Properties

Label 1815.2.a.l.1.3
Level $1815$
Weight $2$
Character 1815.1
Self dual yes
Analytic conductor $14.493$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1815,2,Mod(1,1815)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1815.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1815, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1815 = 3 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1815.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,3,5,3,-1,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.4928479669\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.469.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.16425\) of defining polynomial
Character \(\chi\) \(=\) 1815.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.16425 q^{2} +1.00000 q^{3} +2.68397 q^{4} +1.00000 q^{5} +2.16425 q^{6} +0.480279 q^{7} +1.48028 q^{8} +1.00000 q^{9} +2.16425 q^{10} +2.68397 q^{12} +3.36794 q^{13} +1.03944 q^{14} +1.00000 q^{15} -2.16425 q^{16} +4.84822 q^{17} +2.16425 q^{18} -1.84822 q^{19} +2.68397 q^{20} +0.480279 q^{21} +3.48028 q^{23} +1.48028 q^{24} +1.00000 q^{25} +7.28905 q^{26} +1.00000 q^{27} +1.28905 q^{28} -8.32850 q^{29} +2.16425 q^{30} -2.36794 q^{31} -7.64453 q^{32} +10.4927 q^{34} +0.480279 q^{35} +2.68397 q^{36} +5.44084 q^{37} -4.00000 q^{38} +3.36794 q^{39} +1.48028 q^{40} -6.65699 q^{41} +1.03944 q^{42} +4.32850 q^{43} +1.00000 q^{45} +7.53219 q^{46} -3.17671 q^{47} -2.16425 q^{48} -6.76933 q^{49} +2.16425 q^{50} +4.84822 q^{51} +9.03944 q^{52} +13.5052 q^{53} +2.16425 q^{54} +0.710947 q^{56} -1.84822 q^{57} -18.0249 q^{58} +15.0644 q^{59} +2.68397 q^{60} -11.9606 q^{61} -5.12481 q^{62} +0.480279 q^{63} -12.2162 q^{64} +3.36794 q^{65} +8.17671 q^{67} +13.0125 q^{68} +3.48028 q^{69} +1.03944 q^{70} -12.3534 q^{71} +1.48028 q^{72} +5.84822 q^{73} +11.7753 q^{74} +1.00000 q^{75} -4.96056 q^{76} +7.28905 q^{78} -15.0249 q^{79} -2.16425 q^{80} +1.00000 q^{81} -14.4074 q^{82} -4.00000 q^{83} +1.28905 q^{84} +4.84822 q^{85} +9.36794 q^{86} -8.32850 q^{87} +5.67150 q^{89} +2.16425 q^{90} +1.61755 q^{91} +9.34096 q^{92} -2.36794 q^{93} -6.87519 q^{94} -1.84822 q^{95} -7.64453 q^{96} -8.17671 q^{97} -14.6505 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} + 5 q^{4} + 3 q^{5} - q^{6} - 3 q^{7} + 3 q^{9} - q^{10} + 5 q^{12} + 4 q^{13} + 12 q^{14} + 3 q^{15} + q^{16} + 4 q^{17} - q^{18} + 5 q^{19} + 5 q^{20} - 3 q^{21} + 6 q^{23}+ \cdots - 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.16425 1.53035 0.765177 0.643820i \(-0.222651\pi\)
0.765177 + 0.643820i \(0.222651\pi\)
\(3\) 1.00000 0.577350
\(4\) 2.68397 1.34198
\(5\) 1.00000 0.447214
\(6\) 2.16425 0.883551
\(7\) 0.480279 0.181528 0.0907642 0.995872i \(-0.471069\pi\)
0.0907642 + 0.995872i \(0.471069\pi\)
\(8\) 1.48028 0.523358
\(9\) 1.00000 0.333333
\(10\) 2.16425 0.684395
\(11\) 0 0
\(12\) 2.68397 0.774795
\(13\) 3.36794 0.934098 0.467049 0.884231i \(-0.345317\pi\)
0.467049 + 0.884231i \(0.345317\pi\)
\(14\) 1.03944 0.277803
\(15\) 1.00000 0.258199
\(16\) −2.16425 −0.541062
\(17\) 4.84822 1.17587 0.587933 0.808910i \(-0.299942\pi\)
0.587933 + 0.808910i \(0.299942\pi\)
\(18\) 2.16425 0.510118
\(19\) −1.84822 −0.424010 −0.212005 0.977269i \(-0.567999\pi\)
−0.212005 + 0.977269i \(0.567999\pi\)
\(20\) 2.68397 0.600154
\(21\) 0.480279 0.104805
\(22\) 0 0
\(23\) 3.48028 0.725688 0.362844 0.931850i \(-0.381806\pi\)
0.362844 + 0.931850i \(0.381806\pi\)
\(24\) 1.48028 0.302161
\(25\) 1.00000 0.200000
\(26\) 7.28905 1.42950
\(27\) 1.00000 0.192450
\(28\) 1.28905 0.243608
\(29\) −8.32850 −1.54656 −0.773281 0.634063i \(-0.781386\pi\)
−0.773281 + 0.634063i \(0.781386\pi\)
\(30\) 2.16425 0.395136
\(31\) −2.36794 −0.425294 −0.212647 0.977129i \(-0.568208\pi\)
−0.212647 + 0.977129i \(0.568208\pi\)
\(32\) −7.64453 −1.35137
\(33\) 0 0
\(34\) 10.4927 1.79949
\(35\) 0.480279 0.0811819
\(36\) 2.68397 0.447328
\(37\) 5.44084 0.894468 0.447234 0.894417i \(-0.352409\pi\)
0.447234 + 0.894417i \(0.352409\pi\)
\(38\) −4.00000 −0.648886
\(39\) 3.36794 0.539302
\(40\) 1.48028 0.234053
\(41\) −6.65699 −1.03965 −0.519824 0.854274i \(-0.674002\pi\)
−0.519824 + 0.854274i \(0.674002\pi\)
\(42\) 1.03944 0.160389
\(43\) 4.32850 0.660089 0.330045 0.943965i \(-0.392936\pi\)
0.330045 + 0.943965i \(0.392936\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 7.53219 1.11056
\(47\) −3.17671 −0.463371 −0.231686 0.972791i \(-0.574424\pi\)
−0.231686 + 0.972791i \(0.574424\pi\)
\(48\) −2.16425 −0.312382
\(49\) −6.76933 −0.967047
\(50\) 2.16425 0.306071
\(51\) 4.84822 0.678886
\(52\) 9.03944 1.25355
\(53\) 13.5052 1.85508 0.927542 0.373720i \(-0.121918\pi\)
0.927542 + 0.373720i \(0.121918\pi\)
\(54\) 2.16425 0.294517
\(55\) 0 0
\(56\) 0.710947 0.0950042
\(57\) −1.84822 −0.244802
\(58\) −18.0249 −2.36679
\(59\) 15.0644 1.96121 0.980607 0.195984i \(-0.0627900\pi\)
0.980607 + 0.195984i \(0.0627900\pi\)
\(60\) 2.68397 0.346499
\(61\) −11.9606 −1.53139 −0.765696 0.643202i \(-0.777605\pi\)
