Properties

Label 180.9.l.a.73.4
Level $180$
Weight $9$
Character 180.73
Analytic conductor $73.328$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [180,9,Mod(37,180)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(180, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("180.37"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 180.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-894] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.3281498110\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4 x^{7} + 8 x^{6} + 22254 x^{5} + 4820745 x^{4} + 50131374 x^{3} + 307615702 x^{2} + \cdots + 2405464244 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{13}\cdot 3^{2}\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.4
Root \(-29.1758 - 30.1758i\) of defining polynomial
Character \(\chi\) \(=\) 180.73
Dual form 180.9.l.a.37.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(577.254 + 239.589i) q^{5} +(-190.873 + 190.873i) q^{7} +19026.8 q^{11} +(-27902.1 - 27902.1i) q^{13} +(22518.5 - 22518.5i) q^{17} -63405.3i q^{19} +(-196829. - 196829. i) q^{23} +(275820. + 276607. i) q^{25} -595585. i q^{29} +249340. q^{31} +(-155913. + 64451.1i) q^{35} +(229540. - 229540. i) q^{37} +4.30046e6 q^{41} +(-3.59483e6 - 3.59483e6i) q^{43} +(-6.19225e6 + 6.19225e6i) q^{47} +5.69194e6i q^{49} +(253926. + 253926. i) q^{53} +(1.09833e7 + 4.55859e6i) q^{55} -7.27642e6i q^{59} -3.24983e6 q^{61} +(-9.42158e6 - 2.27916e7i) q^{65} +(2.68654e7 - 2.68654e7i) q^{67} +3.70958e7 q^{71} +(-2.76665e7 - 2.76665e7i) q^{73} +(-3.63169e6 + 3.63169e6i) q^{77} -2.03584e7i q^{79} +(2.23434e7 + 2.23434e7i) q^{83} +(1.83941e7 - 7.60373e6i) q^{85} -2.64461e7i q^{89} +1.06515e7 q^{91} +(1.51912e7 - 3.66010e7i) q^{95} +(9.78714e7 - 9.78714e7i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 894 q^{5} - 2030 q^{7} + 420 q^{11} + 33180 q^{13} - 43620 q^{17} + 663270 q^{23} + 163396 q^{25} - 3178492 q^{31} - 2571618 q^{35} + 5344080 q^{37} + 10185252 q^{41} - 10342710 q^{43} - 19232250 q^{47}+ \cdots - 179570760 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 577.254 + 239.589i 0.923607 + 0.383342i
\(6\) 0 0
\(7\) −190.873 + 190.873i −0.0794971 + 0.0794971i −0.745737 0.666240i \(-0.767903\pi\)
0.666240 + 0.745737i \(0.267903\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 19026.8 1.29955 0.649776 0.760125i \(-0.274863\pi\)
0.649776 + 0.760125i \(0.274863\pi\)
\(12\) 0 0
\(13\) −27902.1 27902.1i −0.976930 0.976930i 0.0228094 0.999740i \(-0.492739\pi\)
−0.999740 + 0.0228094i \(0.992739\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 22518.5 22518.5i 0.269615 0.269615i −0.559330 0.828945i \(-0.688942\pi\)
0.828945 + 0.559330i \(0.188942\pi\)
\(18\) 0 0
\(19\) 63405.3i 0.486532i −0.969960 0.243266i \(-0.921781\pi\)
0.969960 0.243266i \(-0.0782188\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −196829. 196829.i −0.703360 0.703360i 0.261770 0.965130i \(-0.415694\pi\)
−0.965130 + 0.261770i \(0.915694\pi\)
\(24\) 0 0
\(25\) 275820. + 276607.i 0.706098 + 0.708114i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 595585.i 0.842077i −0.907043 0.421039i \(-0.861666\pi\)
0.907043 0.421039i \(-0.138334\pi\)
\(30\) 0 0
\(31\) 249340. 0.269988 0.134994 0.990846i \(-0.456898\pi\)
0.134994 + 0.990846i \(0.456898\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −155913. + 64451.1i −0.103899 + 0.0429495i
\(36\) 0 0
\(37\) 229540. 229540.i 0.122476 0.122476i −0.643212 0.765688i \(-0.722399\pi\)
0.765688 + 0.643212i \(0.222399\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.30046e6 1.52188 0.760938 0.648824i \(-0.224739\pi\)
0.760938 + 0.648824i \(0.224739\pi\)
\(42\) 0 0
\(43\) −3.59483e6 3.59483e6i −1.05149 1.05149i −0.998600 0.0528880i \(-0.983157\pi\)
−0.0528880 0.998600i \(-0.516843\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.19225e6 + 6.19225e6i −1.26899 + 1.26899i −0.322375 + 0.946612i \(0.604481\pi\)
−0.946612 + 0.322375i \(0.895519\pi\)
\(48\) 0 0
\(49\) 5.69194e6i 0.987360i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 253926. + 253926.i 0.0321813 + 0.0321813i 0.723014 0.690833i \(-0.242756\pi\)
−0.690833 + 0.723014i \(0.742756\pi\)
\(54\) 0 0
\(55\) 1.09833e7 + 4.55859e6i 1.20028 + 0.498173i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.27642e6i 0.600496i −0.953861 0.300248i \(-0.902931\pi\)
0.953861 0.300248i \(-0.0970694\pi\)
\(60\) 0 0
\(61\) −3.24983e6 −0.234715 −0.117358 0.993090i \(-0.537442\pi\)
−0.117358 + 0.993090i \(0.537442\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −9.42158e6 2.27916e7i −0.527801 1.27680i
\(66\) 0 0
\(67\) 2.68654e7 2.68654e7i 1.33320 1.33320i 0.430705 0.902493i \(-0.358265\pi\)
0.902493 0.430705i \(-0.141735\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.70958e7 1.45979 0.729896 0.683559i \(-0.239569\pi\)
