405289i
\(40\) 0 0
\(41\) −4.33973 2.50554i −0.677752 0.391300i 0.121256 0.992621i \(-0.461308\pi\)
−0.799007 + 0.601321i \(0.794641\pi\)
\(42\) 0 0
\(43\) −9.05081 5.22549i −1.38024 0.796879i −0.388048 0.921639i \(-0.626851\pi\)
−0.992187 + 0.124760i \(0.960184\pi\)
\(44\) 0 0
\(45\) −1.36008 −0.202748
\(46\) 0 0
\(47\) −1.58170 + 0.913193i −0.230714 + 0.133203i −0.610902 0.791707i \(-0.709193\pi\)
0.380187 + 0.924910i \(0.375860\pi\)
\(48\) 0 0
\(49\) −3.18840 −0.455485
\(50\) 0 0
\(51\) −1.26229 2.18635i −0.176756 0.306150i
\(52\) 0 0
\(53\) −1.88215 + 1.08666i −0.258533 + 0.149264i −0.623665 0.781691i \(-0.714357\pi\)
0.365132 + 0.930956i \(0.381024\pi\)
\(54\) 0 0
\(55\) 0.960000 + 0.554257i 0.129446 + 0.0747359i
\(56\) 0 0
\(57\) 4.35590 + 0.161782i 0.576952 + 0.0214286i
\(58\) 0 0
\(59\) −2.98569 + 5.17136i −0.388703 + 0.673254i −0.992275 0.124054i \(-0.960410\pi\)
0.603572 + 0.797308i \(0.293744\pi\)
\(60\) 0 0
\(61\) 0.497154 + 0.861096i 0.0636541 + 0.110252i 0.896096 0.443860i \(-0.146391\pi\)
−0.832442 + 0.554112i \(0.813058\pi\)
\(62\) 0 0
\(63\) −2.76429 + 1.59596i −0.348268 + 0.201072i
\(64\) 0 0
\(65\) 3.44240i 0.426977i
\(66\) 0 0
\(67\) −2.82835 4.89884i −0.345538 0.598489i 0.639914 0.768447i \(-0.278970\pi\)
−0.985451 + 0.169958i \(0.945637\pi\)
\(68\) 0 0
\(69\) 0.457609i 0.0550897i
\(70\) 0 0
\(71\) 3.55868 6.16382i 0.422338 0.731511i −0.573830 0.818975i \(-0.694543\pi\)
0.996168 + 0.0874637i \(0.0278762\pi\)
\(72\) 0 0
\(73\) −0.533501 + 0.924052i −0.0624416 + 0.108152i −0.895556 0.444948i \(-0.853222\pi\)
0.833115 + 0.553100i \(0.186555\pi\)
\(74\) 0 0
\(75\) −3.15019 −0.363752
\(76\) 0 0
\(77\) 2.60154 0.296473
\(78\) 0 0
\(79\) −1.26133 + 2.18469i −0.141911 + 0.245796i −0.928216 0.372042i \(-0.878658\pi\)
0.786305 + 0.617838i \(0.211991\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 13.1722i 1.44584i −0.690931 0.722921i \(-0.742799\pi\)
0.690931 0.722921i \(-0.257201\pi\)
\(84\) 0 0
\(85\) 1.71681 + 2.97361i 0.186214 + 0.322533i
\(86\) 0 0
\(87\) 6.20290i 0.665021i
\(88\) 0 0
\(89\) 6.83357 3.94536i 0.724357 0.418208i −0.0919973 0.995759i \(-0.529325\pi\)
0.816354 + 0.577552i \(0.195992\pi\)
\(90\) 0 0
\(91\) −4.03943 6.99650i −0.423447 0.733432i
\(92\) 0 0
\(93\) 2.99246 5.18309i 0.310303 0.537461i
\(94\) 0 0
\(95\) −5.92436 0.220036i −0.607826 0.0225753i
\(96\) 0 0
\(97\) 1.14814 + 0.662881i 0.116576 + 0.0673054i 0.557154 0.830409i \(-0.311893\pi\)
−0.440578 + 0.897714i \(0.645226\pi\)
\(98\) 0 0
\(99\) 0.705842 0.407518i 0.0709398 0.0409571i
\(100\) 0 0
\(101\) −4.95412 8.58078i −0.492953 0.853820i 0.507014 0.861938i \(-0.330749\pi\)
−0.999967 + 0.00811820i \(0.997416\pi\)
\(102\) 0 0
\(103\) −0.522149 −0.0514488 −0.0257244 0.999669i \(-0.508189\pi\)
−0.0257244 + 0.999669i \(0.508189\pi\)
\(104\) 0 0
\(105\) 3.75965 2.17063i 0.366904 0.211832i
\(106\) 0 0
\(107\) −4.51235 −0.436225 −0.218113 0.975924i \(-0.569990\pi\)
−0.218113 + 0.975924i \(0.569990\pi\)
\(108\) 0 0
\(109\) −12.4683 7.19855i −1.19424 0.689497i −0.234977 0.972001i \(-0.575501\pi\)
−0.959266 + 0.282504i \(0.908835\pi\)
\(110\) 0 0
\(111\) 6.11535 + 3.53070i 0.580443 + 0.335119i
\(112\) 0 0
\(113\) 13.5013i 1.27010i −0.772472 0.635049i \(-0.780980\pi\)
0.772472 0.635049i \(-0.219020\pi\)
\(114\) 0 0
\(115\) 0.622385i 0.0580377i
\(116\) 0 0
\(117\) −2.19194 1.26551i −0.202644 0.116997i
\(118\) 0 0
\(119\) 6.97867 + 4.02914i 0.639734 + 0.369350i
\(120\) 0 0
\(121\) 10.3357 0.939611
\(122\) 0 0
\(123\) 4.33973 2.50554i 0.391300 0.225917i
\(124\) 0 0
\(125\) 11.0849 0.991463
\(126\) 0 0
\(127\) 5.96269 + 10.3277i 0.529104 + 0.916434i 0.999424 + 0.0339384i \(0.0108050\pi\)
−0.470320 + 0.882496i \(0.655862\pi\)
\(128\) 0 0
\(129\) 9.05081 5.22549i 0.796879 0.460078i
\(130\) 0 0
\(131\) 8.95943 + 5.17273i 0.782789 + 0.451944i 0.837418 0.546563i \(-0.184064\pi\)
−0.0546287 + 0.998507i \(0.517398\pi\)
\(132\) 0 0
\(133\) −12.2992 + 6.50464i −1.06647 + 0.564024i
\(134\) 0 0
\(135\) 0.680039 1.17786i 0.0585284 0.101374i
\(136\) 0 0
\(137\) 2.61102 + 4.52243i 0.223075 + 0.386377i 0.955740 0.294212i \(-0.0950572\pi\)
−0.732665 + 0.680589i \(0.761724\pi\)
\(138\) 0 0
\(139\) 0.253607 0.146420i 0.0215107 0.0124192i −0.489206 0.872168i \(-0.662713\pi\)
0.510717 + 0.859749i \(0.329380\pi\)
\(140\) 0 0
\(141\) 1.82639i 0.153810i
\(142\) 0 0
\(143\) 1.03144 + 1.78651i 0.0862534 + 0.149395i
\(144\) 0 0
\(145\) 8.43643i 0.700607i
\(146\) 0 0
\(147\) 1.59420 2.76123i 0.131487 0.227743i
\(148\) 0 0
\(149\) 6.53165 11.3131i 0.535093 0.926809i −0.464066 0.885801i \(-0.653610\pi\)
0.999159 0.0410079i \(-0.0130569\pi\)
\(150\) 0 0
\(151\) −6.88190 −0.560041 −0.280021 0.959994i \(-0.590341\pi\)