−0.765696 + 0.643202i \(0.777605\pi\)
\(62\) −5.12481 −0.650851
\(63\) 0.480279 0.0605094
\(64\) −12.2162 −1.52702
\(65\) 3.36794 0.417741
\(66\) 0 0
\(67\) 8.17671 0.998944 0.499472 0.866330i \(-0.333527\pi\)
0.499472 + 0.866330i \(0.333527\pi\)
\(68\) 13.0125 1.57799
\(69\) 3.48028 0.418976
\(70\) 1.03944 0.124237
\(71\) −12.3534 −1.46608 −0.733041 0.680184i \(-0.761900\pi\)
−0.733041 + 0.680184i \(0.761900\pi\)
\(72\) 1.48028 0.174453
\(73\) 5.84822 0.684482 0.342241 0.939612i \(-0.388814\pi\)
0.342241 + 0.939612i \(0.388814\pi\)
\(74\) 11.7753 1.36885
\(75\) 1.00000 0.115470
\(76\) −4.96056 −0.569015
\(77\) 0 0
\(78\) 7.28905 0.825323
\(79\) −15.0249 −1.69044 −0.845218 0.534421i \(-0.820530\pi\)
−0.845218 + 0.534421i \(0.820530\pi\)
\(80\) −2.16425 −0.241970
\(81\) 1.00000 0.111111
\(82\) −14.4074 −1.59103
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 1.28905 0.140647
\(85\) 4.84822 0.525863
\(86\) 9.36794 1.01017
\(87\) −8.32850 −0.892908
\(88\) 0 0
\(89\) 5.67150 0.601178 0.300589 0.953754i \(-0.402817\pi\)
0.300589 + 0.953754i \(0.402817\pi\)
\(90\) 2.16425 0.228132
\(91\) 1.61755 0.169565
\(92\) 9.34096 0.973862
\(93\) −2.36794 −0.245544
\(94\) −6.87519 −0.709122
\(95\) −1.84822 −0.189623
\(96\) −7.64453 −0.780216
\(97\) −8.17671 −0.830219 −0.415110 0.909771i \(-0.636257\pi\)
−0.415110 + 0.909771i \(0.636257\pi\)
\(98\) −14.6505 −1.47993
\(99\) 0 0
\(100\) 2.68397 0.268397
\(101\) −2.73588 −0.272230 −0.136115 0.990693i \(-0.543462\pi\)
−0.136115 + 0.990693i \(0.543462\pi\)
\(102\) 10.4927 1.03894
\(103\) −18.2016 −1.79346 −0.896731 0.442577i \(-0.854064\pi\)
−0.896731 + 0.442577i \(0.854064\pi\)
\(104\) 4.98549 0.488867
\(105\) 0.480279 0.0468704
\(106\) 29.2286 2.83893
\(107\) −9.91259 −0.958286 −0.479143 0.877737i \(-0.659053\pi\)
−0.479143 + 0.877737i \(0.659053\pi\)
\(108\) 2.68397 0.258265
\(109\) 14.5841 1.39690 0.698451 0.715657i \(-0.253873\pi\)
0.698451 + 0.715657i \(0.253873\pi\)
\(110\) 0 0
\(111\) 5.44084 0.516421
\(112\) −1.03944 −0.0982181
\(113\) −8.54465 −0.803813 −0.401907 0.915681i \(-0.631652\pi\)
−0.401907 + 0.915681i \(0.631652\pi\)
\(114\) −4.00000 −0.374634
\(115\) 3.48028 0.324538
\(116\) −22.3534 −2.07546
\(117\) 3.36794 0.311366
\(118\) 32.6030 3.00135
\(119\) 2.32850 0.213453
\(120\) 1.48028 0.135130
\(121\) 0 0
\(122\) −25.8856 −2.34357
\(123\) −6.65699 −0.600241
\(124\) −6.35547 −0.570738
\(125\) 1.00000 0.0894427
\(126\) 1.03944 0.0926009
\(127\) −0.255598 −0.0226806 −0.0113403 0.999936i \(-0.503610\pi\)
−0.0113403 + 0.999936i \(0.503610\pi\)
\(128\) −11.1497 −0.985507
\(129\) 4.32850 0.381103
\(130\) 7.28905 0.639292
\(131\) −0.735877 −0.0642938 −0.0321469 0.999483i \(-0.510234\pi\)
−0.0321469 + 0.999483i \(0.510234\pi\)
\(132\) 0 0
\(133\) −0.887659 −0.0769698
\(134\) 17.6964 1.52874
\(135\) 1.00000 0.0860663
\(136\) 7.17671 0.615398
\(137\) 0.927102 0.0792077 0.0396038 0.999215i \(-0.487390\pi\)
0.0396038 + 0.999215i \(0.487390\pi\)
\(138\) 7.53219 0.641182
\(139\) −8.21616 −0.696885 −0.348443 0.937330i \(-0.613289\pi\)
−0.348443 + 0.937330i \(0.613289\pi\)
\(140\) 1.28905 0.108945
\(141\) −3.17671 −0.267527
\(142\) −26.7359 −2.24362
\(143\) 0 0
\(144\) −2.16425 −0.180354
\(145\) −8.32850 −0.691644
\(146\) 12.6570 1.04750
\(147\) −6.76933 −0.558325
\(148\) 14.6030 1.20036
\(149\) −16.0249 −1.31281 −0.656407 0.754407i \(-0.727924\pi\)
−0.656407 + 0.754407i \(0.727924\pi\)
\(150\) 2.16425 0.176710
\(151\) −7.17671 −0.584033 −0.292016 0.956413i \(-0.594326\pi\)
−0.292016 + 0.956413i \(0.594326\pi\)
\(152\) −2.73588 −0.221909
\(153\) 4.84822 0.391955
\(154\) 0 0
\(155\) −2.36794 −0.190197
\(156\) 9.03944 0.723735
\(157\) 2.25560 0.180016 0.0900081 0.995941i \(-0.471311\pi\)
0.0900081 + 0.995941i \(0.471311\pi\)
\(158\) −32.5177 −2.58697
\(159\) 13.5052 1.07103
\(160\) −7.64453 −0.604353
\(161\) 1.67150 0.131733
\(162\) 2.16425 0.170039
\(163\) 0.255598 0.0200200 0.0100100 0.999950i \(-0.496814\pi\)
0.0100100 + 0.999950i \(0.496814\pi\)
\(164\) −17.8672 −1.39519
\(165\) 0 0
\(166\) −8.65699 −0.671913
\(167\) −16.1373 −1.24874 −0.624370 0.781129i \(-0.714644\pi\)
−0.624370 + 0.781129i \(0.714644\pi\)
\(168\) 0.710947 0.0548507
\(169\) −1.65699 −0.127461
\(170\) 10.4927 0.804757
\(171\) −1.84822 −0.141337
\(172\) 11.6175 0.885830
\(173\) 9.39287 0.714127 0.357063 0.934080i \(-0.383778\pi\)
0.357063 + 0.934080i \(0.383778\pi\)
\(174\) −18.0249 −1.36647
\(175\) 0.480279 0.0363057
\(176\) 0 0
\(177\) 15.0644 1.13231
\(178\) 12.2745 0.920016
\(179\) 9.36794 0.700193 0.350096 0.936714i \(-0.386149\pi\)
0.350096 + 0.936714i \(0.386149\pi\)
\(180\) 2.68397 0.200051
\(181\) 17.7693 1.32078 0.660392 0.750921i \(-0.270390\pi\)
0.660392 + 0.750921i \(0.270390\pi\)
\(182\) 3.50078 0.259495
\(183\) −11.9606 −0.884150
\(184\) 5.15178 0.379794
\(185\) 5.44084 0.400018
\(186\) −5.12481 −0.375769
\(187\) 0 0
\(188\) −8.52620 −0.621837
\(189\) 0.480279 0.0349351
\(190\) −4.00000 −0.290191
\(191\) 19.2891 1.39571 0.697853 0.716241i \(-0.254139\pi\)