0.729896 + 0.683559i \(0.239569\pi\)
\(72\) 0 0
\(73\) −2.76665e7 2.76665e7i −0.974234 0.974234i 0.0254420 0.999676i \(-0.491901\pi\)
−0.999676 + 0.0254420i \(0.991901\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.63169e6 + 3.63169e6i −0.103311 + 0.103311i
\(78\) 0 0
\(79\) 2.03584e7i 0.522681i −0.965247 0.261340i \(-0.915836\pi\)
0.965247 0.261340i \(-0.0841645\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.23434e7 + 2.23434e7i 0.470800 + 0.470800i 0.902173 0.431374i \(-0.141971\pi\)
−0.431374 + 0.902173i \(0.641971\pi\)
\(84\) 0 0
\(85\) 1.83941e7 7.60373e6i 0.352373 0.145663i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.64461e7i 0.421504i −0.977540 0.210752i \(-0.932409\pi\)
0.977540 0.210752i \(-0.0675912\pi\)
\(90\) 0 0
\(91\) 1.06515e7 0.155326
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.51912e7 3.66010e7i 0.186508 0.449364i
\(96\) 0 0
\(97\) 9.78714e7 9.78714e7i 1.10553 1.10553i 0.111795 0.993731i \(-0.464340\pi\)
0.993731 0.111795i \(-0.0356600\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.04946e8 −1.00851 −0.504257 0.863553i \(-0.668234\pi\)
−0.504257 + 0.863553i \(0.668234\pi\)
\(102\) 0 0
\(103\) 1.04986e8 + 1.04986e8i 0.932789 + 0.932789i 0.997879 0.0650901i \(-0.0207335\pi\)
−0.0650901 + 0.997879i \(0.520733\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.19346e8 1.19346e8i 0.910485 0.910485i −0.0858251 0.996310i \(-0.527353\pi\)
0.996310 + 0.0858251i \(0.0273526\pi\)
\(108\) 0 0
\(109\) 1.74582e8i 1.23678i −0.785871 0.618390i \(-0.787785\pi\)
0.785871 0.618390i \(-0.212215\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.45939e6 5.45939e6i −0.0334835 0.0334835i 0.690167 0.723650i \(-0.257537\pi\)
−0.723650 + 0.690167i \(0.757537\pi\)
\(114\) 0 0
\(115\) −6.64623e7 1.60778e8i −0.380001 0.919255i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.59633e6i 0.0428672i
\(120\) 0 0
\(121\) 1.47658e8 0.688838
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.29461e7 + 2.25756e8i 0.380707 + 0.924696i
\(126\) 0 0
\(127\) 6.35128e6 6.35128e6i 0.0244144 0.0244144i −0.694794 0.719209i \(-0.744505\pi\)
0.719209 + 0.694794i \(0.244505\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.24615e8 0.762699 0.381350 0.924431i \(-0.375459\pi\)
0.381350 + 0.924431i \(0.375459\pi\)
\(132\) 0 0
\(133\) 1.21023e7 + 1.21023e7i 0.0386779 + 0.0386779i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.38143e8 3.38143e8i 0.959882 0.959882i −0.0393439 0.999226i \(-0.512527\pi\)
0.999226 + 0.0393439i \(0.0125268\pi\)
\(138\) 0 0
\(139\) 5.48983e8i 1.47062i −0.677732 0.735309i \(-0.737037\pi\)
0.677732 0.735309i \(-0.262963\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.30887e8 5.30887e8i −1.26957 1.26957i
\(144\) 0 0
\(145\) 1.42695e8 3.43804e8i 0.322803 0.777748i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.66486e8i 1.14933i −0.818389 0.574665i \(-0.805133\pi\)
0.818389 0.574665i \(-0.194867\pi\)
\(150\) 0 0
\(151\) 9.43633e8 1.81508 0.907539 0.419968i \(-0.137959\pi\)
0.907539 + 0.419968i \(0.137959\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.43932e8 + 5.97389e7i 0.249363 + 0.103498i
\(156\) 0 0
\(157\) −1.37850e8 + 1.37850e8i −0.226886 + 0.226886i −0.811390 0.584505i \(-0.801289\pi\)
0.584505 + 0.811390i \(0.301289\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.51385e7 0.111830
\(162\) 0 0
\(163\) −1.86924e8 1.86924e8i −0.264798 0.264798i 0.562202 0.827000i \(-0.309954\pi\)
−0.827000 + 0.562202i \(0.809954\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.37971e8 + 5.37971e8i −0.691661 + 0.691661i −0.962597 0.270936i \(-0.912667\pi\)
0.270936 + 0.962597i \(0.412667\pi\)
\(168\) 0 0
\(169\) 7.41325e8i 0.908786i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.79607e8 + 4.79607e8i 0.535428 + 0.535428i 0.922183 0.386754i \(-0.126404\pi\)
−0.386754 + 0.922183i \(0.626404\pi\)
\(174\) 0 0
\(175\) −1.05443e8 150288.i −0.112426 0.000160240i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.39076e9i 1.35469i 0.735665 + 0.677346i \(0.236870\pi\)
−0.735665 + 0.677346i \(0.763130\pi\)
\(180\) 0 0
\(181\) −1.45715e9 −1.35766 −0.678830 0.734296i \(-0.737512\pi\)
−0.678830 + 0.734296i \(0.737512\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.87498e8 7.75078e7i 0.160070 0.0661696i
\(186\) 0 0
\(187\) 4.28454e8 4.28454e8i 0.350379 0.350379i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.33136e8 0.325455 0.162727 0.986671i \(-0.447971\pi\)
0.162727 + 0.986671i \(0.447971\pi\)
\(192\) 0 0
\(193\) −9.36884e8 9.36884e8i −0.675237 0.675237i 0.283681 0.958919i \(-0.408444\pi\)
−0.958919 + 0.283681i \(0.908444\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −7.12789e8 + 7.12789e8i −0.473256 + 0.473256i −0.902967 0.429711i \(-0.858616\pi\)