−0.280021 + 0.959994i \(0.590341\pi\)
\(152\) 0 0
\(153\) 2.52458 0.204100
\(154\) 0 0
\(155\) −4.06998 + 7.04941i −0.326908 + 0.566222i
\(156\) 0 0
\(157\) 3.63921 6.30330i 0.290441 0.503058i −0.683473 0.729975i \(-0.739531\pi\)
0.973914 + 0.226918i \(0.0728648\pi\)
\(158\) 0 0
\(159\) 2.17332i 0.172356i
\(160\) 0 0
\(161\) −0.730328 1.26497i −0.0575579 0.0996932i
\(162\) 0 0
\(163\) 25.1818i 1.97239i −0.165589 0.986195i \(-0.552953\pi\)
0.165589 0.986195i \(-0.447047\pi\)
\(164\) 0 0
\(165\) −0.960000 + 0.554257i −0.0747359 + 0.0431488i
\(166\) 0 0
\(167\) 9.24028 + 16.0046i 0.715034 + 1.23848i 0.962946 + 0.269693i \(0.0869222\pi\)
−0.247912 + 0.968783i \(0.579744\pi\)
\(168\) 0 0
\(169\) −3.29695 + 5.71048i −0.253611 + 0.439268i
\(170\) 0 0
\(171\) −2.31806 + 3.69143i −0.177266 + 0.282290i
\(172\) 0 0
\(173\) 20.3193 + 11.7313i 1.54484 + 0.891916i 0.998522 + 0.0543413i \(0.0173059\pi\)
0.546322 + 0.837575i \(0.316027\pi\)
\(174\) 0 0
\(175\) 8.70803 5.02758i 0.658265 0.380050i
\(176\) 0 0
\(177\) −2.98569 5.17136i −0.224418 0.388703i
\(178\) 0 0
\(179\) −4.88650 −0.365234 −0.182617 0.983184i \(-0.558457\pi\)
−0.182617 + 0.983184i \(0.558457\pi\)
\(180\) 0 0
\(181\) −11.5109 + 6.64584i −0.855602 + 0.493982i −0.862537 0.505994i \(-0.831126\pi\)
0.00693538 + 0.999976i \(0.497792\pi\)
\(182\) 0 0
\(183\) −0.994308 −0.0735014
\(184\) 0 0
\(185\) −8.31735 4.80202i −0.611504 0.353052i
\(186\) 0 0
\(187\) −1.78195 1.02881i −0.130309 0.0752342i
\(188\) 0 0
\(189\) 3.19193i 0.232179i
\(190\) 0 0
\(191\) 1.87431i 0.135620i −0.997698 0.0678102i \(-0.978399\pi\)
0.997698 0.0678102i \(-0.0216012\pi\)
\(192\) 0 0
\(193\) −14.6260 8.44430i −1.05280 0.607834i −0.129367 0.991597i \(-0.541295\pi\)
−0.923432 + 0.383763i \(0.874628\pi\)
\(194\) 0 0
\(195\) 2.98120 + 1.72120i 0.213488 + 0.123258i
\(196\) 0 0
\(197\) 20.2011 1.43927 0.719633 0.694355i \(-0.244310\pi\)
0.719633 + 0.694355i \(0.244310\pi\)
\(198\) 0 0
\(199\) −11.9245 + 6.88462i −0.845306 + 0.488038i −0.859064 0.511867i \(-0.828954\pi\)
0.0137580 + 0.999905i \(0.495621\pi\)
\(200\) 0 0
\(201\) 5.65670 0.398993
\(202\) 0 0
\(203\) −9.89960 17.1466i −0.694816 1.20346i
\(204\) 0 0
\(205\) −5.90237 + 3.40773i −0.412239 + 0.238006i
\(206\) 0 0
\(207\) −0.396301 0.228805i −0.0275449 0.0159030i
\(208\) 0 0
\(209\) 3.14050 1.66091i 0.217233 0.114888i
\(210\) 0 0
\(211\) 11.1743 19.3544i 0.769267 1.33241i −0.168693 0.985669i \(-0.553955\pi\)
0.937961 0.346742i \(-0.112712\pi\)
\(212\) 0 0
\(213\) 3.55868 + 6.16382i 0.243837 + 0.422338i
\(214\) 0 0
\(215\) −12.3098 + 7.10707i −0.839522 + 0.484698i
\(216\) 0 0
\(217\) 19.1034i 1.29682i
\(218\) 0 0
\(219\) −0.533501 0.924052i −0.0360507 0.0624416i
\(220\) 0 0
\(221\) 6.38978i 0.429823i
\(222\) 0 0
\(223\) 8.05761 13.9562i 0.539577 0.934575i −0.459349 0.888256i \(-0.651917\pi\)
0.998927 0.0463196i \(-0.0147493\pi\)
\(224\) 0 0
\(225\) 1.57509 2.72814i 0.105006 0.181876i
\(226\) 0 0
\(227\) −8.98401 −0.596290 −0.298145 0.954521i \(-0.596368\pi\)
−0.298145 + 0.954521i \(0.596368\pi\)
\(228\) 0 0
\(229\) −20.0571 −1.32541 −0.662706 0.748880i \(-0.730592\pi\)
−0.662706 + 0.748880i \(0.730592\pi\)
\(230\) 0 0
\(231\) −1.30077 + 2.25300i −0.0855843 + 0.148236i
\(232\) 0 0
\(233\) −2.16481 + 3.74957i −0.141822 + 0.245642i −0.928183 0.372125i \(-0.878629\pi\)
0.786361 + 0.617767i \(0.211963\pi\)
\(234\) 0 0
\(235\) 2.48403i 0.162040i
\(236\) 0 0
\(237\) −1.26133 2.18469i −0.0819321 0.141911i
\(238\) 0 0
\(239\) 9.34522i 0.604492i 0.953230 + 0.302246i \(0.0977364\pi\)
−0.953230 + 0.302246i \(0.902264\pi\)
\(240\) 0 0
\(241\) −9.78580 + 5.64984i −0.630359 + 0.363938i −0.780891 0.624667i \(-0.785235\pi\)
0.150532 + 0.988605i \(0.451901\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) −2.16823 + 3.75549i −0.138523 + 0.239930i
\(246\) 0 0
\(247\) −9.34310 5.86706i −0.594487 0.373312i
\(248\) 0 0
\(249\) 11.4075 + 6.58612i 0.722921 + 0.417379i
\(250\) 0 0
\(251\) 18.3054 10.5686i 1.15543 0.667085i 0.205222 0.978715i \(-0.434208\pi\)
0.950203 + 0.311630i \(0.100875\pi\)
\(252\) 0 0
\(253\) 0.186484 + 0.323000i 0.0117242 + 0.0203068i
\(254\) 0 0
\(255\) −3.43363 −0.215022
\(256\) 0 0
\(257\) −14.2020 + 8.19950i −0.885894 + 0.511471i −0.872597 0.488441i \(-0.837566\pi\)
−0.0132965 + 0.999912i \(0.504233\pi\)
\(258\) 0 0
\(259\) −22.5395 −1.40053
\(260\) 0 0
\(261\) −5.37187 3.10145i −0.332510 0.191975i
\(262\) 0 0
\(263\) 18.6815 + 10.7858i 1.15195 + 0.665080i 0.949362 0.314184i \(-0.101731\pi\)
0.202590 + 0.979264i \(0.435064\pi\)
\(264\) 0 0
\(265\) 2.95589i 0.181579i
\(266\) 0 0
\(267\) 7.89073i 0.482905i
\(268\) 0 0
\(269\) 17.8072 + 10.2810i 1.08572 + 0.626842i 0.932434 0.361340i \(-0.117681\pi\)
0.153288 + 0.988182i \(0.451014\pi\)