0.697853 + 0.716241i \(0.254139\pi\)
\(192\) −12.2162 −0.881625
\(193\) 6.25560 0.450288 0.225144 0.974326i \(-0.427715\pi\)
0.225144 + 0.974326i \(0.427715\pi\)
\(194\) −17.6964 −1.27053
\(195\) 3.36794 0.241183
\(196\) −18.1687 −1.29776
\(197\) 5.03944 0.359045 0.179523 0.983754i \(-0.442545\pi\)
0.179523 + 0.983754i \(0.442545\pi\)
\(198\) 0 0
\(199\) −14.5926 −1.03444 −0.517222 0.855851i \(-0.673034\pi\)
−0.517222 + 0.855851i \(0.673034\pi\)
\(200\) 1.48028 0.104672
\(201\) 8.17671 0.576741
\(202\) −5.92112 −0.416608
\(203\) −4.00000 −0.280745
\(204\) 13.0125 0.911055
\(205\) −6.65699 −0.464944
\(206\) −39.3929 −2.74463
\(207\) 3.48028 0.241896
\(208\) −7.28905 −0.505405
\(209\) 0 0
\(210\) 1.03944 0.0717283
\(211\) −19.2496 −1.32520 −0.662599 0.748974i \(-0.730547\pi\)
−0.662599 + 0.748974i \(0.730547\pi\)
\(212\) 36.2476 2.48949
\(213\) −12.3534 −0.846443
\(214\) −21.4533 −1.46652
\(215\) 4.32850 0.295201
\(216\) 1.48028 0.100720
\(217\) −1.13727 −0.0772030
\(218\) 31.5636 2.13776
\(219\) 5.84822 0.395186
\(220\) 0 0
\(221\) 16.3285 1.09837
\(222\) 11.7753 0.790308
\(223\) 10.5841 0.708763 0.354382 0.935101i \(-0.384691\pi\)
0.354382 + 0.935101i \(0.384691\pi\)
\(224\) −3.67150 −0.245313
\(225\) 1.00000 0.0666667
\(226\) −18.4927 −1.23012
\(227\) −27.1767 −1.80378 −0.901891 0.431964i \(-0.857821\pi\)
−0.901891 + 0.431964i \(0.857821\pi\)
\(228\) −4.96056 −0.328521
\(229\) 20.8981 1.38098 0.690492 0.723340i \(-0.257394\pi\)
0.690492 + 0.723340i \(0.257394\pi\)
\(230\) 7.53219 0.496658
\(231\) 0 0
\(232\) −12.3285 −0.809405
\(233\) 19.8877 1.30288 0.651442 0.758698i \(-0.274164\pi\)
0.651442 + 0.758698i \(0.274164\pi\)
\(234\) 7.28905 0.476500
\(235\) −3.17671 −0.207226
\(236\) 40.4323 2.63192
\(237\) −15.0249 −0.975974
\(238\) 5.03944 0.326659
\(239\) 12.3285 0.797464 0.398732 0.917067i \(-0.369450\pi\)
0.398732 + 0.917067i \(0.369450\pi\)
\(240\) −2.16425 −0.139702
\(241\) −7.20164 −0.463899 −0.231949 0.972728i \(-0.574510\pi\)
−0.231949 + 0.972728i \(0.574510\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) −32.1018 −2.05511
\(245\) −6.76933 −0.432477
\(246\) −14.4074 −0.918581
\(247\) −6.22468 −0.396067
\(248\) −3.50521 −0.222581
\(249\) −4.00000 −0.253490
\(250\) 2.16425 0.136879
\(251\) −3.36794 −0.212582 −0.106291 0.994335i \(-0.533898\pi\)
−0.106291 + 0.994335i \(0.533898\pi\)
\(252\) 1.28905 0.0812027
\(253\) 0 0
\(254\) −0.553177 −0.0347094
\(255\) 4.84822 0.303607
\(256\) 0.301518 0.0188449
\(257\) −11.5841 −0.722596 −0.361298 0.932450i \(-0.617666\pi\)
−0.361298 + 0.932450i \(0.617666\pi\)
\(258\) 9.36794 0.583222
\(259\) 2.61312 0.162371
\(260\) 9.03944 0.560602
\(261\) −8.32850 −0.515521
\(262\) −1.59262 −0.0983924
\(263\) 28.5696 1.76168 0.880838 0.473418i \(-0.156980\pi\)
0.880838 + 0.473418i \(0.156980\pi\)
\(264\) 0 0
\(265\) 13.5052 0.829618
\(266\) −1.92112 −0.117791
\(267\) 5.67150 0.347090
\(268\) 21.9460 1.34057
\(269\) −1.47175 −0.0897344 −0.0448672 0.998993i \(-0.514286\pi\)
−0.0448672 + 0.998993i \(0.514286\pi\)
\(270\) 2.16425 0.131712
\(271\) 5.70496 0.346552 0.173276 0.984873i \(-0.444565\pi\)
0.173276 + 0.984873i \(0.444565\pi\)
\(272\) −10.4927 −0.636216
\(273\) 1.61755 0.0978985
\(274\) 2.00648 0.121216
\(275\) 0 0
\(276\) 9.34096 0.562260
\(277\) −24.7299 −1.48588 −0.742938 0.669361i \(-0.766568\pi\)
−0.742938 + 0.669361i \(0.766568\pi\)
\(278\) −17.7818 −1.06648
\(279\) −2.36794 −0.141765
\(280\) 0.710947 0.0424872
\(281\) −5.67150 −0.338334 −0.169167 0.985587i \(-0.554108\pi\)
−0.169167 + 0.985587i \(0.554108\pi\)
\(282\) −6.87519 −0.409412
\(283\) 22.1228 1.31506 0.657531 0.753428i \(-0.271601\pi\)
0.657531 + 0.753428i \(0.271601\pi\)
\(284\) −33.1562 −1.96746
\(285\) −1.84822 −0.109479
\(286\) 0 0
\(287\) −3.19721 −0.188725
\(288\) −7.64453 −0.450458
\(289\) 6.50521 0.382659
\(290\) −18.0249 −1.05846
\(291\) −8.17671 −0.479327
\(292\) 15.6964 0.918564
\(293\) −12.8482 −0.750601 −0.375300 0.926903i \(-0.622460\pi\)
−0.375300 + 0.926903i \(0.622460\pi\)
\(294\) −14.6505 −0.854435
\(295\) 15.0644 0.877082
\(296\) 8.05395 0.468127
\(297\) 0 0
\(298\) −34.6819 −2.00907
\(299\) 11.7214 0.677864
\(300\) 2.68397 0.154959
\(301\) 2.07888 0.119825
\(302\) −15.5322 −0.893777
\(303\) −2.73588 −0.157172
\(304\) 4.00000 0.229416
\(305\) −11.9606 −0.684860
\(306\) 10.4927 0.599830
\(307\) −8.50521 −0.485418 −0.242709 0.970099i \(-0.578036\pi\)
−0.242709 + 0.970099i \(0.578036\pi\)
\(308\) 0 0
\(309\) −18.2016 −1.03546
\(310\) −5.12481 −0.291069
\(311\) −6.32850 −0.358856 −0.179428 0.983771i \(-0.557425\pi\)
−0.179428 + 0.983771i \(0.557425\pi\)
\(312\) 4.98549 0.282248
\(313\) 20.0249 1.13188 0.565938 0.824448i \(-0.308514\pi\)
0.565938 + 0.824448i \(0.308514\pi\)
\(314\) 4.88167 0.275489
\(315\) 0.480279 0.0270606
\(316\) −40.3264 −2.26854
\(317\) −23.8088 −1.33723 −0.668617 0.743607i \(-0.733113\pi\)
−0.668617 + 0.743607i \(0.733113\pi\)
\(318\) 29.2286 1.63906
\(319\) 0 0
\(320\) −12.2162 −0.682904
\(321\) −9.91259 −0.553267