0.429711 + 0.902967i \(0.358616\pi\)
\(198\) 0 0
\(199\) 1.63094e9i 1.03998i 0.854173 + 0.519989i \(0.174064\pi\)
−0.854173 + 0.519989i \(0.825936\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.13681e8 + 1.13681e8i 0.0669427 + 0.0669427i
\(204\) 0 0
\(205\) 2.48246e9 + 1.03034e9i 1.40562 + 0.583399i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.20640e9i 0.632274i
\(210\) 0 0
\(211\) −2.87914e9 −1.45255 −0.726277 0.687402i \(-0.758751\pi\)
−0.726277 + 0.687402i \(0.758751\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.21385e9 2.93641e9i −0.568082 1.37424i
\(216\) 0 0
\(217\) −4.75921e7 + 4.75921e7i −0.0214633 + 0.0214633i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.25663e9 −0.526790
\(222\) 0 0
\(223\) 2.77849e9 + 2.77849e9i 1.12354 + 1.12354i 0.991205 + 0.132337i \(0.0422480\pi\)
0.132337 + 0.991205i \(0.457752\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.66218e9 + 1.66218e9i −0.626001 + 0.626001i −0.947059 0.321059i \(-0.895961\pi\)
0.321059 + 0.947059i \(0.395961\pi\)
\(228\) 0 0
\(229\) 1.39534e9i 0.507384i 0.967285 + 0.253692i \(0.0816450\pi\)
−0.967285 + 0.253692i \(0.918355\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.53597e9 + 1.53597e9i 0.521146 + 0.521146i 0.917918 0.396771i \(-0.129869\pi\)
−0.396771 + 0.917918i \(0.629869\pi\)
\(234\) 0 0
\(235\) −5.05809e9 + 2.09091e9i −1.65850 + 0.685589i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.45417e8i 0.167162i 0.996501 + 0.0835809i \(0.0266357\pi\)
−0.996501 + 0.0835809i \(0.973364\pi\)
\(240\) 0 0
\(241\) −9.46365e8 −0.280537 −0.140269 0.990113i \(-0.544797\pi\)
−0.140269 + 0.990113i \(0.544797\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.36372e9 + 3.28569e9i −0.378496 + 0.911933i
\(246\) 0 0
\(247\) −1.76914e9 + 1.76914e9i −0.475308 + 0.475308i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.66712e9 1.17585 0.587927 0.808914i \(-0.299944\pi\)
0.587927 + 0.808914i \(0.299944\pi\)
\(252\) 0 0
\(253\) −3.74502e9 3.74502e9i −0.914053 0.914053i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.22158e8 + 4.22158e8i −0.0967705 + 0.0967705i −0.753835 0.657064i \(-0.771798\pi\)
0.657064 + 0.753835i \(0.271798\pi\)
\(258\) 0 0
\(259\) 8.76258e7i 0.0194730i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.92697e9 3.92697e9i −0.820794 0.820794i 0.165428 0.986222i \(-0.447100\pi\)
−0.986222 + 0.165428i \(0.947100\pi\)
\(264\) 0 0
\(265\) 8.57420e7 + 2.07418e8i 0.0173864 + 0.0420593i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.88692e9i 0.360366i 0.983633 + 0.180183i \(0.0576691\pi\)
−0.983633 + 0.180183i \(0.942331\pi\)
\(270\) 0 0
\(271\) 3.82459e9 0.709100 0.354550 0.935037i \(-0.384634\pi\)
0.354550 + 0.935037i \(0.384634\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.24795e9 + 5.26293e9i 0.917612 + 0.920231i
\(276\) 0 0
\(277\) −6.08916e9 + 6.08916e9i −1.03428 + 1.03428i −0.0348898 + 0.999391i \(0.511108\pi\)
−0.999391 + 0.0348898i \(0.988892\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.36217e9 −1.18081 −0.590406 0.807107i \(-0.701032\pi\)
−0.590406 + 0.807107i \(0.701032\pi\)
\(282\) 0 0
\(283\) 7.50823e9 + 7.50823e9i 1.17055 + 1.17055i 0.982078 + 0.188477i \(0.0603550\pi\)
0.188477 + 0.982078i \(0.439645\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.20840e8 + 8.20840e8i −0.120985 + 0.120985i
\(288\) 0 0
\(289\) 5.96159e9i 0.854616i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.53947e9 5.53947e9i −0.751619 0.751619i 0.223163 0.974781i \(-0.428362\pi\)
−0.974781 + 0.223163i \(0.928362\pi\)
\(294\) 0 0
\(295\) 1.74335e9 4.20034e9i 0.230195 0.554622i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.09839e10i 1.37427i
\(300\) 0 0
\(301\) 1.37231e9 0.167181
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.87598e9 7.78623e8i −0.216785 0.0899762i
\(306\) 0 0
\(307\) −5.64460e8 + 5.64460e8i −0.0635448 + 0.0635448i −0.738165 0.674620i \(-0.764307\pi\)
0.674620 + 0.738165i \(0.264307\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.47892e9 0.264984 0.132492 0.991184i \(-0.457702\pi\)
0.132492 + 0.991184i \(0.457702\pi\)
\(312\) 0 0
\(313\) −9.72227e9 9.72227e9i −1.01296 1.01296i −0.999915 0.0130407i \(-0.995849\pi\)
−0.0130407 0.999915i \(-0.504151\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.03089e10 1.03089e10i 1.02088 1.02088i 0.0211068 0.999777i \(-0.493281\pi\)
0.999777 0.0211068i \(-0.00671900\pi\)
\(318\) 0 0
\(319\) 1.13321e10i 1.09432i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.42779e9 1.42779e9i −0.131176 0.131176i
\(324\) 0 0
\(325\) 2.19694e7 1.54139e10i 0.00196917 1.38159i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.36386e9i 0.201762i
\(330\) 0 0
\(331\) 7.62056e9 0.634855 0.317428 0.948282i \(-0.397181\pi\)