\(270\) 0 0
\(271\) 1.29676 + 0.748682i 0.0787723 + 0.0454792i 0.538869 0.842390i \(-0.318852\pi\)
−0.460097 + 0.887869i \(0.652185\pi\)
\(272\) 0 0
\(273\) 8.07886 0.488955
\(274\) 0 0
\(275\) −2.22354 + 1.28376i −0.134084 + 0.0774136i
\(276\) 0 0
\(277\) −9.23660 −0.554973 −0.277487 0.960729i \(-0.589501\pi\)
−0.277487 + 0.960729i \(0.589501\pi\)
\(278\) 0 0
\(279\) 2.99246 + 5.18309i 0.179154 + 0.310303i
\(280\) 0 0
\(281\) −9.31629 + 5.37876i −0.555763 + 0.320870i −0.751443 0.659798i \(-0.770642\pi\)
0.195680 + 0.980668i \(0.437309\pi\)
\(282\) 0 0
\(283\) 16.6346 + 9.60401i 0.988826 + 0.570899i 0.904923 0.425575i \(-0.139928\pi\)
0.0839028 + 0.996474i \(0.473261\pi\)
\(284\) 0 0
\(285\) 3.15274 5.02063i 0.186752 0.297396i
\(286\) 0 0
\(287\) −7.99751 + 13.8521i −0.472078 + 0.817663i
\(288\) 0 0
\(289\) 5.31325 + 9.20282i 0.312544 + 0.541342i
\(290\) 0 0
\(291\) −1.14814 + 0.662881i −0.0673054 + 0.0388588i
\(292\) 0 0
\(293\) 3.18687i 0.186179i −0.995658 0.0930896i \(-0.970326\pi\)
0.995658 0.0930896i \(-0.0296743\pi\)
\(294\) 0 0
\(295\) 4.06077 + 7.03346i 0.236427 + 0.409504i
\(296\) 0 0
\(297\) 0.815036i 0.0472932i
\(298\) 0 0
\(299\) 0.579111 1.00305i 0.0334909 0.0580079i
\(300\) 0 0
\(301\) −16.6794 + 28.8895i −0.961383 + 1.66516i
\(302\) 0 0
\(303\) 9.90823 0.569213
\(304\) 0 0
\(305\) 1.35234 0.0774346
\(306\) 0 0
\(307\) −8.62186 + 14.9335i −0.492075 + 0.852300i −0.999958 0.00912646i \(-0.997095\pi\)
0.507883 + 0.861426i \(0.330428\pi\)
\(308\) 0 0
\(309\) 0.261074 0.452194i 0.0148520 0.0257244i
\(310\) 0 0
\(311\) 6.63930i 0.376480i 0.982123 + 0.188240i \(0.0602783\pi\)
−0.982123 + 0.188240i \(0.939722\pi\)
\(312\) 0 0
\(313\) 2.13197 + 3.69268i 0.120506 + 0.208723i 0.919967 0.391995i \(-0.128215\pi\)
−0.799461 + 0.600718i \(0.794882\pi\)
\(314\) 0 0
\(315\) 4.34127i 0.244603i
\(316\) 0 0
\(317\) −22.7804 + 13.1523i −1.27947 + 0.738705i −0.976752 0.214374i \(-0.931229\pi\)
−0.302723 + 0.953079i \(0.597896\pi\)
\(318\) 0 0
\(319\) 2.52779 + 4.37827i 0.141529 + 0.245136i
\(320\) 0 0
\(321\) 2.25617 3.90781i 0.125927 0.218113i
\(322\) 0 0
\(323\) 10.9968 + 0.408432i 0.611879 + 0.0227258i
\(324\) 0 0
\(325\) 6.90501 + 3.98661i 0.383021 + 0.221137i
\(326\) 0 0
\(327\) 12.4683 7.19855i 0.689497 0.398081i
\(328\) 0 0
\(329\) 2.91485 + 5.04866i 0.160701 + 0.278342i
\(330\) 0 0
\(331\) −23.0448 −1.26666 −0.633328 0.773884i \(-0.718312\pi\)
−0.633328 + 0.773884i \(0.718312\pi\)
\(332\) 0 0
\(333\) −6.11535 + 3.53070i −0.335119 + 0.193481i
\(334\) 0 0
\(335\) −7.69355 −0.420344
\(336\) 0 0
\(337\) −17.3138 9.99611i −0.943141 0.544523i −0.0521976 0.998637i \(-0.516623\pi\)
−0.890944 + 0.454114i \(0.849956\pi\)
\(338\) 0 0
\(339\) 11.6925 + 6.75066i 0.635049 + 0.366646i
\(340\) 0 0
\(341\) 4.87792i 0.264154i
\(342\) 0 0
\(343\) 12.1664i 0.656922i
\(344\) 0 0
\(345\) 0.539001 + 0.311192i 0.0290188 + 0.0167540i
\(346\) 0 0
\(347\) 13.6726 + 7.89388i 0.733984 + 0.423766i 0.819878 0.572539i \(-0.194041\pi\)
−0.0858941 + 0.996304i \(0.527375\pi\)
\(348\) 0 0
\(349\) 14.5286 0.777699 0.388849 0.921301i \(-0.372873\pi\)
0.388849 + 0.921301i \(0.372873\pi\)
\(350\) 0 0
\(351\) 2.19194 1.26551i 0.116997 0.0675482i
\(352\) 0 0
\(353\) −26.1997 −1.39447 −0.697235 0.716843i \(-0.745586\pi\)
−0.697235 + 0.716843i \(0.745586\pi\)
\(354\) 0 0
\(355\) −4.84009 8.38328i −0.256885 0.444938i
\(356\) 0 0
\(357\) −6.97867 + 4.02914i −0.369350 + 0.213245i
\(358\) 0 0
\(359\) 20.5978 + 11.8922i 1.08711 + 0.627644i 0.932806 0.360379i \(-0.117352\pi\)
0.154306 + 0.988023i \(0.450686\pi\)
\(360\) 0 0
\(361\) −10.6944 + 15.7044i −0.562864 + 0.826550i
\(362\) 0 0
\(363\) −5.16786 + 8.95099i −0.271242 + 0.469805i
\(364\) 0 0
\(365\) 0.725604 + 1.25678i 0.0379798 + 0.0657830i
\(366\) 0 0
\(367\) 29.8775 17.2498i 1.55959 0.900430i 0.562295 0.826937i \(-0.309919\pi\)
0.997296 0.0734935i \(-0.0234148\pi\)
\(368\) 0 0
\(369\) 5.01109i 0.260867i
\(370\) 0 0
\(371\) 3.46854 + 6.00769i 0.180078 + 0.311904i
\(372\) 0 0
\(373\) 0.832538i 0.0431072i 0.999768 + 0.0215536i \(0.00686125\pi\)
−0.999768 + 0.0215536i \(0.993139\pi\)
\(374\) 0 0
\(375\) −5.54245 + 9.59980i −0.286211 + 0.495731i
\(376\) 0 0
\(377\) 7.84986 13.5964i 0.404288 0.700248i
\(378\) 0 0
\(379\) 19.6123 1.00742 0.503709 0.863873i \(-0.331968\pi\)
0.503709 + 0.863873i \(0.331968\pi\)
\(380\) 0 0
\(381\) −11.9254 −0.610956
\(382\) 0 0
\(383\) −3.09036 + 5.35266i −0.157910 + 0.273508i −0.934115 0.356973i \(-0.883809\pi\)
0.776205 + 0.630481i \(0.217142\pi\)
\(384\) 0 0
\(385\) 1.76915 3.06425i 0.0901640 0.156169i
\(386\) 0 0
\(387\) 10.4510i 0.531253i
\(388\) 0 0
\(389\) −1.99527 3.45591i −0.101164 0.175222i 0.811000 0.585046i \(-0.198923\pi\)