\(322\) 3.61755 0.201598
\(323\) −8.96056 −0.498579
\(324\) 2.68397 0.149109
\(325\) 3.36794 0.186820
\(326\) 0.553177 0.0306376
\(327\) 14.5841 0.806502
\(328\) −9.85420 −0.544107
\(329\) −1.52571 −0.0841150
\(330\) 0 0
\(331\) −15.3285 −0.842530 −0.421265 0.906938i \(-0.638414\pi\)
−0.421265 + 0.906938i \(0.638414\pi\)
\(332\) −10.7359 −0.589208
\(333\) 5.44084 0.298156
\(334\) −34.9251 −1.91101
\(335\) 8.17671 0.446742
\(336\) −1.03944 −0.0567062
\(337\) −3.03346 −0.165243 −0.0826214 0.996581i \(-0.526329\pi\)
−0.0826214 + 0.996581i \(0.526329\pi\)
\(338\) −3.58614 −0.195060
\(339\) −8.54465 −0.464082
\(340\) 13.0125 0.705700
\(341\) 0 0
\(342\) −4.00000 −0.216295
\(343\) −6.61312 −0.357075
\(344\) 6.40738 0.345463
\(345\) 3.48028 0.187372
\(346\) 20.3285 1.09287
\(347\) 34.0584 1.82835 0.914175 0.405320i \(-0.132840\pi\)
0.914175 + 0.405320i \(0.132840\pi\)
\(348\) −22.3534 −1.19827
\(349\) −20.0104 −1.07113 −0.535567 0.844493i \(-0.679902\pi\)
−0.535567 + 0.844493i \(0.679902\pi\)
\(350\) 1.03944 0.0555605
\(351\) 3.36794 0.179767
\(352\) 0 0
\(353\) 30.9770 1.64874 0.824369 0.566053i \(-0.191530\pi\)
0.824369 + 0.566053i \(0.191530\pi\)
\(354\) 32.6030 1.73283
\(355\) −12.3534 −0.655652
\(356\) 15.2221 0.806772
\(357\) 2.32850 0.123237
\(358\) 20.2745 1.07154
\(359\) 29.8252 1.57411 0.787056 0.616881i \(-0.211604\pi\)
0.787056 + 0.616881i \(0.211604\pi\)
\(360\) 1.48028 0.0780175
\(361\) −15.5841 −0.820215
\(362\) 38.4572 2.02127
\(363\) 0 0
\(364\) 4.34145 0.227554
\(365\) 5.84822 0.306110
\(366\) −25.8856 −1.35306
\(367\) 25.4178 1.32680 0.663399 0.748266i \(-0.269113\pi\)
0.663399 + 0.748266i \(0.269113\pi\)
\(368\) −7.53219 −0.392642
\(369\) −6.65699 −0.346549
\(370\) 11.7753 0.612170
\(371\) 6.48627 0.336750
\(372\) −6.35547 −0.329516
\(373\) 30.8088 1.59522 0.797609 0.603175i \(-0.206098\pi\)
0.797609 + 0.603175i \(0.206098\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) −4.70242 −0.242509
\(377\) −28.0499 −1.44464
\(378\) 1.03944 0.0534631
\(379\) −29.5301 −1.51686 −0.758431 0.651754i \(-0.774034\pi\)
−0.758431 + 0.651754i \(0.774034\pi\)
\(380\) −4.96056 −0.254471
\(381\) −0.255598 −0.0130947
\(382\) 41.7463 2.13593
\(383\) −4.30357 −0.219902 −0.109951 0.993937i \(-0.535069\pi\)
−0.109951 + 0.993937i \(0.535069\pi\)
\(384\) −11.1497 −0.568983
\(385\) 0 0
\(386\) 13.5387 0.689100
\(387\) 4.32850 0.220030
\(388\) −21.9460 −1.11414
\(389\) 35.4178 1.79575 0.897877 0.440247i \(-0.145109\pi\)
0.897877 + 0.440247i \(0.145109\pi\)
\(390\) 7.28905 0.369096
\(391\) 16.8731 0.853312
\(392\) −10.0205 −0.506112
\(393\) −0.735877 −0.0371201
\(394\) 10.9066 0.549467
\(395\) −15.0249 −0.755986
\(396\) 0 0
\(397\) −18.0729 −0.907053 −0.453526 0.891243i \(-0.649834\pi\)
−0.453526 + 0.891243i \(0.649834\pi\)
\(398\) −31.5820 −1.58306
\(399\) −0.887659 −0.0444386
\(400\) −2.16425 −0.108212
\(401\) −3.08930 −0.154272 −0.0771362 0.997021i \(-0.524578\pi\)
−0.0771362 + 0.997021i \(0.524578\pi\)
\(402\) 17.6964 0.882618
\(403\) −7.97507 −0.397267
\(404\) −7.34301 −0.365328
\(405\) 1.00000 0.0496904
\(406\) −8.65699 −0.429639
\(407\) 0 0
\(408\) 7.17671 0.355300
\(409\) −24.9211 −1.23227 −0.616135 0.787641i \(-0.711302\pi\)
−0.616135 + 0.787641i \(0.711302\pi\)
\(410\) −14.4074 −0.711530
\(411\) 0.927102 0.0457306
\(412\) −48.8526 −2.40680
\(413\) 7.23510 0.356016
\(414\) 7.53219 0.370187
\(415\) −4.00000 −0.196352
\(416\) −25.7463 −1.26232
\(417\) −8.21616 −0.402347
\(418\) 0 0
\(419\) −4.22468 −0.206389 −0.103195 0.994661i \(-0.532906\pi\)
−0.103195 + 0.994661i \(0.532906\pi\)
\(420\) 1.28905 0.0628994
\(421\) −21.7299 −1.05905 −0.529525 0.848294i \(-0.677630\pi\)
−0.529525 + 0.848294i \(0.677630\pi\)
\(422\) −41.6609 −2.02802
\(423\) −3.17671 −0.154457
\(424\) 19.9915 0.970872
\(425\) 4.84822 0.235173
\(426\) −26.7359 −1.29536
\(427\) −5.74440 −0.277991
\(428\) −26.6051 −1.28601
\(429\) 0 0
\(430\) 9.36794 0.451762
\(431\) −9.89619 −0.476682 −0.238341 0.971181i \(-0.576604\pi\)
−0.238341 + 0.971181i \(0.576604\pi\)
\(432\) −2.16425 −0.104127
\(433\) 39.3449 1.89080 0.945398 0.325919i \(-0.105674\pi\)
0.945398 + 0.325919i \(0.105674\pi\)
\(434\) −2.46134 −0.118148
\(435\) −8.32850 −0.399321
\(436\) 39.1433 1.87462
\(437\) −6.43231 −0.307699
\(438\) 12.6570 0.604774
\(439\) −3.71095 −0.177114 −0.0885569 0.996071i \(-0.528226\pi\)
−0.0885569 + 0.996071i \(0.528226\pi\)
\(440\) 0 0
\(441\) −6.76933 −0.322349
\(442\) 35.3389 1.68090
\(443\) 4.96056 0.235683 0.117842 0.993032i \(-0.462402\pi\)
0.117842 + 0.993032i \(0.462402\pi\)
\(444\) 14.6030 0.693029
\(445\) 5.67150 0.268855
\(446\) 22.9066 1.08466
\(447\) −16.0249 −0.757953
\(448\) −5.86716 −0.277197
\(449\) 22.0000 1.03824 0.519122 0.854700i \(-0.326259\pi\)
0.519122 + 0.854700i \(0.326259\pi\)
\(450\) 2.16425 0.102024
\(451\) 0 0
\(452\) −22.9336 −1.07870
\(453\) −7.17671 −0.337191
\(454\) −58.8171 −2.76043
\(455\) 1.61755 0.0758319
\(456\) −2.73588 −0.128119
\(457\) −12.7359 −0.595759 −0.297880 0.954603i \(-0.596279\pi\)