0.317428 + 0.948282i \(0.397181\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.19448e10 9.07153e9i 1.74242 0.720280i
\(336\) 0 0
\(337\) −1.43147e9 + 1.43147e9i −0.110985 + 0.110985i −0.760418 0.649433i \(-0.775006\pi\)
0.649433 + 0.760418i \(0.275006\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.74412e9 0.350864
\(342\) 0 0
\(343\) −2.18678e9 2.18678e9i −0.157989 0.157989i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.72187e9 + 7.72187e9i −0.532604 + 0.532604i −0.921346 0.388742i \(-0.872910\pi\)
0.388742 + 0.921346i \(0.372910\pi\)
\(348\) 0 0
\(349\) 3.20836e9i 0.216263i −0.994137 0.108131i \(-0.965513\pi\)
0.994137 0.108131i \(-0.0344867\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.06371e9 5.06371e9i −0.326115 0.326115i 0.524992 0.851107i \(-0.324068\pi\)
−0.851107 + 0.524992i \(0.824068\pi\)
\(354\) 0 0
\(355\) 2.14137e10 + 8.88772e9i 1.34827 + 0.559599i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.18165e9i 0.372157i −0.982535 0.186079i \(-0.940422\pi\)
0.982535 0.186079i \(-0.0595779\pi\)
\(360\) 0 0
\(361\) 1.29633e10 0.763287
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.34204e9 2.25992e10i −0.526345 1.27327i
\(366\) 0 0
\(367\) 1.55537e10 1.55537e10i 0.857371 0.857371i −0.133657 0.991028i \(-0.542672\pi\)
0.991028 + 0.133657i \(0.0426720\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −9.69350e7 −0.00511664
\(372\) 0 0
\(373\) −8.05344e9 8.05344e9i −0.416051 0.416051i 0.467789 0.883840i \(-0.345051\pi\)
−0.883840 + 0.467789i \(0.845051\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.66181e10 + 1.66181e10i −0.822651 + 0.822651i
\(378\) 0 0
\(379\) 2.11955e10i 1.02727i 0.858007 + 0.513637i \(0.171702\pi\)
−0.858007 + 0.513637i \(0.828298\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.49717e9 + 4.49717e9i 0.208999 + 0.208999i 0.803842 0.594843i \(-0.202786\pi\)
−0.594843 + 0.803842i \(0.702786\pi\)
\(384\) 0 0
\(385\) −2.96652e9 + 1.22630e9i −0.135022 + 0.0558152i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.17946e10i 0.515093i 0.966266 + 0.257547i \(0.0829141\pi\)
−0.966266 + 0.257547i \(0.917086\pi\)
\(390\) 0 0
\(391\) −8.86459e9 −0.379273
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.87765e9 1.17520e10i 0.200365 0.482751i
\(396\) 0 0
\(397\) 2.96839e10 2.96839e10i 1.19498 1.19498i 0.219324 0.975652i \(-0.429615\pi\)
0.975652 0.219324i \(-0.0703853\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.98937e10 1.15612 0.578059 0.815995i \(-0.303810\pi\)
0.578059 + 0.815995i \(0.303810\pi\)
\(402\) 0 0
\(403\) −6.95710e9 6.95710e9i −0.263760 0.263760i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.36740e9 4.36740e9i 0.159164 0.159164i
\(408\) 0 0
\(409\) 4.06334e10i 1.45208i −0.687654 0.726039i \(-0.741359\pi\)
0.687654 0.726039i \(-0.258641\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.38887e9 + 1.38887e9i 0.0477377 + 0.0477377i
\(414\) 0 0
\(415\) 7.54458e9 + 1.82510e10i 0.254356 + 0.615311i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 5.67792e9i 0.184218i −0.995749 0.0921092i \(-0.970639\pi\)
0.995749 0.0921092i \(-0.0293609\pi\)
\(420\) 0 0
\(421\) −3.08470e10 −0.981938 −0.490969 0.871177i \(-0.663357\pi\)
−0.490969 + 0.871177i \(0.663357\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.24398e10 + 1.77305e7i 0.381293 + 0.000543456i
\(426\) 0 0
\(427\) 6.20304e8 6.20304e8i 0.0186592 0.0186592i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.27768e10 0.949856 0.474928 0.880025i \(-0.342474\pi\)
0.474928 + 0.880025i \(0.342474\pi\)
\(432\) 0 0
\(433\) −7.60012e9 7.60012e9i −0.216206 0.216206i 0.590691 0.806898i \(-0.298855\pi\)
−0.806898 + 0.590691i \(0.798855\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.24800e10 + 1.24800e10i −0.342207 + 0.342207i
\(438\) 0 0
\(439\) 1.35066e10i 0.363654i 0.983330 + 0.181827i \(0.0582012\pi\)
−0.983330 + 0.181827i \(0.941799\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.65065e10 3.65065e10i −0.947883 0.947883i 0.0508241 0.998708i \(-0.483815\pi\)
−0.998708 + 0.0508241i \(0.983815\pi\)
\(444\) 0 0
\(445\) 6.33618e9 1.52661e10i 0.161580 0.389303i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.93648e9i 0.0722507i −0.999347 0.0361253i \(-0.988498\pi\)
0.999347 0.0361253i \(-0.0115016\pi\)
\(450\) 0 0
\(451\) 8.18238e10 1.97776
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.14862e9 + 2.55198e9i 0.143460 + 0.0595431i
\(456\) 0 0
\(457\) −4.06216e10 + 4.06216e10i −0.931305 + 0.931305i −0.997788 0.0664829i \(-0.978822\pi\)
0.0664829 + 0.997788i \(0.478822\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.69744e10 −0.375830 −0.187915 0.982185i \(-0.560173\pi\)
−0.187915 + 0.982185i \(0.560173\pi\)
\(462\) 0 0
\(463\) −1.02630e10 1.02630e10i −0.223332 0.223332i 0.586568 0.809900i \(-0.300479\pi\)