−0.912165 + 0.409824i \(0.865590\pi\)
\(390\) 0 0
\(391\) 1.15527i 0.0584246i
\(392\) 0 0
\(393\) −8.95943 + 5.17273i −0.451944 + 0.260930i
\(394\) 0 0
\(395\) 1.71551 + 2.97134i 0.0863165 + 0.149505i
\(396\) 0 0
\(397\) −5.06348 + 8.77021i −0.254129 + 0.440164i −0.964659 0.263503i \(-0.915122\pi\)
0.710530 + 0.703667i \(0.248455\pi\)
\(398\) 0 0
\(399\) 0.516397 13.9037i 0.0258522 0.696056i
\(400\) 0 0
\(401\) 1.17546 + 0.678651i 0.0586996 + 0.0338902i 0.529063 0.848583i \(-0.322544\pi\)
−0.470363 + 0.882473i \(0.655877\pi\)
\(402\) 0 0
\(403\) −13.1185 + 7.57400i −0.653481 + 0.377288i
\(404\) 0 0
\(405\) 0.680039 + 1.17786i 0.0337914 + 0.0585284i
\(406\) 0 0
\(407\) 5.75529 0.285279
\(408\) 0 0
\(409\) 26.2823 15.1741i 1.29958 0.750310i 0.319245 0.947672i \(-0.396571\pi\)
0.980331 + 0.197362i \(0.0632375\pi\)
\(410\) 0 0
\(411\) −5.22205 −0.257585
\(412\) 0 0
\(413\) 16.5066 + 9.53010i 0.812237 + 0.468945i
\(414\) 0 0
\(415\) −15.5151 8.95764i −0.761606 0.439713i
\(416\) 0 0
\(417\) 0.292840i 0.0143405i
\(418\) 0 0
\(419\) 24.5003i 1.19692i 0.801154 + 0.598458i \(0.204220\pi\)
−0.801154 + 0.598458i \(0.795780\pi\)
\(420\) 0 0
\(421\) −3.71552 2.14516i −0.181083 0.104549i 0.406718 0.913554i \(-0.366673\pi\)
−0.587802 + 0.809005i \(0.700006\pi\)
\(422\) 0 0
\(423\) 1.58170 + 0.913193i 0.0769048 + 0.0444010i
\(424\) 0 0
\(425\) −7.95290 −0.385772
\(426\) 0 0
\(427\) 2.74856 1.58688i 0.133012 0.0767945i
\(428\) 0 0
\(429\) −2.06288 −0.0995968
\(430\) 0 0
\(431\) 7.64144 + 13.2354i 0.368075 + 0.637525i 0.989265 0.146136i \(-0.0466836\pi\)
−0.621189 + 0.783660i \(0.713350\pi\)
\(432\) 0 0
\(433\) 8.61795 4.97558i 0.414152 0.239111i −0.278420 0.960459i \(-0.589811\pi\)
0.692572 + 0.721348i \(0.256477\pi\)
\(434\) 0 0
\(435\) 7.30616 + 4.21821i 0.350304 + 0.202248i
\(436\) 0 0
\(437\) −1.68923 1.06076i −0.0808069 0.0507432i
\(438\) 0 0
\(439\) −1.05795 + 1.83243i −0.0504933 + 0.0874569i −0.890167 0.455634i \(-0.849413\pi\)
0.839674 + 0.543091i \(0.182746\pi\)
\(440\) 0 0
\(441\) 1.59420 + 2.76123i 0.0759142 + 0.131487i
\(442\) 0 0
\(443\) 12.6417 7.29871i 0.600627 0.346772i −0.168661 0.985674i \(-0.553944\pi\)
0.769288 + 0.638902i \(0.220611\pi\)
\(444\) 0 0
\(445\) 10.7320i 0.508746i
\(446\) 0 0
\(447\) 6.53165 + 11.3131i 0.308936 + 0.535093i
\(448\) 0 0
\(449\) 38.9286i 1.83716i 0.395240 + 0.918578i \(0.370662\pi\)
−0.395240 + 0.918578i \(0.629338\pi\)
\(450\) 0 0
\(451\) 2.04211 3.53704i 0.0961591 0.166552i
\(452\) 0 0
\(453\) 3.44095 5.95990i 0.161670 0.280021i
\(454\) 0 0
\(455\) −10.9879 −0.515120
\(456\) 0 0
\(457\) 21.3893 1.00055 0.500274 0.865867i \(-0.333232\pi\)
0.500274 + 0.865867i \(0.333232\pi\)
\(458\) 0 0
\(459\) −1.26229 + 2.18635i −0.0589186 + 0.102050i
\(460\) 0 0
\(461\) 8.75205 15.1590i 0.407624 0.706025i −0.586999 0.809587i \(-0.699691\pi\)
0.994623 + 0.103563i \(0.0330242\pi\)
\(462\) 0 0
\(463\) 14.3545i 0.667109i −0.942731 0.333554i \(-0.891752\pi\)
0.942731 0.333554i \(-0.108248\pi\)
\(464\) 0 0
\(465\) −4.06998 7.04941i −0.188741 0.326908i
\(466\) 0 0
\(467\) 7.15526i 0.331106i 0.986201 + 0.165553i \(0.0529409\pi\)
−0.986201 + 0.165553i \(0.947059\pi\)
\(468\) 0 0
\(469\) −15.6368 + 9.02788i −0.722038 + 0.416869i
\(470\) 0 0
\(471\) 3.63921 + 6.30330i 0.167686 + 0.290441i
\(472\) 0 0
\(473\) 4.25896 7.37674i 0.195827 0.339183i
\(474\) 0 0
\(475\) 7.30231 11.6287i 0.335053 0.533560i
\(476\) 0 0
\(477\) 1.88215 + 1.08666i 0.0861778 + 0.0497548i
\(478\) 0 0
\(479\) 15.9376 9.20159i 0.728208 0.420431i −0.0895581 0.995982i \(-0.528545\pi\)
0.817766 + 0.575550i \(0.195212\pi\)
\(480\) 0 0
\(481\) −8.93630 15.4781i −0.407460 0.705742i
\(482\) 0 0
\(483\) 1.46066 0.0664621
\(484\) 0 0
\(485\) 1.56157 0.901570i 0.0709070 0.0409382i
\(486\) 0 0
\(487\) −2.84071 −0.128725 −0.0643625 0.997927i \(-0.520501\pi\)
−0.0643625 + 0.997927i \(0.520501\pi\)
\(488\) 0 0
\(489\) 21.8081 + 12.5909i 0.986195 + 0.569380i
\(490\) 0 0
\(491\) −17.5739 10.1463i −0.793100 0.457896i 0.0479529 0.998850i \(-0.484730\pi\)
−0.841053 + 0.540953i \(0.818064\pi\)
\(492\) 0 0
\(493\) 15.6597i 0.705278i
\(494\) 0 0
\(495\) 1.10851i 0.0498240i
\(496\) 0 0
\(497\) −19.6745 11.3591i −0.882520 0.509523i
\(498\) 0 0
\(499\) 33.2101 + 19.1739i 1.48669 + 0.858340i 0.999885 0.0151717i \(-0.00482948\pi\)
0.486803 + 0.873512i \(0.338163\pi\)
\(500\) 0 0
\(501\) −18.4806 −0.825650
\(502\) 0 0
\(503\) 22.0135 12.7095i 0.981532 0.566688i 0.0787998 0.996890i \(-0.474891\pi\)
0.902732 + 0.430203i \(0.141558\pi\)
\(504\) 0 0
\(505\) −13.4760 −0.599673
\(506\) 0 0
\(507\) −3.29695 5.71048i −0.146423 0.253611i
\(508\) 0 0
\(509\) 8.99961 5.19593i 0.398901 0.230305i −0.287109 0.957898i \(-0.592694\pi\)
