Properties

Label 182.8.a
Level $182$
Weight $8$
Character orbit 182.a
Rep. character $\chi_{182}(1,\cdot)$
Character field $\Q$
Dimension $42$
Newform subspaces $8$
Sturm bound $224$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 182.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(224\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(182))\).

Total New Old
Modular forms 200 42 158
Cusp forms 192 42 150
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(28\)\(6\)\(22\)\(27\)\(6\)\(21\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(23\)\(5\)\(18\)\(22\)\(5\)\(17\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(24\)\(5\)\(19\)\(23\)\(5\)\(18\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(25\)\(6\)\(19\)\(24\)\(6\)\(18\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(24\)\(4\)\(20\)\(23\)\(4\)\(19\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(25\)\(6\)\(19\)\(24\)\(6\)\(18\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(25\)\(6\)\(19\)\(24\)\(6\)\(18\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(26\)\(4\)\(22\)\(25\)\(4\)\(21\)\(1\)\(0\)\(1\)
Plus space\(+\)\(103\)\(24\)\(79\)\(99\)\(24\)\(75\)\(4\)\(0\)\(4\)
Minus space\(-\)\(97\)\(18\)\(79\)\(93\)\(18\)\(75\)\(4\)\(0\)\(4\)

Trace form

\( 42 q - 16 q^{2} + 156 q^{3} + 2688 q^{4} - 568 q^{5} - 1376 q^{6} - 1024 q^{8} + 24222 q^{9} - 4600 q^{11} + 9984 q^{12} + 27760 q^{15} + 172032 q^{16} - 50076 q^{17} + 13360 q^{18} + 49540 q^{19} - 36352 q^{20}+ \cdots - 5716768 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(182))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 13
182.8.a.a 182.a 1.a $4$ $56.854$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 182.8.a.a \(32\) \(-83\) \(-707\) \(1372\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+(-21-\beta _{1}+\beta _{2}+\beta _{3})q^{3}+\cdots\)
182.8.a.b 182.a 1.a $4$ $56.854$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 182.8.a.b \(32\) \(-29\) \(315\) \(-1372\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+(-7-\beta _{1})q^{3}+2^{6}q^{4}+(78+\cdots)q^{5}+\cdots\)
182.8.a.c 182.a 1.a $5$ $56.854$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 182.8.a.c \(-40\) \(-13\) \(233\) \(1715\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+(-3+\beta _{1})q^{3}+2^{6}q^{4}+(47+\cdots)q^{5}+\cdots\)
182.8.a.d 182.a 1.a $5$ $56.854$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 182.8.a.d \(-40\) \(41\) \(-625\) \(-1715\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+(8+\beta _{1})q^{3}+2^{6}q^{4}+(-5^{3}+\cdots)q^{5}+\cdots\)
182.8.a.e 182.a 1.a $6$ $56.854$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 182.8.a.e \(-48\) \(68\) \(-47\) \(-2058\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+(11+\beta _{1})q^{3}+2^{6}q^{4}+(-7+\cdots)q^{5}+\cdots\)
182.8.a.f 182.a 1.a $6$ $56.854$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 182.8.a.f \(-48\) \(68\) \(155\) \(2058\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+(11+\beta _{1})q^{3}+2^{6}q^{4}+(26+\cdots)q^{5}+\cdots\)
182.8.a.g 182.a 1.a $6$ $56.854$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 182.8.a.g \(48\) \(52\) \(-13\) \(-2058\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+(9-\beta _{1})q^{3}+2^{6}q^{4}+(-2+\cdots)q^{5}+\cdots\)
182.8.a.h 182.a 1.a $6$ $56.854$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 182.8.a.h \(48\) \(52\) \(121\) \(2058\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+(9-\beta _{1})q^{3}+2^{6}q^{4}+(21-\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(182))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(182)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 2}\)