−0.809900 + 0.586568i \(0.800479\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.93031e10 + 1.93031e10i −0.405845 + 0.405845i −0.880287 0.474442i \(-0.842650\pi\)
0.474442 + 0.880287i \(0.342650\pi\)
\(468\) 0 0
\(469\) 1.02557e10i 0.211971i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −6.83979e10 6.83979e10i −1.36646 1.36646i
\(474\) 0 0
\(475\) 1.75384e10 1.74884e10i 0.344520 0.343539i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.47760e10i 1.23047i 0.788343 + 0.615236i \(0.210939\pi\)
−0.788343 + 0.615236i \(0.789061\pi\)
\(480\) 0 0
\(481\) −1.28093e10 −0.239301
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.99456e10 3.30478e10i 1.44487 0.597277i
\(486\) 0 0
\(487\) −3.13580e10 + 3.13580e10i −0.557483 + 0.557483i −0.928590 0.371107i \(-0.878978\pi\)
0.371107 + 0.928590i \(0.378978\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.72949e10 −0.469630 −0.234815 0.972040i \(-0.575448\pi\)
−0.234815 + 0.972040i \(0.575448\pi\)
\(492\) 0 0
\(493\) −1.34117e10 1.34117e10i −0.227037 0.227037i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7.08056e9 + 7.08056e9i −0.116049 + 0.116049i
\(498\) 0 0
\(499\) 8.55600e10i 1.37997i 0.723825 + 0.689984i \(0.242382\pi\)
−0.723825 + 0.689984i \(0.757618\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.20771e10 + 4.20771e10i 0.657315 + 0.657315i 0.954744 0.297429i \(-0.0961292\pi\)
−0.297429 + 0.954744i \(0.596129\pi\)
\(504\) 0 0
\(505\) −6.05808e10 2.51440e10i −0.931471 0.386606i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.19496e11i 1.78025i 0.455714 + 0.890126i \(0.349384\pi\)
−0.455714 + 0.890126i \(0.650616\pi\)
\(510\) 0 0
\(511\) 1.05616e10 0.154898
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.54502e10 + 8.57573e10i 0.503953 + 1.21911i
\(516\) 0 0
\(517\) −1.17818e11 + 1.17818e11i −1.64912 + 1.64912i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9.31604e9 0.126439 0.0632194 0.998000i \(-0.479863\pi\)
0.0632194 + 0.998000i \(0.479863\pi\)
\(522\) 0 0
\(523\) −4.01748e9 4.01748e9i −0.0536967 0.0536967i 0.679749 0.733445i \(-0.262089\pi\)
−0.733445 + 0.679749i \(0.762089\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.61476e9 5.61476e9i 0.0727928 0.0727928i
\(528\) 0 0
\(529\) 8.27726e8i 0.0105697i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.19992e11 1.19992e11i −1.48677 1.48677i
\(534\) 0 0
\(535\) 9.74869e10 4.02990e10i 1.18996 0.491903i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.08299e11i 1.28313i
\(540\) 0 0
\(541\) −5.43998e10 −0.635050 −0.317525 0.948250i \(-0.602852\pi\)
−0.317525 + 0.948250i \(0.602852\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.18278e10 1.00778e11i 0.474110 1.14230i
\(546\) 0 0
\(547\) −6.69974e10 + 6.69974e10i −0.748357 + 0.748357i −0.974171 0.225814i \(-0.927496\pi\)
0.225814 + 0.974171i \(0.427496\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.77633e10 −0.409697
\(552\) 0 0
\(553\) 3.88587e9 + 3.88587e9i 0.0415516 + 0.0415516i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.16300e11 + 1.16300e11i −1.20825 + 1.20825i −0.236660 + 0.971593i \(0.576053\pi\)
−0.971593 + 0.236660i \(0.923947\pi\)
\(558\) 0 0
\(559\) 2.00607e11i 2.05446i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.63107e10 4.63107e10i −0.460944 0.460944i 0.438021 0.898965i \(-0.355680\pi\)
−0.898965 + 0.438021i \(0.855680\pi\)
\(564\) 0 0
\(565\) −1.84345e9 4.45947e9i −0.0180899 0.0437612i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.00951e10i 0.287109i 0.989642 + 0.143555i \(0.0458532\pi\)
−0.989642 + 0.143555i \(0.954147\pi\)
\(570\) 0 0
\(571\) 5.41650e10 0.509536 0.254768 0.967002i \(-0.418001\pi\)
0.254768 + 0.967002i \(0.418001\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.54978e8 1.08734e11i 0.00141774 0.994700i
\(576\) 0 0
\(577\) 4.83913e10 4.83913e10i 0.436581 0.436581i −0.454279 0.890859i \(-0.650103\pi\)
0.890859 + 0.454279i \(0.150103\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −8.52947e9 −0.0748544
\(582\) 0 0
\(583\) 4.83139e9 + 4.83139e9i 0.0418213 + 0.0418213i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.35625e10 5.35625e10i 0.451137 0.451137i −0.444595 0.895732i \(-0.646652\pi\)
0.895732 + 0.444595i \(0.146652\pi\)
\(588\) 0 0
\(589\) 1.58095e10i 0.131358i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2.01477e10 2.01477e10i −0.162932 0.162932i 0.620932 0.783864i \(-0.286754\pi\)
−0.783864 + 0.620932i \(0.786754\pi\)
\(594\) 0 0
\(595\) −2.05958e9 + 4.96227e9i −0.0164328 + 0.0395925i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.82597e10i 0.607898i −0.952688 0.303949i \(-0.901695\pi\)
0.952688 0.303949i \(-0.0983053\pi\)
\(600\) 0 0
\(601\) −1.00940e11 −0.773686 −0.386843 0.922146i \(-0.626434\pi\)