0.686010 + 0.727593i \(0.259361\pi\)
\(510\) 0 0
\(511\) 2.94951 + 1.70290i 0.130478 + 0.0753318i
\(512\) 0 0
\(513\) −2.03784 3.85321i −0.0899728 0.170123i
\(514\) 0 0
\(515\) −0.355081 + 0.615019i −0.0156468 + 0.0271010i
\(516\) 0 0
\(517\) −0.744286 1.28914i −0.0327336 0.0566963i
\(518\) 0 0
\(519\) −20.3193 + 11.7313i −0.891916 + 0.514948i
\(520\) 0 0
\(521\) 33.4183i 1.46408i 0.681260 + 0.732042i \(0.261432\pi\)
−0.681260 + 0.732042i \(0.738568\pi\)
\(522\) 0 0
\(523\) 9.27666 + 16.0676i 0.405640 + 0.702589i 0.994396 0.105722i \(-0.0337154\pi\)
−0.588756 + 0.808311i \(0.700382\pi\)
\(524\) 0 0
\(525\) 10.0552i 0.438844i
\(526\) 0 0
\(527\) 7.55470 13.0851i 0.329088 0.569997i
\(528\) 0 0
\(529\) −11.3953 + 19.7372i −0.495448 + 0.858141i
\(530\) 0 0
\(531\) 5.97137 0.259136
\(532\) 0 0
\(533\) −12.6832 −0.549370
\(534\) 0 0
\(535\) −3.06857 + 5.31493i −0.132666 + 0.229784i
\(536\) 0 0
\(537\) 2.44325 4.23183i 0.105434 0.182617i
\(538\) 0 0
\(539\) 2.59866i 0.111932i
\(540\) 0 0
\(541\) −0.416972 0.722217i −0.0179270 0.0310505i 0.856923 0.515445i \(-0.172373\pi\)
−0.874850 + 0.484394i \(0.839040\pi\)
\(542\) 0 0
\(543\) 13.2917i 0.570401i
\(544\) 0 0
\(545\) −16.9578 + 9.79060i −0.726393 + 0.419383i
\(546\) 0 0
\(547\) 0.360313 + 0.624081i 0.0154059 + 0.0266838i 0.873626 0.486599i \(-0.161763\pi\)
−0.858220 + 0.513283i \(0.828429\pi\)
\(548\) 0 0
\(549\) 0.497154 0.861096i 0.0212180 0.0367507i
\(550\) 0 0
\(551\) −22.8975 14.3787i −0.975468 0.612552i
\(552\) 0 0
\(553\) 6.97336 + 4.02607i 0.296537 + 0.171206i
\(554\) 0 0
\(555\) 8.31735 4.80202i 0.353052 0.203835i
\(556\) 0 0
\(557\) 12.2451 + 21.2091i 0.518841 + 0.898659i 0.999760 + 0.0218943i \(0.00696972\pi\)
−0.480919 + 0.876765i \(0.659697\pi\)
\(558\) 0 0
\(559\) −26.4517 −1.11879
\(560\) 0 0
\(561\) 1.78195 1.02881i 0.0752342 0.0434365i
\(562\) 0 0
\(563\) −8.83717 −0.372442 −0.186221 0.982508i \(-0.559624\pi\)
−0.186221 + 0.982508i \(0.559624\pi\)
\(564\) 0 0
\(565\) −15.9027 9.18143i −0.669032 0.386266i
\(566\) 0 0
\(567\) 2.76429 + 1.59596i 0.116089 + 0.0670242i
\(568\) 0 0
\(569\) 44.5270i 1.86667i −0.359008 0.933335i \(-0.616885\pi\)
0.359008 0.933335i \(-0.383115\pi\)
\(570\) 0 0
\(571\) 6.83228i 0.285922i 0.989728 + 0.142961i \(0.0456624\pi\)
−0.989728 + 0.142961i \(0.954338\pi\)
\(572\) 0 0
\(573\) 1.62320 + 0.937156i 0.0678102 + 0.0391502i
\(574\) 0 0
\(575\) 1.24842 + 0.720778i 0.0520629 + 0.0300585i
\(576\) 0 0
\(577\) 9.38182 0.390570 0.195285 0.980747i \(-0.437437\pi\)
0.195285 + 0.980747i \(0.437437\pi\)
\(578\) 0 0
\(579\) 14.6260 8.44430i 0.607834 0.350933i
\(580\) 0 0
\(581\) −42.0448 −1.74431
\(582\) 0 0
\(583\) −0.885668 1.53402i −0.0366806 0.0635327i
\(584\) 0 0
\(585\) −2.98120 + 1.72120i −0.123258 + 0.0711628i
\(586\) 0 0
\(587\) 24.6717 + 14.2442i 1.01831 + 0.587923i 0.913615 0.406581i \(-0.133279\pi\)
0.104697 + 0.994504i \(0.466613\pi\)
\(588\) 0 0
\(589\) 12.1963 + 23.0611i 0.502540 + 0.950217i
\(590\) 0 0
\(591\) −10.1005 + 17.4946i −0.415480 + 0.719633i
\(592\) 0 0
\(593\) 1.68664 + 2.92135i 0.0692622 + 0.119966i 0.898577 0.438816i \(-0.144602\pi\)
−0.829315 + 0.558782i \(0.811269\pi\)
\(594\) 0 0
\(595\) 9.49154 5.47994i 0.389115 0.224656i
\(596\) 0 0
\(597\) 13.7692i 0.563538i
\(598\) 0 0
\(599\) −0.463791 0.803310i −0.0189500 0.0328224i 0.856395 0.516321i \(-0.172699\pi\)
−0.875345 + 0.483499i \(0.839366\pi\)
\(600\) 0 0
\(601\) 25.7094i 1.04871i 0.851501 + 0.524353i \(0.175693\pi\)
−0.851501 + 0.524353i \(0.824307\pi\)
\(602\) 0 0
\(603\) −2.82835 + 4.89884i −0.115179 + 0.199496i
\(604\) 0 0
\(605\) 7.02869 12.1740i 0.285757 0.494945i
\(606\) 0 0
\(607\) 7.05732 0.286448 0.143224 0.989690i \(-0.454253\pi\)
0.143224 + 0.989690i \(0.454253\pi\)
\(608\) 0 0
\(609\) 19.7992 0.802304
\(610\) 0 0
\(611\) −2.31132 + 4.00332i −0.0935059 + 0.161957i
\(612\) 0 0
\(613\) 3.53993 6.13133i 0.142976 0.247642i −0.785640 0.618684i \(-0.787666\pi\)
0.928616 + 0.371042i \(0.120999\pi\)
\(614\) 0 0
\(615\) 6.81547i 0.274826i
\(616\) 0 0
\(617\) −7.35470 12.7387i −0.296089 0.512842i 0.679148 0.734001i \(-0.262349\pi\)
−0.975238 + 0.221159i \(0.929016\pi\)
\(618\) 0 0
\(619\) 7.12552i 0.286399i −0.989694 0.143199i \(-0.954261\pi\)
0.989694 0.143199i \(-0.0457390\pi\)
\(620\) 0 0
\(621\) 0.396301 0.228805i 0.0159030 0.00918162i
\(622\) 0 0
\(623\) −12.5933 21.8123i −0.504540 0.873889i
\(624\) 0 0
\(625\) −0.337309 + 0.584237i −0.0134924 + 0.0233695i
\(626\) 0 0
\(627\) −0.131858 + 3.55021i −0.00526592 + 0.141782i
\(628\) 0 0
\(629\) 15.4387 + 8.91353i 0.615581 + 0.355406i
\(630\) 0 0
\(631\) −4.93065 + 2.84671i −0.196286 + 0.113326i −0.594922 0.803783i \(-0.702817\pi\)
0.398636 + 0.917109i \(0.369484\pi\)
\(632\) 0 0