−0.297880 + 0.954603i \(0.596279\pi\)
\(458\) 45.2286 2.11339
\(459\) 4.84822 0.226295
\(460\) 9.34096 0.435525
\(461\) 40.0249 1.86415 0.932073 0.362269i \(-0.117998\pi\)
0.932073 + 0.362269i \(0.117998\pi\)
\(462\) 0 0
\(463\) −25.5387 −1.18688 −0.593441 0.804877i \(-0.702231\pi\)
−0.593441 + 0.804877i \(0.702231\pi\)
\(464\) 18.0249 0.836786
\(465\) −2.36794 −0.109811
\(466\) 43.0418 1.99387
\(467\) −6.59861 −0.305347 −0.152674 0.988277i \(-0.548788\pi\)
−0.152674 + 0.988277i \(0.548788\pi\)
\(468\) 9.03944 0.417848
\(469\) 3.92710 0.181337
\(470\) −6.87519 −0.317129
\(471\) 2.25560 0.103932
\(472\) 22.2995 1.02642
\(473\) 0 0
\(474\) −32.5177 −1.49359
\(475\) −1.84822 −0.0848020
\(476\) 6.24961 0.286450
\(477\) 13.5052 0.618361
\(478\) 26.6819 1.22040
\(479\) 36.8277 1.68270 0.841351 0.540490i \(-0.181761\pi\)
0.841351 + 0.540490i \(0.181761\pi\)
\(480\) −7.64453 −0.348923
\(481\) 18.3244 0.835521
\(482\) −15.5861 −0.709929
\(483\) 1.67150 0.0760561
\(484\) 0 0
\(485\) −8.17671 −0.371285
\(486\) 2.16425 0.0981723
\(487\) −6.40738 −0.290346 −0.145173 0.989406i \(-0.546374\pi\)
−0.145173 + 0.989406i \(0.546374\pi\)
\(488\) −17.7050 −0.801466
\(489\) 0.255598 0.0115585
\(490\) −14.6505 −0.661843
\(491\) 2.43231 0.109769 0.0548843 0.998493i \(-0.482521\pi\)
0.0548843 + 0.998493i \(0.482521\pi\)
\(492\) −17.8672 −0.805514
\(493\) −40.3784 −1.81855
\(494\) −13.4718 −0.606123
\(495\) 0 0
\(496\) 5.12481 0.230111
\(497\) −5.93309 −0.266135
\(498\) −8.65699 −0.387929
\(499\) −36.2805 −1.62414 −0.812070 0.583560i \(-0.801659\pi\)
−0.812070 + 0.583560i \(0.801659\pi\)
\(500\) 2.68397 0.120031
\(501\) −16.1373 −0.720960
\(502\) −7.28905 −0.325326
\(503\) 11.9915 0.534673 0.267337 0.963603i \(-0.413856\pi\)
0.267337 + 0.963603i \(0.413856\pi\)
\(504\) 0.710947 0.0316681
\(505\) −2.73588 −0.121745
\(506\) 0 0
\(507\) −1.65699 −0.0735896
\(508\) −0.686016 −0.0304371
\(509\) 17.2102 0.762827 0.381414 0.924404i \(-0.375437\pi\)
0.381414 + 0.924404i \(0.375437\pi\)
\(510\) 10.4927 0.464627
\(511\) 2.80877 0.124253
\(512\) 22.9520 1.01435
\(513\) −1.84822 −0.0816008
\(514\) −25.0709 −1.10583
\(515\) −18.2016 −0.802060
\(516\) 11.6175 0.511434
\(517\) 0 0
\(518\) 5.65544 0.248486
\(519\) 9.39287 0.412301
\(520\) 4.98549 0.218628
\(521\) 17.4348 0.763835 0.381917 0.924196i \(-0.375264\pi\)
0.381917 + 0.924196i \(0.375264\pi\)
\(522\) −18.0249 −0.788930
\(523\) 18.5592 0.811536 0.405768 0.913976i \(-0.367004\pi\)
0.405768 + 0.913976i \(0.367004\pi\)
\(524\) −1.97507 −0.0862813
\(525\) 0.480279 0.0209611
\(526\) 61.8317 2.69599
\(527\) −11.4803 −0.500089
\(528\) 0 0
\(529\) −10.8877 −0.473376
\(530\) 29.2286 1.26961
\(531\) 15.0644 0.653738
\(532\) −2.38245 −0.103292
\(533\) −22.4203 −0.971133
\(534\) 12.2745 0.531171
\(535\) −9.91259 −0.428559
\(536\) 12.1038 0.522805
\(537\) 9.36794 0.404256
\(538\) −3.18524 −0.137325
\(539\) 0 0
\(540\) 2.68397 0.115500
\(541\) 31.9710 1.37454 0.687270 0.726402i \(-0.258809\pi\)
0.687270 + 0.726402i \(0.258809\pi\)
\(542\) 12.3469 0.530347
\(543\) 17.7693 0.762555
\(544\) −37.0623 −1.58903
\(545\) 14.5841 0.624714
\(546\) 3.50078 0.149819
\(547\) −15.7214 −0.672197 −0.336098 0.941827i \(-0.609108\pi\)
−0.336098 + 0.941827i \(0.609108\pi\)
\(548\) 2.48831 0.106295
\(549\) −11.9606 −0.510464
\(550\) 0 0
\(551\) 15.3929 0.655758
\(552\) 5.15178 0.219274
\(553\) −7.21616 −0.306862
\(554\) −53.5216 −2.27392
\(555\) 5.44084 0.230951
\(556\) −22.0519 −0.935209
\(557\) 14.1622 0.600072 0.300036 0.953928i \(-0.403001\pi\)
0.300036 + 0.953928i \(0.403001\pi\)
\(558\) −5.12481 −0.216950
\(559\) 14.5781 0.616588
\(560\) −1.03944 −0.0439245
\(561\) 0 0
\(562\) −12.2745 −0.517770
\(563\) −1.47175 −0.0620270 −0.0310135 0.999519i \(-0.509873\pi\)
−0.0310135 + 0.999519i \(0.509873\pi\)
\(564\) −8.52620 −0.359018
\(565\) −8.54465 −0.359476
\(566\) 47.8791 2.01251
\(567\) 0.480279 0.0201698
\(568\) −18.2865 −0.767285
\(569\) 10.2496 0.429686 0.214843 0.976649i \(-0.431076\pi\)
0.214843 + 0.976649i \(0.431076\pi\)
\(570\) −4.00000 −0.167542
\(571\) 28.4178 1.18925 0.594624 0.804004i \(-0.297301\pi\)
0.594624 + 0.804004i \(0.297301\pi\)
\(572\) 0 0
\(573\) 19.2891 0.805812
\(574\) −6.91956 −0.288817
\(575\) 3.48028 0.145138
\(576\) −12.2162 −0.509006
\(577\) 34.0439 1.41726 0.708632 0.705578i \(-0.249312\pi\)
0.708632 + 0.705578i \(0.249312\pi\)
\(578\) 14.0789 0.585604
\(579\) 6.25560 0.259974
\(580\) −22.3534 −0.928175
\(581\) −1.92112 −0.0797013
\(582\) −17.6964 −0.733541
\(583\) 0 0
\(584\) 8.65699 0.358229
\(585\) 3.36794 0.139247
\(586\) −27.8067 −1.14869
\(587\) 26.9520 1.11243 0.556215 0.831039i \(-0.312253\pi\)
0.556215 + 0.831039i \(0.312253\pi\)
\(588\) −18.1687 −0.749264
\(589\) 4.37646 0.180329
\(590\) 32.6030 1.34225
\(591\) 5.03944 0.207295
\(592\) −11.7753 −0.483963
\(593\) 7.31398 0.300349 0.150175 0.988659i \(-0.452016\pi\)
0.150175 + 0.988659i \(0.452016\pi\)
\(594\) 0 0
\(595\) 2.32850 0.0954590
\(596\) −43.0104 −1.76178