−0.386843 + 0.922146i \(0.626434\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8.52364e10 + 3.53773e10i 0.636215 + 0.264060i
\(606\) 0 0
\(607\) 6.85629e10 6.85629e10i 0.505050 0.505050i −0.407953 0.913003i \(-0.633757\pi\)
0.913003 + 0.407953i \(0.133757\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.45554e11 2.47942
\(612\) 0 0
\(613\) −1.41547e11 1.41547e11i −1.00244 1.00244i −0.999997 0.00244188i \(-0.999223\pi\)
−0.00244188 0.999997i \(-0.500777\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.48653e11 + 1.48653e11i −1.02573 + 1.02573i −0.0260699 + 0.999660i \(0.508299\pi\)
−0.999660 + 0.0260699i \(0.991701\pi\)
\(618\) 0 0
\(619\) 1.85869e10i 0.126603i −0.997994 0.0633016i \(-0.979837\pi\)
0.997994 0.0633016i \(-0.0201630\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.04783e9 + 5.04783e9i 0.0335083 + 0.0335083i
\(624\) 0 0
\(625\) −4.34966e8 + 1.52587e11i −0.00285059 + 0.999996i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.03378e10i 0.0660428i
\(630\) 0 0
\(631\) −4.57215e10 −0.288405 −0.144203 0.989548i \(-0.546062\pi\)
−0.144203 + 0.989548i \(0.546062\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.18800e9 2.14461e9i 0.0319084 0.0131903i
\(636\) 0 0
\(637\) 1.58817e11 1.58817e11i 0.964582 0.964582i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.01366e11 0.600426 0.300213 0.953872i \(-0.402942\pi\)
0.300213 + 0.953872i \(0.402942\pi\)
\(642\) 0 0
\(643\) −7.00290e10 7.00290e10i −0.409670 0.409670i 0.471953 0.881623i \(-0.343549\pi\)
−0.881623 + 0.471953i \(0.843549\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −2.02119e11 + 2.02119e11i −1.15343 + 1.15343i −0.167567 + 0.985861i \(0.553591\pi\)
−0.985861 + 0.167567i \(0.946409\pi\)
\(648\) 0 0
\(649\) 1.38447e11i 0.780376i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.44565e11 1.44565e11i −0.795078 0.795078i 0.187237 0.982315i \(-0.440047\pi\)
−0.982315 + 0.187237i \(0.940047\pi\)
\(654\) 0 0
\(655\) 1.29660e11 + 5.38152e10i 0.704434 + 0.292374i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.86847e9i 0.0364182i 0.999834 + 0.0182091i \(0.00579645\pi\)
−0.999834 + 0.0182091i \(0.994204\pi\)
\(660\) 0 0
\(661\) 3.42797e10 0.179569 0.0897844 0.995961i \(-0.471382\pi\)
0.0897844 + 0.995961i \(0.471382\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.08654e9 + 9.88571e9i 0.0208963 + 0.0505500i
\(666\) 0 0
\(667\) −1.17228e11 + 1.17228e11i −0.592283 + 0.592283i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.18337e10 −0.305025
\(672\) 0 0
\(673\) 5.18977e10 + 5.18977e10i 0.252981 + 0.252981i 0.822192 0.569211i \(-0.192751\pi\)
−0.569211 + 0.822192i \(0.692751\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.02064e9 + 5.02064e9i −0.0239004 + 0.0239004i −0.718956 0.695056i \(-0.755380\pi\)
0.695056 + 0.718956i \(0.255380\pi\)
\(678\) 0 0
\(679\) 3.73620e10i 0.175772i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −3.82161e10 3.82161e10i −0.175616 0.175616i 0.613826 0.789441i \(-0.289630\pi\)
−0.789441 + 0.613826i \(0.789630\pi\)
\(684\) 0 0
\(685\) 2.76209e11 1.14179e11i 1.25452 0.518590i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.41701e10i 0.0628778i
\(690\) 0 0
\(691\) 3.21018e11 1.40805 0.704023 0.710177i \(-0.251385\pi\)
0.704023 + 0.710177i \(0.251385\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.31530e11 3.16903e11i 0.563749 1.35827i
\(696\) 0 0
\(697\) 9.68399e10 9.68399e10i 0.410321 0.410321i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.92163e11 1.20991 0.604956 0.796259i \(-0.293191\pi\)
0.604956 + 0.796259i \(0.293191\pi\)
\(702\) 0 0
\(703\) −1.45541e10 1.45541e10i −0.0595886 0.0595886i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.00314e10 2.00314e10i 0.0801740 0.0801740i
\(708\) 0 0
\(709\) 1.84412e11i 0.729801i 0.931047 + 0.364900i \(0.118897\pi\)
−0.931047 + 0.364900i \(0.881103\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.90773e10 4.90773e10i −0.189899 0.189899i
\(714\) 0 0
\(715\) −1.79262e11 4.33651e11i −0.685905 1.65927i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.86759e11i 1.44719i 0.690226 + 0.723594i \(0.257511\pi\)
−0.690226 + 0.723594i \(0.742489\pi\)
\(720\) 0 0
\(721\) −4.00780e10 −0.148308
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.64743e11 1.64274e11i 0.596286 0.594589i
\(726\) 0 0
\(727\) 1.08489e11 1.08489e11i 0.388373 0.388373i −0.485734 0.874107i \(-0.661448\pi\)
0.874107 + 0.485734i \(0.161448\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.61900e11 −0.566994
\(732\) 0 0
\(733\) −1.81338e11 1.81338e11i −0.628165 0.628165i 0.319441 0.947606i \(-0.396505\pi\)
−0.947606 + 0.319441i \(0.896505\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.11162e11 5.11162e11i 1.73256 1.73256i
\(738\) 0 0
\(739\) 5.46351e11i 1.83187i −0.401330 0.915933i \(-0.631452\pi\)