\(633\) 11.1743 + 19.3544i 0.444137 + 0.769267i
\(634\) 0 0
\(635\) 16.2195 0.643650
\(636\) 0 0
\(637\) −6.98876 + 4.03496i −0.276905 + 0.159871i
\(638\) 0 0
\(639\) −7.11737 −0.281559
\(640\) 0 0
\(641\) −19.3178 11.1532i −0.763009 0.440523i 0.0673661 0.997728i \(-0.478540\pi\)
−0.830375 + 0.557205i \(0.811874\pi\)
\(642\) 0 0
\(643\) −20.0419 11.5712i −0.790376 0.456324i 0.0497186 0.998763i \(-0.484168\pi\)
−0.840095 + 0.542439i \(0.817501\pi\)
\(644\) 0 0
\(645\) 14.2141i 0.559681i
\(646\) 0 0
\(647\) 41.9410i 1.64887i −0.565957 0.824435i \(-0.691493\pi\)
0.565957 0.824435i \(-0.308507\pi\)
\(648\) 0 0
\(649\) −4.21485 2.43344i −0.165447 0.0955210i
\(650\) 0 0
\(651\) −16.5440 9.55171i −0.648412 0.374361i
\(652\) 0 0
\(653\) 43.9617 1.72036 0.860178 0.509994i \(-0.170352\pi\)
0.860178 + 0.509994i \(0.170352\pi\)
\(654\) 0 0
\(655\) 12.1855 7.03532i 0.476128 0.274893i
\(656\) 0 0
\(657\) 1.06700 0.0416278
\(658\) 0 0
\(659\) −1.56095 2.70365i −0.0608061 0.105319i 0.834020 0.551734i \(-0.186034\pi\)
−0.894826 + 0.446415i \(0.852700\pi\)
\(660\) 0 0
\(661\) 4.30829 2.48739i 0.167573 0.0967483i −0.413868 0.910337i \(-0.635822\pi\)
0.581441 + 0.813589i \(0.302489\pi\)
\(662\) 0 0
\(663\) −5.53371 3.19489i −0.214912 0.124079i
\(664\) 0 0
\(665\) −0.702340 + 18.9101i −0.0272356 + 0.733303i
\(666\) 0 0
\(667\) 1.41925 2.45822i 0.0549537 0.0951826i
\(668\) 0 0
\(669\) 8.05761 + 13.9562i 0.311525 + 0.539577i
\(670\) 0 0
\(671\) −0.701825 + 0.405199i −0.0270936 + 0.0156425i
\(672\) 0 0
\(673\) 21.4458i 0.826673i −0.910578 0.413337i \(-0.864363\pi\)
0.910578 0.413337i \(-0.135637\pi\)
\(674\) 0 0
\(675\) 1.57509 + 2.72814i 0.0606254 + 0.105006i
\(676\) 0 0
\(677\) 35.6558i 1.37036i −0.728373 0.685181i \(-0.759723\pi\)
0.728373 0.685181i \(-0.240277\pi\)
\(678\) 0 0
\(679\) 2.11587 3.66479i 0.0811996 0.140642i
\(680\) 0 0
\(681\) 4.49200 7.78038i 0.172134 0.298145i
\(682\) 0 0
\(683\) 18.2026 0.696504 0.348252 0.937401i \(-0.386775\pi\)
0.348252 + 0.937401i \(0.386775\pi\)
\(684\) 0 0
\(685\) 7.10240 0.271369
\(686\) 0 0
\(687\) 10.0286 17.3700i 0.382614 0.662706i
\(688\) 0 0
\(689\) −2.75037 + 4.76378i −0.104781 + 0.181486i
\(690\) 0 0
\(691\) 24.1474i 0.918609i 0.888279 + 0.459304i \(0.151901\pi\)
−0.888279 + 0.459304i \(0.848099\pi\)
\(692\) 0 0
\(693\) −1.30077 2.25300i −0.0494121 0.0855843i
\(694\) 0 0
\(695\) 0.398286i 0.0151078i
\(696\) 0 0
\(697\) 10.9560 6.32544i 0.414988 0.239593i
\(698\) 0 0
\(699\) −2.16481 3.74957i −0.0818808 0.141822i
\(700\) 0 0
\(701\) 21.6821 37.5544i 0.818920 1.41841i −0.0875585 0.996159i \(-0.527906\pi\)
0.906479 0.422252i \(-0.138760\pi\)
\(702\) 0 0
\(703\) −27.2090 + 14.3900i −1.02621 + 0.542729i
\(704\) 0 0
\(705\) −2.15123 1.24201i −0.0810201 0.0467770i
\(706\) 0 0
\(707\) −27.3892 + 15.8132i −1.03008 + 0.594716i
\(708\) 0 0
\(709\) −21.4501 37.1527i −0.805575 1.39530i −0.915902 0.401402i \(-0.868523\pi\)
0.110327 0.993895i \(-0.464810\pi\)
\(710\) 0 0
\(711\) 2.52266 0.0946071
\(712\) 0 0
\(713\) −2.37183 + 1.36938i −0.0888257 + 0.0512836i
\(714\) 0 0
\(715\) 2.80568 0.104926
\(716\) 0 0
\(717\) −8.09320 4.67261i −0.302246 0.174502i
\(718\) 0 0
\(719\) −6.00523 3.46712i −0.223957 0.129302i 0.383824 0.923406i \(-0.374607\pi\)
−0.607781 + 0.794104i \(0.707940\pi\)
\(720\) 0 0
\(721\) 1.66666i 0.0620697i
\(722\) 0 0
\(723\) 11.2997i 0.420239i
\(724\) 0 0
\(725\) 16.9224 + 9.77015i 0.628482 + 0.362854i
\(726\) 0 0
\(727\) 14.5089 + 8.37670i 0.538104 + 0.310674i 0.744310 0.667834i \(-0.232778\pi\)
−0.206206 + 0.978509i \(0.566112\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 22.8495 13.1922i 0.845119 0.487930i
\(732\) 0 0
\(733\) 0.0389329 0.00143802 0.000719010 1.00000i \(-0.499771\pi\)
0.000719010 1.00000i \(0.499771\pi\)
\(734\) 0 0
\(735\) −2.16823 3.75549i −0.0799765 0.138523i
\(736\) 0 0
\(737\) 3.99274 2.30521i 0.147074 0.0849134i
\(738\) 0 0
\(739\) 32.0677 + 18.5143i 1.17963 + 0.681059i 0.955928 0.293600i \(-0.0948532\pi\)
0.223700 + 0.974658i \(0.428187\pi\)
\(740\) 0 0
\(741\) 9.75258 5.15783i 0.358270 0.189478i
\(742\) 0 0
\(743\) −3.35804 + 5.81630i −0.123195 + 0.213379i −0.921026 0.389502i \(-0.872647\pi\)
0.797831 + 0.602881i \(0.205981\pi\)
\(744\) 0 0
\(745\) −8.88355 15.3868i −0.325468 0.563727i
\(746\) 0 0
\(747\) −11.4075 + 6.58612i −0.417379 + 0.240974i
\(748\) 0 0
\(749\) 14.4031i 0.526277i
\(750\) 0 0
\(751\) 24.1661 + 41.8568i 0.881832 + 1.52738i 0.849302 + 0.527907i \(0.177023\pi\)
0.0325296 + 0.999471i \(0.489644\pi\)
\(752\) 0 0
\(753\) 21.1372i 0.770284i
\(754\) 0 0
\(755\) −4.67996 + 8.10593i −0.170321 + 0.295005i
\(756\) 0 0
\(757\) 13.3014 23.0386i 0.483446 0.837354i −0.516373 0.856364i \(-0.672718\pi\)