\(597\) −14.5926 −0.597236
\(598\) 25.3679 1.03737
\(599\) −32.0918 −1.31124 −0.655619 0.755092i \(-0.727592\pi\)
−0.655619 + 0.755092i \(0.727592\pi\)
\(600\) 1.48028 0.0604321
\(601\) −7.39885 −0.301806 −0.150903 0.988549i \(-0.548218\pi\)
−0.150903 + 0.988549i \(0.548218\pi\)
\(602\) 4.49922 0.183375
\(603\) 8.17671 0.332981
\(604\) −19.2621 −0.783763
\(605\) 0 0
\(606\) −5.92112 −0.240529
\(607\) 23.2891 0.945274 0.472637 0.881257i \(-0.343302\pi\)
0.472637 + 0.881257i \(0.343302\pi\)
\(608\) 14.1287 0.572996
\(609\) −4.00000 −0.162088
\(610\) −25.8856 −1.04808
\(611\) −10.6990 −0.432834
\(612\) 13.0125 0.525998
\(613\) −22.5052 −0.908977 −0.454488 0.890753i \(-0.650178\pi\)
−0.454488 + 0.890753i \(0.650178\pi\)
\(614\) −18.4074 −0.742861
\(615\) −6.65699 −0.268436
\(616\) 0 0
\(617\) 26.7069 1.07518 0.537589 0.843207i \(-0.319335\pi\)
0.537589 + 0.843207i \(0.319335\pi\)
\(618\) −39.3929 −1.58461
\(619\) 32.4992 1.30625 0.653127 0.757248i \(-0.273457\pi\)
0.653127 + 0.757248i \(0.273457\pi\)
\(620\) −6.35547 −0.255242
\(621\) 3.48028 0.139659
\(622\) −13.6964 −0.549177
\(623\) 2.72390 0.109131
\(624\) −7.28905 −0.291796
\(625\) 1.00000 0.0400000
\(626\) 43.3389 1.73217
\(627\) 0 0
\(628\) 6.05395 0.241579
\(629\) 26.3784 1.05177
\(630\) 1.03944 0.0414124
\(631\) −23.1767 −0.922650 −0.461325 0.887231i \(-0.652626\pi\)
−0.461325 + 0.887231i \(0.652626\pi\)
\(632\) −22.2411 −0.884703
\(633\) −19.2496 −0.765103
\(634\) −51.5281 −2.04644
\(635\) −0.255598 −0.0101431
\(636\) 36.2476 1.43731
\(637\) −22.7987 −0.903317
\(638\) 0 0
\(639\) −12.3534 −0.488694
\(640\) −11.1497 −0.440732
\(641\) 36.4572 1.43997 0.719987 0.693987i \(-0.244148\pi\)
0.719987 + 0.693987i \(0.244148\pi\)
\(642\) −21.4533 −0.846694
\(643\) 25.8192 1.01821 0.509105 0.860705i \(-0.329977\pi\)
0.509105 + 0.860705i \(0.329977\pi\)
\(644\) 4.48627 0.176784
\(645\) 4.32850 0.170434
\(646\) −19.3929 −0.763002
\(647\) −19.0189 −0.747712 −0.373856 0.927487i \(-0.621965\pi\)
−0.373856 + 0.927487i \(0.621965\pi\)
\(648\) 1.48028 0.0581508
\(649\) 0 0
\(650\) 7.28905 0.285900
\(651\) −1.13727 −0.0445731
\(652\) 0.686016 0.0268665
\(653\) −4.52825 −0.177204 −0.0886020 0.996067i \(-0.528240\pi\)
−0.0886020 + 0.996067i \(0.528240\pi\)
\(654\) 31.5636 1.23423
\(655\) −0.735877 −0.0287531
\(656\) 14.4074 0.562514
\(657\) 5.84822 0.228161
\(658\) −3.30201 −0.128726
\(659\) −10.9356 −0.425992 −0.212996 0.977053i \(-0.568322\pi\)
−0.212996 + 0.977053i \(0.568322\pi\)
\(660\) 0 0
\(661\) −4.50521 −0.175232 −0.0876162 0.996154i \(-0.527925\pi\)
−0.0876162 + 0.996154i \(0.527925\pi\)
\(662\) −33.1747 −1.28937
\(663\) 16.3285 0.634146
\(664\) −5.92112 −0.229784
\(665\) −0.887659 −0.0344220
\(666\) 11.7753 0.456284
\(667\) −28.9855 −1.12232
\(668\) −43.3119 −1.67579
\(669\) 10.5841 0.409205
\(670\) 17.6964 0.683673
\(671\) 0 0
\(672\) −3.67150 −0.141631
\(673\) 25.6485 0.988676 0.494338 0.869270i \(-0.335411\pi\)
0.494338 + 0.869270i \(0.335411\pi\)
\(674\) −6.56515 −0.252880
\(675\) 1.00000 0.0384900
\(676\) −4.44731 −0.171051
\(677\) 23.6674 0.909612 0.454806 0.890590i \(-0.349709\pi\)
0.454806 + 0.890590i \(0.349709\pi\)
\(678\) −18.4927 −0.710210
\(679\) −3.92710 −0.150708
\(680\) 7.17671 0.275214
\(681\) −27.1767 −1.04141
\(682\) 0 0
\(683\) 17.7753 0.680154 0.340077 0.940398i \(-0.389547\pi\)
0.340077 + 0.940398i \(0.389547\pi\)
\(684\) −4.96056 −0.189672
\(685\) 0.927102 0.0354227
\(686\) −14.3124 −0.546451
\(687\) 20.8981 0.797311
\(688\) −9.36794 −0.357149
\(689\) 45.4847 1.73283
\(690\) 7.53219 0.286745
\(691\) −8.44682 −0.321332 −0.160666 0.987009i \(-0.551364\pi\)
−0.160666 + 0.987009i \(0.551364\pi\)
\(692\) 25.2102 0.958347
\(693\) 0 0
\(694\) 73.7108 2.79802
\(695\) −8.21616 −0.311657
\(696\) −12.3285 −0.467310
\(697\) −32.2745 −1.22249
\(698\) −43.3075 −1.63921
\(699\) 19.8877 0.752220
\(700\) 1.28905 0.0487216
\(701\) −3.75039 −0.141650 −0.0708251 0.997489i \(-0.522563\pi\)
−0.0708251 + 0.997489i \(0.522563\pi\)
\(702\) 7.28905 0.275108
\(703\) −10.0558 −0.379263
\(704\) 0 0
\(705\) −3.17671 −0.119642
\(706\) 67.0418 2.52315
\(707\) −1.31398 −0.0494174
\(708\) 40.4323 1.51954
\(709\) −5.28053 −0.198314 −0.0991572 0.995072i \(-0.531615\pi\)
−0.0991572 + 0.995072i \(0.531615\pi\)
\(710\) −26.7359 −1.00338
\(711\) −15.0249 −0.563479
\(712\) 8.39541 0.314631
\(713\) −8.24109 −0.308631
\(714\) 5.03944 0.188596
\(715\) 0 0
\(716\) 25.1433 0.939648
\(717\) 12.3285 0.460416
\(718\) 64.5491 2.40895
\(719\) −15.8252 −0.590180 −0.295090 0.955470i \(-0.595350\pi\)
−0.295090 + 0.955470i \(0.595350\pi\)
\(720\) −2.16425 −0.0806568
\(721\) −8.74186 −0.325564
\(722\) −33.7278 −1.25522
\(723\) −7.20164 −0.267832
\(724\) 47.6923 1.77247
\(725\) −8.32850 −0.309313
\(726\) 0 0
\(727\) 13.6964 0.507973 0.253986 0.967208i \(-0.418258\pi\)
0.253986 + 0.967208i \(0.418258\pi\)
\(728\) 2.39442 0.0887433
\(729\) 1.00000 0.0370370
\(730\) 12.6570 0.468456
\(731\) 20.9855 0.776176
\(732\) −32.1018 −1.18652