0.401330 0.915933i \(-0.368548\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.08189e11 3.08189e11i −1.01126 1.01126i −0.999936 0.0113233i \(-0.996396\pi\)
−0.0113233 0.999936i \(-0.503604\pi\)
\(744\) 0 0
\(745\) 1.35724e11 3.27007e11i 0.440586 1.06153i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.55598e10i 0.144762i
\(750\) 0 0
\(751\) 1.35575e9 0.00426205 0.00213103 0.999998i \(-0.499322\pi\)
0.00213103 + 0.999998i \(0.499322\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.44716e11 + 2.26084e11i 1.67642 + 0.695795i
\(756\) 0 0
\(757\) −2.95475e11 + 2.95475e11i −0.899781 + 0.899781i −0.995416 0.0956356i \(-0.969512\pi\)
0.0956356 + 0.995416i \(0.469512\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3.50018e11 −1.04364 −0.521822 0.853055i \(-0.674747\pi\)
−0.521822 + 0.853055i \(0.674747\pi\)
\(762\) 0 0
\(763\) 3.33229e10 + 3.33229e10i 0.0983205 + 0.0983205i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.03028e11 + 2.03028e11i −0.586642 + 0.586642i
\(768\) 0 0
\(769\) 3.37337e11i 0.964624i 0.875999 + 0.482312i \(0.160203\pi\)
−0.875999 + 0.482312i \(0.839797\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.80219e10 + 5.80219e10i 0.162508 + 0.162508i 0.783677 0.621169i \(-0.213342\pi\)
−0.621169 + 0.783677i \(0.713342\pi\)
\(774\) 0 0
\(775\) 6.87728e10 + 6.89691e10i 0.190638 + 0.191182i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.72672e11i 0.740442i
\(780\) 0 0
\(781\) 7.05812e11 1.89708
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.12601e11 + 4.65470e10i −0.296528 + 0.122578i
\(786\) 0 0
\(787\) 1.28984e10 1.28984e10i 0.0336231 0.0336231i −0.690095 0.723718i \(-0.742431\pi\)
0.723718 + 0.690095i \(0.242431\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.08410e9 0.00532368
\(792\) 0 0
\(793\) 9.06772e10 + 9.06772e10i 0.229301 + 0.229301i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.41350e10 + 1.41350e10i −0.0350318 + 0.0350318i −0.724406 0.689374i \(-0.757886\pi\)
0.689374 + 0.724406i \(0.257886\pi\)
\(798\) 0 0
\(799\) 2.78881e11i 0.684276i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5.26404e11 5.26404e11i −1.26607 1.26607i
\(804\) 0 0
\(805\) 4.33740e10 + 1.80023e10i 0.103287 + 0.0428692i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.90397e11i 1.61178i 0.592067 + 0.805889i \(0.298312\pi\)
−0.592067 + 0.805889i \(0.701688\pi\)
\(810\) 0 0
\(811\) −8.75326e10 −0.202342 −0.101171 0.994869i \(-0.532259\pi\)
−0.101171 + 0.994869i \(0.532259\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.31179e10 1.52688e11i −0.143061 0.346078i
\(816\) 0 0
\(817\) −2.27931e11 + 2.27931e11i −0.511583 + 0.511583i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.30471e11 0.507275 0.253638 0.967299i \(-0.418373\pi\)
0.253638 + 0.967299i \(0.418373\pi\)
\(822\) 0 0
\(823\) −8.64879e10 8.64879e10i −0.188519 0.188519i 0.606536 0.795056i \(-0.292558\pi\)
−0.795056 + 0.606536i \(0.792558\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.31886e11 2.31886e11i 0.495739 0.495739i −0.414370 0.910109i \(-0.635998\pi\)
0.910109 + 0.414370i \(0.135998\pi\)
\(828\) 0 0
\(829\) 1.24583e11i 0.263779i −0.991264 0.131890i \(-0.957896\pi\)
0.991264 0.131890i \(-0.0421044\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.28174e11 + 1.28174e11i 0.266207 + 0.266207i
\(834\) 0 0
\(835\) −4.39438e11 + 1.81654e11i −0.903965 + 0.373680i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.32482e11i 0.267367i 0.991024 + 0.133684i \(0.0426806\pi\)
−0.991024 + 0.133684i \(0.957319\pi\)
\(840\) 0 0
\(841\) 1.45525e11 0.290906
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.77613e11 + 4.27933e11i −0.348376 + 0.839361i
\(846\) 0 0
\(847\) −2.81840e10 + 2.81840e10i −0.0547606 + 0.0547606i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −9.03602e10 −0.172290
\(852\) 0 0
\(853\) −1.92442e11 1.92442e11i −0.363499 0.363499i 0.501600 0.865099i \(-0.332745\pi\)
−0.865099 + 0.501600i \(0.832745\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −5.33628e11 + 5.33628e11i −0.989272 + 0.989272i −0.999943 0.0106713i \(-0.996603\pi\)
0.0106713 + 0.999943i \(0.496603\pi\)
\(858\) 0 0
\(859\) 3.48989e11i 0.640972i −0.947253 0.320486i \(-0.896154\pi\)
0.947253 0.320486i \(-0.103846\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.36194e11 + 7.36194e11i 1.32724 + 1.32724i 0.907769 + 0.419470i \(0.137784\pi\)
0.419470 + 0.907769i \(0.362216\pi\)
\(864\) 0 0
\(865\) 1.61947e11 + 3.91764e11i 0.289273 + 0.699777i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.87355e11i 0.679251i
\(870\) 0 0
\(871\) −1.49920e12 −2.60488
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −6.08315e10 2.53497e10i −0.103776 0.0432455i
\(876\) 0 0
\(877\) −5.69351e10 + 5.69351e10i −0.0962458 + 0.0962458i −0.753590 0.657344i \(-0.771680\pi\)