0.999819 + 0.0190101i \(0.00605145\pi\)
\(758\) 0 0
\(759\) −0.372968 −0.0135379
\(760\) 0 0
\(761\) 7.29404 0.264409 0.132204 0.991222i \(-0.457794\pi\)
0.132204 + 0.991222i \(0.457794\pi\)
\(762\) 0 0
\(763\) −22.9773 + 39.7978i −0.831833 + 1.44078i
\(764\) 0 0
\(765\) 1.71681 2.97361i 0.0620715 0.107511i
\(766\) 0 0
\(767\) 15.1137i 0.545725i
\(768\) 0 0
\(769\) −12.2903 21.2874i −0.443199 0.767643i 0.554726 0.832033i \(-0.312823\pi\)
−0.997925 + 0.0643900i \(0.979490\pi\)
\(770\) 0 0
\(771\) 16.3990i 0.590596i
\(772\) 0 0
\(773\) 17.8715 10.3181i 0.642792 0.371116i −0.142897 0.989738i \(-0.545642\pi\)
0.785689 + 0.618621i \(0.212308\pi\)
\(774\) 0 0
\(775\) −9.42680 16.3277i −0.338621 0.586508i
\(776\) 0 0
\(777\) 11.2697 19.5197i 0.404299 0.700267i
\(778\) 0 0
\(779\) −0.810704 + 21.8278i −0.0290465 + 0.782061i
\(780\) 0 0
\(781\) 5.02374 + 2.90046i 0.179763 + 0.103786i
\(782\) 0 0
\(783\) 5.37187 3.10145i 0.191975 0.110837i
\(784\) 0 0
\(785\) −4.94961 8.57297i −0.176659 0.305983i
\(786\) 0 0
\(787\) −7.12095 −0.253835 −0.126917 0.991913i \(-0.540508\pi\)
−0.126917 + 0.991913i \(0.540508\pi\)
\(788\) 0 0
\(789\) −18.6815 + 10.7858i −0.665080 + 0.383984i
\(790\) 0 0
\(791\) −43.0952 −1.53229
\(792\) 0 0
\(793\) 2.17946 + 1.25831i 0.0773949 + 0.0446840i
\(794\) 0 0
\(795\) −2.55987 1.47794i −0.0907894 0.0524173i
\(796\) 0 0
\(797\) 22.2823i 0.789279i 0.918836 + 0.394640i \(0.129131\pi\)
−0.918836 + 0.394640i \(0.870869\pi\)
\(798\) 0 0
\(799\) 4.61086i 0.163120i
\(800\) 0 0
\(801\) −6.83357 3.94536i −0.241452 0.139403i
\(802\) 0 0
\(803\) −0.753136 0.434823i −0.0265776 0.0153446i
\(804\) 0 0
\(805\) −1.98661 −0.0700187
\(806\) 0 0
\(807\) −17.8072 + 10.2810i −0.626842 + 0.361907i
\(808\) 0 0
\(809\) −48.8066 −1.71595 −0.857974 0.513694i \(-0.828277\pi\)
−0.857974 + 0.513694i \(0.828277\pi\)
\(810\) 0 0
\(811\) 2.84729 + 4.93165i 0.0999819 + 0.173174i 0.911677 0.410908i \(-0.134788\pi\)
−0.811695 + 0.584082i \(0.801455\pi\)
\(812\) 0 0
\(813\) −1.29676 + 0.748682i −0.0454792 + 0.0262574i
\(814\) 0 0
\(815\) −29.6607 17.1246i −1.03897 0.599848i
\(816\) 0 0
\(817\) −1.69078 + 45.5233i −0.0591529 + 1.59266i
\(818\) 0 0
\(819\) −4.03943 + 6.99650i −0.141149 + 0.244477i
\(820\) 0 0
\(821\) −7.75928 13.4395i −0.270801 0.469041i 0.698266 0.715838i \(-0.253955\pi\)
−0.969067 + 0.246797i \(0.920622\pi\)
\(822\) 0 0
\(823\) −9.98402 + 5.76427i −0.348021 + 0.200930i −0.663813 0.747898i \(-0.731063\pi\)
0.315792 + 0.948828i \(0.397730\pi\)
\(824\) 0 0
\(825\) 2.56752i 0.0893895i
\(826\) 0 0
\(827\) 10.2704 + 17.7889i 0.357138 + 0.618581i 0.987481 0.157736i \(-0.0504194\pi\)
−0.630344 + 0.776316i \(0.717086\pi\)
\(828\) 0 0
\(829\) 9.67745i 0.336112i −0.985777 0.168056i \(-0.946251\pi\)
0.985777 0.168056i \(-0.0537489\pi\)
\(830\) 0 0
\(831\) 4.61830 7.99913i 0.160207 0.277487i
\(832\) 0 0
\(833\) 4.02468 6.97095i 0.139447 0.241529i
\(834\) 0 0
\(835\) 25.1350 0.869833
\(836\) 0 0
\(837\) −5.98492 −0.206869
\(838\) 0 0
\(839\) 27.5193 47.6649i 0.950073 1.64557i 0.204813 0.978801i \(-0.434341\pi\)
0.745260 0.666774i \(-0.232325\pi\)
\(840\) 0 0
\(841\) 4.73799 8.20644i 0.163379 0.282981i
\(842\) 0 0
\(843\) 10.7575i 0.370509i
\(844\) 0 0
\(845\) 4.48411 + 7.76670i 0.154258 + 0.267183i
\(846\) 0 0
\(847\) 32.9908i 1.13358i
\(848\) 0 0
\(849\) −16.6346 + 9.60401i −0.570899 + 0.329609i
\(850\) 0 0
\(851\) −1.61568 2.79844i −0.0553848 0.0959293i
\(852\) 0 0
\(853\) 11.0083 19.0670i 0.376918 0.652840i −0.613694 0.789544i \(-0.710317\pi\)
0.990612 + 0.136703i \(0.0436507\pi\)
\(854\) 0 0
\(855\) 2.77162 + 5.24066i 0.0947875 + 0.179227i
\(856\) 0 0
\(857\) 4.23150 + 2.44306i 0.144545 + 0.0834532i 0.570528 0.821278i \(-0.306738\pi\)
−0.425983 + 0.904731i \(0.640072\pi\)
\(858\) 0 0
\(859\) −31.8248 + 18.3740i −1.08585 + 0.626914i −0.932468 0.361253i \(-0.882349\pi\)
−0.153380 + 0.988167i \(0.549016\pi\)
\(860\) 0 0
\(861\) −7.99751 13.8521i −0.272554 0.472078i
\(862\) 0 0
\(863\) −54.2500 −1.84669 −0.923345 0.383971i \(-0.874556\pi\)
−0.923345 + 0.383971i \(0.874556\pi\)
\(864\) 0 0
\(865\) 27.6358 15.9555i 0.939645 0.542504i
\(866\) 0 0
\(867\) −10.6265 −0.360895
\(868\) 0 0
\(869\) −1.78060 1.02803i −0.0604027 0.0348735i
\(870\) 0 0
\(871\) −12.3991 7.15863i −0.420128 0.242561i
\(872\) 0 0
\(873\) 1.32576i 0.0448703i
\(874\) 0 0
\(875\) 35.3822i 1.19614i
\(876\) 0 0
\(877\) 37.9181 + 21.8920i 1.28040 + 0.739240i 0.976922 0.213598i \(-0.0685181\pi\)
0.303480 + 0.952838i \(0.401851\pi\)
\(878\) 0 0
\(879\) 2.75991 + 1.59344i 0.0930896 + 0.0537453i
\(880\) 0 0
\(881\) −49.0180 −1.65146 −0.825729 0.564067i \(-0.809236\pi\)
−0.825729 + 0.564067i \(0.809236\pi\)
\(882\) 0 0
\(883\) 11.8069 6.81671i 0.397333 0.229400i −0.287999 0.957631i \(-0.592990\pi\)