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) 55.0104 2.03047
\(735\) −6.76933 −0.249691
\(736\) −26.6051 −0.980676
\(737\) 0 0
\(738\) −14.4074 −0.530343
\(739\) −18.7214 −0.688677 −0.344338 0.938846i \(-0.611897\pi\)
−0.344338 + 0.938846i \(0.611897\pi\)
\(740\) 14.6030 0.536818
\(741\) −6.22468 −0.228669
\(742\) 14.0379 0.515347
\(743\) 7.55916 0.277319 0.138659 0.990340i \(-0.455721\pi\)
0.138659 + 0.990340i \(0.455721\pi\)
\(744\) −3.50521 −0.128507
\(745\) −16.0249 −0.587108
\(746\) 66.6778 2.44125
\(747\) −4.00000 −0.146352
\(748\) 0 0
\(749\) −4.76081 −0.173956
\(750\) 2.16425 0.0790272
\(751\) −21.1707 −0.772531 −0.386265 0.922388i \(-0.626235\pi\)
−0.386265 + 0.922388i \(0.626235\pi\)
\(752\) 6.87519 0.250713
\(753\) −3.36794 −0.122734
\(754\) −60.7069 −2.21081
\(755\) −7.17671 −0.261187
\(756\) 1.28905 0.0468824
\(757\) −47.8981 −1.74089 −0.870443 0.492270i \(-0.836167\pi\)
−0.870443 + 0.492270i \(0.836167\pi\)
\(758\) −63.9105 −2.32134
\(759\) 0 0
\(760\) −2.73588 −0.0992407
\(761\) 10.1038 0.366263 0.183132 0.983088i \(-0.441377\pi\)
0.183132 + 0.983088i \(0.441377\pi\)
\(762\) −0.553177 −0.0200395
\(763\) 7.00443 0.253577
\(764\) 51.7712 1.87302
\(765\) 4.84822 0.175288
\(766\) −9.31398 −0.336528
\(767\) 50.7359 1.83197
\(768\) 0.301518 0.0108801
\(769\) 24.7463 0.892374 0.446187 0.894940i \(-0.352782\pi\)
0.446187 + 0.894940i \(0.352782\pi\)
\(770\) 0 0
\(771\) −11.5841 −0.417191
\(772\) 16.7898 0.604279
\(773\) 16.5945 0.596863 0.298432 0.954431i \(-0.403537\pi\)
0.298432 + 0.954431i \(0.403537\pi\)
\(774\) 9.36794 0.336724
\(775\) −2.36794 −0.0850589
\(776\) −12.1038 −0.434502
\(777\) 2.61312 0.0937451
\(778\) 76.6529 2.74814
\(779\) 12.3036 0.440821
\(780\) 9.03944 0.323664
\(781\) 0 0
\(782\) 36.5177 1.30587
\(783\) −8.32850 −0.297636
\(784\) 14.6505 0.523233
\(785\) 2.25560 0.0805057
\(786\) −1.59262 −0.0568068
\(787\) 0.157770 0.00562388 0.00281194 0.999996i \(-0.499105\pi\)
0.00281194 + 0.999996i \(0.499105\pi\)
\(788\) 13.5257 0.481833
\(789\) 28.5696 1.01710
\(790\) −32.5177 −1.15693
\(791\) −4.10381 −0.145915
\(792\) 0 0
\(793\) −40.2824 −1.43047
\(794\) −39.1142 −1.38811
\(795\) 13.5052 0.478980
\(796\) −39.1661 −1.38821
\(797\) 26.0997 0.924500 0.462250 0.886750i \(-0.347042\pi\)
0.462250 + 0.886750i \(0.347042\pi\)
\(798\) −1.92112 −0.0680067
\(799\) −15.4014 −0.544862
\(800\) −7.64453 −0.270275
\(801\) 5.67150 0.200393
\(802\) −6.68602 −0.236091
\(803\) 0 0
\(804\) 21.9460 0.773977
\(805\) 1.67150 0.0589128
\(806\) −17.2600 −0.607959
\(807\) −1.47175 −0.0518082
\(808\) −4.04986 −0.142474
\(809\) −6.22468 −0.218848 −0.109424 0.993995i \(-0.534901\pi\)
−0.109424 + 0.993995i \(0.534901\pi\)
\(810\) 2.16425 0.0760439
\(811\) 38.7712 1.36144 0.680721 0.732543i \(-0.261667\pi\)
0.680721 + 0.732543i \(0.261667\pi\)
\(812\) −10.7359 −0.376755
\(813\) 5.70496 0.200082
\(814\) 0 0
\(815\) 0.255598 0.00895320
\(816\) −10.4927 −0.367320
\(817\) −8.00000 −0.279885
\(818\) −53.9355 −1.88581
\(819\) 1.61755 0.0565217
\(820\) −17.8672 −0.623948
\(821\) 20.7857 0.725427 0.362714 0.931901i \(-0.381850\pi\)
0.362714 + 0.931901i \(0.381850\pi\)
\(822\) 2.00648 0.0699840
\(823\) −54.4093 −1.89659 −0.948294 0.317393i \(-0.897192\pi\)
−0.948294 + 0.317393i \(0.897192\pi\)
\(824\) −26.9435 −0.938622
\(825\) 0 0
\(826\) 15.6585 0.544831
\(827\) 15.5506 0.540749 0.270374 0.962755i \(-0.412853\pi\)
0.270374 + 0.962755i \(0.412853\pi\)
\(828\) 9.34096 0.324621
\(829\) 30.9211 1.07393 0.536967 0.843603i \(-0.319570\pi\)
0.536967 + 0.843603i \(0.319570\pi\)
\(830\) −8.65699 −0.300489
\(831\) −24.7299 −0.857870
\(832\) −41.1433 −1.42639
\(833\) −32.8192 −1.13712
\(834\) −17.7818 −0.615733
\(835\) −16.1373 −0.558453
\(836\) 0 0
\(837\) −2.36794 −0.0818479
\(838\) −9.14326 −0.315849
\(839\) 6.89365 0.237995 0.118998 0.992895i \(-0.462032\pi\)
0.118998 + 0.992895i \(0.462032\pi\)
\(840\) 0.710947 0.0245300
\(841\) 40.3638 1.39186
\(842\) −47.0289 −1.62072
\(843\) −5.67150 −0.195337
\(844\) −51.6654 −1.77840
\(845\) −1.65699 −0.0570022
\(846\) −6.87519 −0.236374
\(847\) 0 0
\(848\) −29.2286 −1.00371
\(849\) 22.1228 0.759251
\(850\) 10.4927 0.359898
\(851\) 18.9356 0.649105
\(852\) −33.1562 −1.13591
\(853\) −55.5945 −1.90352 −0.951760 0.306844i \(-0.900727\pi\)
−0.951760 + 0.306844i \(0.900727\pi\)
\(854\) −12.4323 −0.425425
\(855\) −1.84822 −0.0632077
\(856\) −14.6734 −0.501526
\(857\) −15.2016 −0.519278 −0.259639 0.965706i \(-0.583604\pi\)
−0.259639 + 0.965706i \(0.583604\pi\)
\(858\) 0 0
\(859\) −40.1228 −1.36897 −0.684485 0.729027i \(-0.739973\pi\)
−0.684485 + 0.729027i \(0.739973\pi\)
\(860\) 11.6175 0.396155
\(861\) −3.19721 −0.108961
\(862\) −21.4178 −0.729493
\(863\) −15.5506 −0.529350 −0.264675 0.964338i \(-0.585265\pi\)
−0.264675 + 0.964338i \(0.585265\pi\)
\(864\) −7.64453 −0.260072
\(865\) 9.39287 0.319367
\(866\) 85.1521 2.89359
\(867\) 6.50521 0.220928
\(868\) −3.05240 −0.103605
\(869\) 0 0
\(870\) −18.0249 −0.611102
\(871\) 27.5387 0.933112
