Properties

Label 2-182-1.1-c7-0-7
Degree $2$
Conductor $182$
Sign $1$
Analytic cond. $56.8540$
Root an. cond. $7.54016$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 4.29·3-s + 64·4-s − 487.·5-s − 34.3·6-s + 343·7-s + 512·8-s − 2.16e3·9-s − 3.89e3·10-s − 2.42e3·11-s − 274.·12-s − 2.19e3·13-s + 2.74e3·14-s + 2.09e3·15-s + 4.09e3·16-s − 1.38e3·17-s − 1.73e4·18-s + 3.97e4·19-s − 3.11e4·20-s − 1.47e3·21-s − 1.93e4·22-s + 22.9·23-s − 2.19e3·24-s + 1.59e5·25-s − 1.75e4·26-s + 1.87e4·27-s + 2.19e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.0918·3-s + 0.5·4-s − 1.74·5-s − 0.0649·6-s + 0.377·7-s + 0.353·8-s − 0.991·9-s − 1.23·10-s − 0.548·11-s − 0.0459·12-s − 0.277·13-s + 0.267·14-s + 0.160·15-s + 0.250·16-s − 0.0681·17-s − 0.701·18-s + 1.32·19-s − 0.871·20-s − 0.0347·21-s − 0.388·22-s + 0.000392·23-s − 0.0324·24-s + 2.03·25-s − 0.196·26-s + 0.182·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182\)    =    \(2 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(56.8540\)
Root analytic conductor: \(7.54016\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 182,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.746078076\)
\(L(\frac12)\) \(\approx\) \(1.746078076\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
7 \( 1 - 343T \)
13 \( 1 + 2.19e3T \)
good3 \( 1 + 4.29T + 2.18e3T^{2} \)
5 \( 1 + 487.T + 7.81e4T^{2} \)
11 \( 1 + 2.42e3T + 1.94e7T^{2} \)
17 \( 1 + 1.38e3T + 4.10e8T^{2} \)
19 \( 1 - 3.97e4T + 8.93e8T^{2} \)
23 \( 1 - 22.9T + 3.40e9T^{2} \)
29 \( 1 + 2.52e5T + 1.72e10T^{2} \)
31 \( 1 - 1.81e4T + 2.75e10T^{2} \)
37 \( 1 - 5.33e5T + 9.49e10T^{2} \)
41 \( 1 - 7.22e5T + 1.94e11T^{2} \)
43 \( 1 - 1.00e6T + 2.71e11T^{2} \)
47 \( 1 + 6.27e5T + 5.06e11T^{2} \)
53 \( 1 + 6.95e5T + 1.17e12T^{2} \)
59 \( 1 + 1.25e5T + 2.48e12T^{2} \)
61 \( 1 - 1.15e6T + 3.14e12T^{2} \)
67 \( 1 + 2.14e6T + 6.06e12T^{2} \)
71 \( 1 - 3.27e5T + 9.09e12T^{2} \)
73 \( 1 + 1.60e6T + 1.10e13T^{2} \)
79 \( 1 + 5.21e5T + 1.92e13T^{2} \)
83 \( 1 - 7.72e6T + 2.71e13T^{2} \)
89 \( 1 - 1.00e7T + 4.42e13T^{2} \)
97 \( 1 - 8.33e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.37478969265848175737041631402, −10.98845978009991880441745299447, −9.223484241299854337253422184779, −7.80775153684007705676262882542, −7.54700419599683187850410567780, −5.85678937794736327644109837618, −4.78487306332019921162229015487, −3.72122976920686279667807392937, −2.68223761641362730445391457697, −0.63270519955703317367709165747, 0.63270519955703317367709165747, 2.68223761641362730445391457697, 3.72122976920686279667807392937, 4.78487306332019921162229015487, 5.85678937794736327644109837618, 7.54700419599683187850410567780, 7.80775153684007705676262882542, 9.223484241299854337253422184779, 10.98845978009991880441745299447, 11.37478969265848175737041631402

Graph of the $Z$-function along the critical line