Properties

Label 182.8.a.h
Level $182$
Weight $8$
Character orbit 182.a
Self dual yes
Analytic conductor $56.854$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [182,8,Mod(1,182)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(182, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("182.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 182.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,48,52,384,121] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.8540746381\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10976x^{4} - 73212x^{3} + 26099211x^{2} + 295001154x - 8025269616 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + ( - \beta_1 + 9) q^{3} + 64 q^{4} + (\beta_{2} - \beta_1 + 21) q^{5} + ( - 8 \beta_1 + 72) q^{6} + 343 q^{7} + 512 q^{8} + ( - \beta_{5} + \beta_{4} + \cdots + 1552) q^{9} + (8 \beta_{2} - 8 \beta_1 + 168) q^{10}+ \cdots + ( - 5287 \beta_{5} + 7916 \beta_{4} + \cdots + 3327997) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 48 q^{2} + 52 q^{3} + 384 q^{4} + 121 q^{5} + 416 q^{6} + 2058 q^{7} + 3072 q^{8} + 9284 q^{9} + 968 q^{10} + 3856 q^{11} + 3328 q^{12} - 13182 q^{13} + 16464 q^{14} + 25036 q^{15} + 24576 q^{16}+ \cdots + 19421430 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 10976x^{4} - 73212x^{3} + 26099211x^{2} + 295001154x - 8025269616 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2497 \nu^{5} - 675473 \nu^{4} - 8981633 \nu^{3} + 6088357107 \nu^{2} - 31121733138 \nu - 7842514042800 ) / 14589399456 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3017\nu^{5} + 157655\nu^{4} - 21807253\nu^{3} - 1181735865\nu^{2} - 12202844250\nu + 3424867452 ) / 1823674932 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 39499 \nu^{5} - 622475 \nu^{4} - 457910939 \nu^{3} + 5854317057 \nu^{2} + 1072268733738 \nu - 8709072219360 ) / 7294699728 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 579\nu^{5} - 19787\nu^{4} - 5608675\nu^{3} + 118605345\nu^{2} + 10048267194\nu - 54302973264 ) / 71516664 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{4} + \beta_{3} + 6\beta_{2} + 13\beta _1 + 3658 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 11\beta_{5} - 47\beta_{4} + 82\beta_{3} + 174\beta_{2} + 6283\beta _1 + 45619 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -8644\beta_{5} + 8239\beta_{4} + 11563\beta_{3} + 36462\beta_{2} + 158581\beta _1 + 22851418 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 139514\beta_{5} - 378563\beta_{4} + 984634\beta_{3} + 1702506\beta_{2} + 46264267\beta _1 + 567301855 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
93.1918
55.6325
13.2953
−28.9408
−48.8853
−82.2935
8.00000 −84.1918 64.0000 28.4152 −673.534 343.000 512.000 4901.25 227.322
1.2 8.00000 −46.6325 64.0000 142.436 −373.060 343.000 512.000 −12.4124 1139.49
1.3 8.00000 −4.29534 64.0000 −487.261 −34.3627 343.000 512.000 −2168.55 −3898.09
1.4 8.00000 37.9408 64.0000 −97.3740 303.527 343.000 512.000 −747.494 −778.992
1.5 8.00000 57.8853 64.0000 393.626 463.082 343.000 512.000 1163.70 3149.00
1.6 8.00000 91.2935 64.0000 141.158 730.348 343.000 512.000 6147.50 1129.27
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 182.8.a.h 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
182.8.a.h 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 52T_{3}^{5} - 9851T_{3}^{4} + 455388T_{3}^{3} + 18871986T_{3}^{2} - 715279104T_{3} - 3381194880 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(182))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 3381194880 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 10670006880000 \) Copy content Toggle raw display
$7$ \( (T - 343)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 55\!\cdots\!60 \) Copy content Toggle raw display
$13$ \( (T + 2197)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 67\!\cdots\!96 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 39\!\cdots\!32 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 53\!\cdots\!24 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 90\!\cdots\!60 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 14\!\cdots\!68 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 26\!\cdots\!60 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 17\!\cdots\!12 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 59\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 84\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 13\!\cdots\!92 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 77\!\cdots\!68 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 93\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 99\!\cdots\!74 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 40\!\cdots\!84 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 41\!\cdots\!32 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 23\!\cdots\!72 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 33\!\cdots\!58 \) Copy content Toggle raw display
show more
show less