0.685333 + 0.728230i \(0.259657\pi\)
\(884\) 0 0
\(885\) −8.12154 −0.273002
\(886\) 0 0
\(887\) −9.13155 15.8163i −0.306607 0.531059i 0.671011 0.741448i \(-0.265861\pi\)
−0.977618 + 0.210388i \(0.932527\pi\)
\(888\) 0 0
\(889\) 32.9652 19.0325i 1.10562 0.638329i
\(890\) 0 0
\(891\) −0.705842 0.407518i −0.0236466 0.0136524i
\(892\) 0 0
\(893\) 6.74197 + 4.23367i 0.225611 + 0.141674i
\(894\) 0 0
\(895\) −3.32301 + 5.75562i −0.111076 + 0.192389i
\(896\) 0 0
\(897\) 0.579111 + 1.00305i 0.0193360 + 0.0334909i
\(898\) 0 0
\(899\) −32.1502 + 18.5619i −1.07227 + 0.619075i
\(900\) 0 0
\(901\) 5.48672i 0.182789i
\(902\) 0 0
\(903\) −16.6794 28.8895i −0.555055 0.961383i
\(904\) 0 0
\(905\) 18.0777i 0.600924i
\(906\) 0 0
\(907\) 9.17887 15.8983i 0.304779 0.527893i −0.672433 0.740158i \(-0.734751\pi\)
0.977212 + 0.212265i \(0.0680840\pi\)
\(908\) 0 0
\(909\) −4.95412 + 8.58078i −0.164318 + 0.284607i
\(910\) 0 0
\(911\) −21.4173 −0.709586 −0.354793 0.934945i \(-0.615449\pi\)
−0.354793 + 0.934945i \(0.615449\pi\)
\(912\) 0 0
\(913\) 10.7359 0.355305
\(914\) 0 0
\(915\) −0.676169 + 1.17116i −0.0223534 + 0.0387173i
\(916\) 0 0
\(917\) 16.5110 28.5979i 0.545240 0.944384i
\(918\) 0 0
\(919\) 3.75300i 0.123800i 0.998082 + 0.0619001i \(0.0197160\pi\)
−0.998082 + 0.0619001i \(0.980284\pi\)
\(920\) 0 0
\(921\) −8.62186 14.9335i −0.284100 0.492075i
\(922\) 0 0
\(923\) 18.0143i 0.592947i
\(924\) 0 0
\(925\) 19.2645 11.1224i 0.633413 0.365701i
\(926\) 0 0
\(927\) 0.261074 + 0.452194i 0.00857481 + 0.0148520i
\(928\) 0 0
\(929\) 10.9369 18.9433i 0.358829 0.621511i −0.628936 0.777457i \(-0.716509\pi\)
0.987766 + 0.155946i \(0.0498426\pi\)
\(930\) 0 0
\(931\) 6.49744 + 12.2856i 0.212945 + 0.402643i
\(932\) 0 0
\(933\) −5.74980 3.31965i −0.188240 0.108680i
\(934\) 0 0
\(935\) −2.42360 + 1.39926i −0.0792601 + 0.0457608i
\(936\) 0 0
\(937\) 18.6543 + 32.3102i 0.609409 + 1.05553i 0.991338 + 0.131336i \(0.0419266\pi\)
−0.381929 + 0.924192i \(0.624740\pi\)
\(938\) 0 0
\(939\) −4.26394 −0.139148
\(940\) 0 0
\(941\) −30.1328 + 17.3972i −0.982302 + 0.567132i −0.902964 0.429716i \(-0.858614\pi\)
−0.0793375 + 0.996848i \(0.525280\pi\)
\(942\) 0 0
\(943\) −2.29312 −0.0746743
\(944\) 0 0
\(945\) −3.75965 2.17063i −0.122301 0.0706108i
\(946\) 0 0
\(947\) −0.368948 0.213012i −0.0119892 0.00692196i 0.493993 0.869466i \(-0.335537\pi\)
−0.505983 + 0.862544i \(0.668870\pi\)
\(948\) 0 0
\(949\) 2.70062i 0.0876657i
\(950\) 0 0
\(951\) 26.3045i 0.852983i
\(952\) 0 0
\(953\) 43.0070 + 24.8301i 1.39313 + 0.804325i 0.993661 0.112420i \(-0.0358603\pi\)
0.399471 + 0.916746i \(0.369194\pi\)
\(954\) 0 0
\(955\) −2.20768 1.27460i −0.0714389 0.0412452i
\(956\) 0 0
\(957\) −5.05559 −0.163424
\(958\) 0 0
\(959\) 14.4353 8.33420i 0.466139 0.269125i
\(960\) 0 0
\(961\) 4.81921 0.155458
\(962\) 0 0
\(963\) 2.25617 + 3.90781i 0.0727042 + 0.125927i
\(964\) 0 0
\(965\) −19.8924 + 11.4849i −0.640360 + 0.369712i
\(966\) 0 0
\(967\) −25.4959 14.7200i −0.819892 0.473365i 0.0304874 0.999535i \(-0.490294\pi\)
−0.850379 + 0.526170i \(0.823627\pi\)
\(968\) 0 0
\(969\) −5.85211 + 9.31930i −0.187997 + 0.299379i
\(970\) 0 0
\(971\) −30.2269 + 52.3545i −0.970027 + 1.68014i −0.274571 + 0.961567i \(0.588536\pi\)
−0.695456 + 0.718569i \(0.744798\pi\)
\(972\) 0 0
\(973\) −0.467362 0.809495i −0.0149829 0.0259512i
\(974\) 0 0
\(975\) −6.90501 + 3.98661i −0.221137 + 0.127674i
\(976\) 0 0
\(977\) 47.3648i 1.51533i −0.652642 0.757667i \(-0.726339\pi\)
0.652642 0.757667i \(-0.273661\pi\)
\(978\) 0 0
\(979\) 3.21561 + 5.56961i 0.102771 + 0.178005i
\(980\) 0 0
\(981\) 14.3971i 0.459664i
\(982\) 0 0
\(983\) 28.4043 49.1977i 0.905956 1.56916i 0.0863269 0.996267i \(-0.472487\pi\)
0.819629 0.572895i \(-0.194180\pi\)
\(984\) 0 0
\(985\) 13.7375 23.7941i 0.437713 0.758142i
\(986\) 0 0
\(987\) −5.82969 −0.185561
\(988\) 0 0
\(989\) −4.78246 −0.152073
\(990\) 0 0
\(991\) −6.05888 + 10.4943i −0.192467 + 0.333362i −0.946067 0.323971i \(-0.894982\pi\)
0.753600 + 0.657333i \(0.228315\pi\)
\(992\) 0 0
\(993\) 11.5224 19.9574i 0.365652 0.633328i
\(994\) 0 0
\(995\) 18.7272i 0.593694i
\(996\) 0 0
\(997\) 13.2196 + 22.8970i 0.418669 + 0.725157i 0.995806 0.0914910i \(-0.0291633\pi\)
−0.577137 + 0.816648i \(0.695830\pi\)
\(998\) 0 0
\(999\) 7.06140i 0.223413i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1824.2.bb.a.1471.14 yes 40
4.3 odd 2 1824.2.bb.b.1471.14 yes 40
19.12 odd 6 1824.2.bb.b.31.14 yes 40
76.31 even 6 inner 1824.2.bb.a.31.14 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1824.2.bb.a.31.14 40 76.31 even 6 inner
1824.2.bb.a.1471.14 yes 40 1.1 even 1 trivial
1824.2.bb.b.31.14 yes 40 19.12 odd 6
1824.2.bb.b.1471.14 yes 40 4.3 odd 2