\(872\) 21.5885 0.731080
\(873\) −8.17671 −0.276740
\(874\) −13.9211 −0.470889
\(875\) 0.480279 0.0162364
\(876\) 15.6964 0.530333
\(877\) −4.75891 −0.160697 −0.0803486 0.996767i \(-0.525603\pi\)
−0.0803486 + 0.996767i \(0.525603\pi\)
\(878\) −8.03141 −0.271047
\(879\) −12.8482 −0.433360
\(880\) 0 0
\(881\) −28.0997 −0.946704 −0.473352 0.880873i \(-0.656956\pi\)
−0.473352 + 0.880873i \(0.656956\pi\)
\(882\) −14.6505 −0.493308
\(883\) 51.3329 1.72749 0.863745 0.503929i \(-0.168113\pi\)
0.863745 + 0.503929i \(0.168113\pi\)
\(884\) 43.8252 1.47400
\(885\) 15.0644 0.506383
\(886\) 10.7359 0.360679
\(887\) −20.1458 −0.676430 −0.338215 0.941069i \(-0.609823\pi\)
−0.338215 + 0.941069i \(0.609823\pi\)
\(888\) 8.05395 0.270273
\(889\) −0.122758 −0.00411718
\(890\) 12.2745 0.411444
\(891\) 0 0
\(892\) 28.4074 0.951149
\(893\) 5.87126 0.196474
\(894\) −34.6819 −1.15994
\(895\) 9.36794 0.313136
\(896\) −5.35498 −0.178897
\(897\) 11.7214 0.391365
\(898\) 47.6135 1.58888
\(899\) 19.7214 0.657744
\(900\) 2.68397 0.0894656
\(901\) 65.4762 2.18133
\(902\) 0 0
\(903\) 2.07888 0.0691810
\(904\) −12.6485 −0.420682
\(905\) 17.7693 0.590673
\(906\) −15.5322 −0.516022
\(907\) 4.20164 0.139513 0.0697566 0.997564i \(-0.477778\pi\)
0.0697566 + 0.997564i \(0.477778\pi\)
\(908\) −72.9415 −2.42065
\(909\) −2.73588 −0.0907433
\(910\) 3.50078 0.116050
\(911\) −4.05395 −0.134314 −0.0671568 0.997742i \(-0.521393\pi\)
−0.0671568 + 0.997742i \(0.521393\pi\)
\(912\) 4.00000 0.132453
\(913\) 0 0
\(914\) −27.5636 −0.911723
\(915\) −11.9606 −0.395404
\(916\) 56.0898 1.85326
\(917\) −0.353426 −0.0116712
\(918\) 10.4927 0.346312
\(919\) −14.8586 −0.490141 −0.245071 0.969505i \(-0.578811\pi\)
−0.245071 + 0.969505i \(0.578811\pi\)
\(920\) 5.15178 0.169849
\(921\) −8.50521 −0.280256
\(922\) 86.6239 2.85281
\(923\) −41.6056 −1.36946
\(924\) 0 0
\(925\) 5.44084 0.178894
\(926\) −55.2720 −1.81635
\(927\) −18.2016 −0.597820
\(928\) 63.6674 2.08999
\(929\) 58.7069 1.92611 0.963055 0.269306i \(-0.0867943\pi\)
0.963055 + 0.269306i \(0.0867943\pi\)
\(930\) −5.12481 −0.168049
\(931\) 12.5112 0.410038
\(932\) 53.3779 1.74845
\(933\) −6.32850 −0.207186
\(934\) −14.2810 −0.467289
\(935\) 0 0
\(936\) 4.98549 0.162956
\(937\) −34.6090 −1.13063 −0.565314 0.824876i \(-0.691245\pi\)
−0.565314 + 0.824876i \(0.691245\pi\)
\(938\) 8.49922 0.277509
\(939\) 20.0249 0.653489
\(940\) −8.52620 −0.278094
\(941\) −10.7109 −0.349167 −0.174583 0.984642i \(-0.555858\pi\)
−0.174583 + 0.984642i \(0.555858\pi\)
\(942\) 4.88167 0.159053
\(943\) −23.1682 −0.754460
\(944\) −32.6030 −1.06114
\(945\) 0.480279 0.0156235
\(946\) 0 0
\(947\) 17.0480 0.553985 0.276992 0.960872i \(-0.410662\pi\)
0.276992 + 0.960872i \(0.410662\pi\)
\(948\) −40.3264 −1.30974
\(949\) 19.6964 0.639373
\(950\) −4.00000 −0.129777
\(951\) −23.8088 −0.772052
\(952\) 3.44682 0.111712
\(953\) 50.0000 1.61966 0.809829 0.586665i \(-0.199560\pi\)
0.809829 + 0.586665i \(0.199560\pi\)
\(954\) 29.2286 0.946312
\(955\) 19.2891 0.624179
\(956\) 33.0893 1.07018
\(957\) 0 0
\(958\) 79.7043 2.57513
\(959\) 0.445267 0.0143784
\(960\) −12.2162 −0.394275
\(961\) −25.3929 −0.819125
\(962\) 39.6585 1.27864
\(963\) −9.91259 −0.319429
\(964\) −19.3290 −0.622545
\(965\) 6.25560 0.201375
\(966\) 3.61755 0.116393
\(967\) −50.2016 −1.61438 −0.807188 0.590294i \(-0.799012\pi\)
−0.807188 + 0.590294i \(0.799012\pi\)
\(968\) 0 0
\(969\) −8.96056 −0.287855
\(970\) −17.6964 −0.568198
\(971\) −52.0748 −1.67116 −0.835580 0.549369i \(-0.814868\pi\)
−0.835580 + 0.549369i \(0.814868\pi\)
\(972\) 2.68397 0.0860884
\(973\) −3.94605 −0.126504
\(974\) −13.8672 −0.444332
\(975\) 3.36794 0.107860
\(976\) 25.8856 0.828578
\(977\) 19.5841 0.626551 0.313275 0.949662i \(-0.398574\pi\)
0.313275 + 0.949662i \(0.398574\pi\)
\(978\) 0.553177 0.0176886
\(979\) 0 0
\(980\) −18.1687 −0.580377
\(981\) 14.5841 0.465634
\(982\) 5.26412 0.167985
\(983\) 13.4513 0.429028 0.214514 0.976721i \(-0.431183\pi\)
0.214514 + 0.976721i \(0.431183\pi\)
\(984\) −9.85420 −0.314141
\(985\) 5.03944 0.160570
\(986\) −87.3888 −2.78303
\(987\) −1.52571 −0.0485638
\(988\) −16.7069 −0.531516
\(989\) 15.0644 0.479019
\(990\) 0 0
\(991\) −36.4238 −1.15704 −0.578520 0.815668i \(-0.696369\pi\)
−0.578520 + 0.815668i \(0.696369\pi\)
\(992\) 18.1018 0.574732
\(993\) −15.3285 −0.486435
\(994\) −12.8407 −0.407281
\(995\) −14.5926 −0.462617
\(996\) −10.7359 −0.340179
\(997\) 17.8233 0.564469 0.282235 0.959345i \(-0.408924\pi\)
0.282235 + 0.959345i \(0.408924\pi\)
\(998\) −78.5201 −2.48551
\(999\) 5.44084 0.172140
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1815.2.a.l.1.3 3
3.2 odd 2 5445.2.a.bc.1.1 3
5.4 even 2 9075.2.a.ci.1.1 3
11.10 odd 2 1815.2.a.n.1.1 yes 3
33.32 even 2 5445.2.a.ba.1.3 3
55.54 odd 2 9075.2.a.ce.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1815.2.a.l.1.3 3 1.1 even 1 trivial
1815.2.a.n.1.1 yes 3 11.10 odd 2
5445.2.a.ba.1.3 3 33.32 even 2
5445.2.a.bc.1.1 3 3.2 odd 2
9075.2.a.ce.1.3 3 55.54 odd 2
9075.2.a.ci.1.1 3 5.4 even 2