0.657344 + 0.753590i \(0.271680\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 4.10972e11 0.682196 0.341098 0.940028i \(-0.389201\pi\)
0.341098 + 0.940028i \(0.389201\pi\)
\(882\) 0 0
\(883\) 3.49612e11 + 3.49612e11i 0.575100 + 0.575100i 0.933549 0.358449i \(-0.116694\pi\)
−0.358449 + 0.933549i \(0.616694\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.64244e11 + 5.64244e11i −0.911533 + 0.911533i −0.996393 0.0848602i \(-0.972956\pi\)
0.0848602 + 0.996393i \(0.472956\pi\)
\(888\) 0 0
\(889\) 2.42457e9i 0.00388175i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.92622e11 + 3.92622e11i 0.617403 + 0.617403i
\(894\) 0 0
\(895\) −3.33210e11 + 8.02822e11i −0.519310 + 1.25120i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.48503e11i 0.227351i
\(900\) 0 0
\(901\) 1.14361e10 0.0173531
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −8.41147e11 3.49117e11i −1.25394 0.520447i
\(906\) 0 0
\(907\) −9.44245e8 + 9.44245e8i −0.00139526 + 0.00139526i −0.707804 0.706409i \(-0.750314\pi\)
0.706409 + 0.707804i \(0.250314\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.02795e11 0.584804 0.292402 0.956295i \(-0.405545\pi\)
0.292402 + 0.956295i \(0.405545\pi\)
\(912\) 0 0
\(913\) 4.25122e11 + 4.25122e11i 0.611829 + 0.611829i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.28728e10 + 4.28728e10i −0.0606324 + 0.0606324i
\(918\) 0 0
\(919\) 5.71953e11i 0.801860i 0.916109 + 0.400930i \(0.131313\pi\)
−0.916109 + 0.400930i \(0.868687\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.03505e12 1.03505e12i −1.42611 1.42611i
\(924\) 0 0
\(925\) 1.26804e11 + 1.80734e8i 0.173207 + 0.000246872i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 9.36530e11i 1.25736i −0.777665 0.628679i \(-0.783596\pi\)
0.777665 0.628679i \(-0.216404\pi\)
\(930\) 0 0
\(931\) 3.60899e11 0.480382
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.49980e11 1.44674e11i 0.457927 0.189297i
\(936\) 0 0
\(937\) 2.93070e11 2.93070e11i 0.380200 0.380200i −0.490974 0.871174i \(-0.663359\pi\)
0.871174 + 0.490974i \(0.163359\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −8.88370e11 −1.13301 −0.566507 0.824057i \(-0.691706\pi\)
−0.566507 + 0.824057i \(0.691706\pi\)
\(942\) 0 0
\(943\) −8.46455e11 8.46455e11i −1.07043 1.07043i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.47904e10 5.47904e10i 0.0681247 0.0681247i −0.672224 0.740348i \(-0.734661\pi\)
0.740348 + 0.672224i \(0.234661\pi\)
\(948\) 0 0
\(949\) 1.54391e12i 1.90352i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 9.59818e11 + 9.59818e11i 1.16364 + 1.16364i 0.983673 + 0.179963i \(0.0575979\pi\)
0.179963 + 0.983673i \(0.442402\pi\)
\(954\) 0 0
\(955\) 2.50029e11 + 1.03774e11i 0.300592 + 0.124760i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.29084e11i 0.152616i
\(960\) 0 0
\(961\) −7.90721e11 −0.927106
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.16353e11 7.65287e11i −0.364807 0.882500i
\(966\) 0 0
\(967\) 5.73546e11 5.73546e11i 0.655938 0.655938i −0.298479 0.954416i \(-0.596479\pi\)
0.954416 + 0.298479i \(0.0964792\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −6.59341e11 −0.741708 −0.370854 0.928691i \(-0.620935\pi\)
−0.370854 + 0.928691i \(0.620935\pi\)
\(972\) 0 0
\(973\) 1.04786e11 + 1.04786e11i 0.116910 + 0.116910i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.80295e11 4.80295e11i 0.527144 0.527144i −0.392576 0.919720i \(-0.628416\pi\)
0.919720 + 0.392576i \(0.128416\pi\)
\(978\) 0 0
\(979\) 5.03183e11i 0.547766i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.05351e12 + 1.05351e12i 1.12830 + 1.12830i 0.990453 + 0.137852i \(0.0440198\pi\)
0.137852 + 0.990453i \(0.455980\pi\)
\(984\) 0 0
\(985\) −5.82236e11 + 2.40684e11i −0.618521 + 0.255684i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.41513e12i 1.47915i
\(990\) 0 0
\(991\) −6.86106e11 −0.711372 −0.355686 0.934606i \(-0.615753\pi\)
−0.355686 + 0.934606i \(0.615753\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3.90754e11 + 9.41464e11i −0.398667 + 0.960531i
\(996\) 0 0
\(997\) −9.70841e11 + 9.70841e11i −0.982579 + 0.982579i −0.999851 0.0172719i \(-0.994502\pi\)
0.0172719 + 0.999851i \(0.494502\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.9.l.a.73.4 8
3.2 odd 2 20.9.f.a.13.3 8
5.2 odd 4 inner 180.9.l.a.37.4 8
12.11 even 2 80.9.p.d.33.2 8
15.2 even 4 20.9.f.a.17.3 yes 8
15.8 even 4 100.9.f.b.57.2 8
15.14 odd 2 100.9.f.b.93.2 8
60.47 odd 4 80.9.p.d.17.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.f.a.13.3 8 3.2 odd 2
20.9.f.a.17.3 yes 8 15.2 even 4
80.9.p.d.17.2 8 60.47 odd 4
80.9.p.d.33.2 8 12.11 even 2
100.9.f.b.57.2 8 15.8 even 4
100.9.f.b.93.2 8 15.14 odd 2
180.9.l.a.37.4 8 5.2 odd 4 inner
180.9.l.a.73.4 8 1.1 even 1 trivial